Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1"

Transkript

1 Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1

2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2

3 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Der Dualraum Lineare Algebra II p. 2

4 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Der Dualraum Determinanten Lineare Algebra II p. 2

5 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Der Dualraum Determinanten Eigenwerte und Diagonalisierbarkeit Lineare Algebra II p. 2

6 Inhaltsverzeichnis Kapitel III Bilinearformen, Euklidische und unitäre Vektorräume Bilinearformen Lineare Algebra II p. 3

7 Inhaltsverzeichnis Kapitel III Bilinearformen, Euklidische und unitäre Vektorräume Bilinearformen Symmetrische Bilinearformen Lineare Algebra II p. 3

8 Inhaltsverzeichnis Kapitel III Bilinearformen, Euklidische und unitäre Vektorräume Bilinearformen Symmetrische Bilinearformen Skalarprodukte Lineare Algebra II p. 3

9 Inhaltsverzeichnis Kapitel III Bilinearformen, Euklidische und unitäre Vektorräume Bilinearformen Symmetrische Bilinearformen Skalarprodukte Euklidische Vektorräume Lineare Algebra II p. 3

10 Inhaltsverzeichnis Kapitel III Bilinearformen, Euklidische und unitäre Vektorräume Bilinearformen Symmetrische Bilinearformen Skalarprodukte Euklidische Vektorräume Unitäre Vektorräume Lineare Algebra II p. 3

11 Inhaltsverzeichnis Kapitel IV Euklidische Ringe und die Jordansche Normalform Euklidische Ringe Lineare Algebra II p. 4

12 Inhaltsverzeichnis Kapitel IV Euklidische Ringe und die Jordansche Normalform Euklidische Ringe Die Jordansche Normalform Lineare Algebra II p. 4

13 Inhaltsverzeichnis Kapitel IV Euklidische Ringe und die Jordansche Normalform Euklidische Ringe Die Jordansche Normalform Beliebige Systeme von Vektoren Lineare Algebra II p. 4

14 Einige Begriffe aus Kapitel II Dualraum Lineare Algebra II p. 5

15 Einige Begriffe aus Kapitel II Dualraum Koordinatensystem, Koordinatenabbildung Lineare Algebra II p. 5

16 Einige Begriffe aus Kapitel II Dualraum Koordinatensystem, Koordinatenabbildung Duale Abbildung Lineare Algebra II p. 5

17 Einige Begriffe aus Kapitel II Dualraum Koordinatensystem, Koordinatenabbildung Duale Abbildung Kanonische Abbildung von V nach V Lineare Algebra II p. 5

18 Einige Begriffe aus Kapitel II Dualraum Koordinatensystem, Koordinatenabbildung Duale Abbildung Kanonische Abbildung von V nach V Determinante Lineare Algebra II p. 5

19 Einige Begriffe aus Kapitel II Dualraum Koordinatensystem, Koordinatenabbildung Duale Abbildung Kanonische Abbildung von V nach V Determinante Entwicklung der Determinante Lineare Algebra II p. 5

20 Einige Begriffe aus Kapitel II Dualraum Koordinatensystem, Koordinatenabbildung Duale Abbildung Kanonische Abbildung von V nach V Determinante Entwicklung der Determinante Formel von Leibniz Lineare Algebra II p. 5

21 Einige Begriffe aus Kapitel II Dualraum Koordinatensystem, Koordinatenabbildung Duale Abbildung Kanonische Abbildung von V nach V Determinante Entwicklung der Determinante Formel von Leibniz Adjunkte Matrix, Cramersche Regel Lineare Algebra II p. 5

22 Einige Begriffe aus Kapitel II Eigenwert Lineare Algebra II p. 6

23 Einige Begriffe aus Kapitel II Eigenwert Eigenvektor Lineare Algebra II p. 6

24 Einige Begriffe aus Kapitel II Eigenwert Eigenvektor Eigenraum Lineare Algebra II p. 6

25 Einige Begriffe aus Kapitel II Eigenwert Eigenvektor Eigenraum Diagonalisierbarkeit Lineare Algebra II p. 6

26 Einige Begriffe aus Kapitel II Eigenwert Eigenvektor Eigenraum Diagonalisierbarkeit Charakteristisches Polynom Lineare Algebra II p. 6

27 Einige Begriffe aus Kapitel II Eigenwert Eigenvektor Eigenraum Diagonalisierbarkeit Charakteristisches Polynom Trigonalisierbarkeit Lineare Algebra II p. 6

28 Einige Begriffe aus Kapitel II Eigenwert Eigenvektor Eigenraum Diagonalisierbarkeit Charakteristisches Polynom Trigonalisierbarkeit Satz von Cayley-Hamilton Lineare Algebra II p. 6

29 Einige Begriffe aus Kapitel III Bilinearform Lineare Algebra II p. 7

30 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Lineare Algebra II p. 7

31 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Lineare Algebra II p. 7

32 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Nicht-Ausgeartetheit Lineare Algebra II p. 7

33 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Nicht-Ausgeartetheit Adjungierte Abbildung Lineare Algebra II p. 7

34 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Nicht-Ausgeartetheit Adjungierte Abbildung Symmetrische Bilinearform / symmetrische Matrix Lineare Algebra II p. 7

35 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Nicht-Ausgeartetheit Adjungierte Abbildung Symmetrische Bilinearform / symmetrische Matrix Quadratische Form Lineare Algebra II p. 7

36 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Nicht-Ausgeartetheit Adjungierte Abbildung Symmetrische Bilinearform / symmetrische Matrix Quadratische Form Kongruente symmetrische Matrizen Lineare Algebra II p. 7

37 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Nicht-Ausgeartetheit Adjungierte Abbildung Symmetrische Bilinearform / symmetrische Matrix Quadratische Form Kongruente symmetrische Matrizen Algorithmus für symmetrische Matrizen Lineare Algebra II p. 7

38 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Nicht-Ausgeartetheit Adjungierte Abbildung Symmetrische Bilinearform / symmetrische Matrix Quadratische Form Kongruente symmetrische Matrizen Algorithmus für symmetrische Matrizen Orthonormalbasis Lineare Algebra II p. 7

39 Einige Begriffe aus Kapitel III Bilinearform Kanonische Bilinearform zwischen V und V / Dualprodukt Links-/ Rechtskern einer Bilinearform Nicht-Ausgeartetheit Adjungierte Abbildung Symmetrische Bilinearform / symmetrische Matrix Quadratische Form Kongruente symmetrische Matrizen Algorithmus für symmetrische Matrizen Orthonormalbasis Satz von Sylvester Lineare Algebra II p. 7

40 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Lineare Algebra II p. 8

41 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Lineare Algebra II p. 8

42 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Lineare Algebra II p. 8

43 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Isometrie Lineare Algebra II p. 8

44 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Isometrie Orthogonale Matrix Lineare Algebra II p. 8

45 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Isometrie Orthogonale Matrix Verfahren von Gram-Schmidt Lineare Algebra II p. 8

46 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Isometrie Orthogonale Matrix Verfahren von Gram-Schmidt Normalform orthogonaler Matrizen Lineare Algebra II p. 8

47 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Isometrie Orthogonale Matrix Verfahren von Gram-Schmidt Normalform orthogonaler Matrizen Selbstadjungierter Endomorphismus Lineare Algebra II p. 8

48 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Isometrie Orthogonale Matrix Verfahren von Gram-Schmidt Normalform orthogonaler Matrizen Selbstadjungierter Endomorphismus Normalform symmetrischer Matrizen (über R) Lineare Algebra II p. 8

49 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Isometrie Orthogonale Matrix Verfahren von Gram-Schmidt Normalform orthogonaler Matrizen Selbstadjungierter Endomorphismus Normalform symmetrischer Matrizen (über R) Unitärer Vektorraum Lineare Algebra II p. 8

50 Einige Begriffe aus Kapitel III Positive Definitheit, Skalarprodukt Eukldischer Vektorraum Norm, normierter Raum Isometrie Orthogonale Matrix Verfahren von Gram-Schmidt Normalform orthogonaler Matrizen Selbstadjungierter Endomorphismus Normalform symmetrischer Matrizen (über R) Unitärer Vektorraum Normale Abbildung Lineare Algebra II p. 8

51 Begriffe aus Kapitel IV Integritätsbereich Lineare Algebra II p. 9

52 Begriffe aus Kapitel IV Integritätsbereich Euklidischer Ring Lineare Algebra II p. 9

53 Begriffe aus Kapitel IV Integritätsbereich Euklidischer Ring Hauptidealring Lineare Algebra II p. 9

54 Begriffe aus Kapitel IV Integritätsbereich Euklidischer Ring Hauptidealring Größter gemeinsamer Teiler Lineare Algebra II p. 9

55 Begriffe aus Kapitel IV Integritätsbereich Euklidischer Ring Hauptidealring Größter gemeinsamer Teiler Euklidischer Algorithmus Lineare Algebra II p. 9

56 Begriffe aus Kapitel IV Integritätsbereich Euklidischer Ring Hauptidealring Größter gemeinsamer Teiler Euklidischer Algorithmus Irreduzibles Element Lineare Algebra II p. 9

57 Begriffe aus Kapitel IV Integritätsbereich Euklidischer Ring Hauptidealring Größter gemeinsamer Teiler Euklidischer Algorithmus Irreduzibles Element Primelement Lineare Algebra II p. 9

58 Begriffe aus Kapitel IV Integritätsbereich Euklidischer Ring Hauptidealring Größter gemeinsamer Teiler Euklidischer Algorithmus Irreduzibles Element Primelement Eindeutige Faktorisierung in Primelemente Lineare Algebra II p. 9

59 Begriffe aus Kapitel IV Minimalpolynom Lineare Algebra II p. 10

60 Begriffe aus Kapitel IV Minimalpolynom Zyklischer Raum Lineare Algebra II p. 10

61 Begriffe aus Kapitel IV Minimalpolynom Zyklischer Raum p-primärer Raum Lineare Algebra II p. 10

62 Begriffe aus Kapitel IV Minimalpolynom Zyklischer Raum p-primärer Raum p-primärer Anteil Lineare Algebra II p. 10

63 Begriffe aus Kapitel IV Minimalpolynom Zyklischer Raum p-primärer Raum p-primärer Anteil Hauptraum Lineare Algebra II p. 10

64 Begriffe aus Kapitel IV Minimalpolynom Zyklischer Raum p-primärer Raum p-primärer Anteil Hauptraum Zerlegung in p-primäre Anteile / Hauptraumzerlegung Lineare Algebra II p. 10

65 Begriffe aus Kapitel IV Minimalpolynom Zyklischer Raum p-primärer Raum p-primärer Anteil Hauptraum Zerlegung in p-primäre Anteile / Hauptraumzerlegung Jordansche Normalform Lineare Algebra II p. 10

66 Begriffe aus Kapitel IV Minimalpolynom Zyklischer Raum p-primärer Raum p-primärer Anteil Hauptraum Zerlegung in p-primäre Anteile / Hauptraumzerlegung Jordansche Normalform Geometrische und algebraische Vielfachheit eines Eigenwerts Lineare Algebra II p. 10

67 Begriffe aus Kapitel IV Systeme von Vektoren Lineare Algebra II p. 11

68 Begriffe aus Kapitel IV Systeme von Vektoren Erzeugendensystem Lineare Algebra II p. 11

69 Begriffe aus Kapitel IV Systeme von Vektoren Erzeugendensystem linear unabhängiges System Lineare Algebra II p. 11

70 Begriffe aus Kapitel IV Systeme von Vektoren Erzeugendensystem linear unabhängiges System Basis Lineare Algebra II p. 11

71 Begriffe aus Kapitel IV Systeme von Vektoren Erzeugendensystem linear unabhängiges System Basis Der Standardvektorraum K (I) mit der Standardbasis (e i ) i I. Lineare Algebra II p. 11

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Matrizen, lineare Gleichungssysteme Wie kommt man von einem linearen Gleichungssystem zu einer Matrix? Was ist die Zeilenstufenform?

Mehr

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 CAROLINE LASSER Inhaltsverzeichnis 1. Euklidische Vektorräume 2 1.1. Skalarprodukte und Normen (26.4.) 2 1.2. Orthonormalisierung (3.5.) 2 1.3.

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Lineare Algebra. Theo de Jong. Higher Education. a part of Pearson plc worldwide

Lineare Algebra. Theo de Jong. Higher Education. a part of Pearson plc worldwide Theo de Jong Lineare Algebra Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide Lineare Algebra - PDF Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort Vorwort V I Lineare Gleichungssysteme und Matrizen 1 1 Der Begriff des Körpers 3 1.1 Mengen 3 1.2 Köiperaxiome 3 1.3 Grundlegende Eigenschaften von Körpern 5 1.4 Teilkörper 7 1.5 Aufgaben 8 1.5.1 Grundlegende

Mehr

LINEARE ALGEBRA I JÜRGEN HAUSEN

LINEARE ALGEBRA I JÜRGEN HAUSEN LINEARE ALGEBRA I JÜRGEN HAUSEN Anstelle eines Vorwortes... Der vorliegende Text entstand aus einer einführenden Vorlesung Lineare Algebra im Rahmen des Mathematikstudiums. Ich habe mich um knappe Darstellung

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Klausur zur Vorlesung Lineare Algebra II

Klausur zur Vorlesung Lineare Algebra II Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann Ina Kersten Analytische Geometrie und Lineare Algebra 1 L A TEX-Bearbeitung von Stefan Wiedmann Universitätsverlag Göttingen 2005 Voraussetzungen 11 1 Einige Grundbegriffe 12 1.1 Die komplexen Zahlen 12

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Freitag, 6.. Sascha Frölich

Mehr

Musterlösung der Klausur zur linearen Algebra II

Musterlösung der Klausur zur linearen Algebra II David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 12

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 12 Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 12 Schriftliche Aufgaben Aufgabe 1. Sei A M(n n, C). Zeigen Sie: (1) exp(a) ist invertierbar mit exp(a) 1 = exp( A). (2) Ist A M(n n, C) selbstadjungiert

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

10. Übung zur Linearen Algebra II -

10. Übung zur Linearen Algebra II - 0. Übung zur Linearen Algebra II - Lösungen Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 7 Der ( linearen ) Abbildung ϕ : R R sei bzgl. der kanonischen Basis die Matrix zugeordnet.

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

Steilkurs Lineare Algebra 1 einige wichtige Stationen

Steilkurs Lineare Algebra 1 einige wichtige Stationen Steilkurs Lineare Algebra 1 einige wichtige Stationen Für einen Körper K ist ein K-Vektorraum V eine Menge mit einer kommutativen und assoziativen Verknüpfung + : V V V, für die es ein neutrales Element

Mehr

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016 Stichwortliste zur Vorlesung Lineare Algebra II Gabriela Weitze-Schmithüsen Saarbrücken, Sommersemester 2016 Kapitel I Jordansche Normalform Ziel: Wir möchten Matrizen bis aus Ähnlichkeit klassifizieren.

Mehr

Jürgen Hausen Lineare Algebra I

Jürgen Hausen Lineare Algebra I Jürgen Hausen Lineare Algebra I 2. korrigierte Auflage Shaker Verlag Aachen 2009 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation

Mehr

(a) Bestimmen Sie die Matrixdarstellung dieser Abbildung bzgl. einer möglichst einfachen Basis von P n - (b) Bestimmen Sie die zu F duale Abbildung F.

(a) Bestimmen Sie die Matrixdarstellung dieser Abbildung bzgl. einer möglichst einfachen Basis von P n - (b) Bestimmen Sie die zu F duale Abbildung F. Übung. Wiederholen Sie die folgenden Begriffe und geben sie jeweils Beispiele (a) Vektorraum (b) Vektorraumhomomorphismus mit Spezialfällen (c) Basis (d) Dualraum (e) Duale Basis (f) Koordinatenabbildung

Mehr

Mathematik für das Bachelorstudium I

Mathematik für das Bachelorstudium I Matthias Plaue / Mike Scherfner Mathematik für das Bachelorstudium I Grundlagen, lineare Algebra und Analysis Spektrum k-/± AKADEMISCHER VERLAG Inhaltsverzeichnis I Grundlagen 1 1 Elementare Logik und

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

Lineare Algebra Vordiplomsprotokoll

Lineare Algebra Vordiplomsprotokoll Lineare Algebra Vordiplomsprotokoll Datum: 20.09.2006 Prüfer: Prof. Dr. Peter Müller Note: 1.0 Wie misst man die Gröÿe eines Vektorraums? Die Gröÿe eines Vektorraums ist die Dimension, d.h. die Anzahl

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Wenn eine reelle Matrix einen Eigenvektor hat, so hat es unendlich viele Eigenvektoren Sei u K n einen Eigenvektor von A M

Mehr

Horst Niemeyer Edgar Wermuth. Lineare Algebra. Analytische und numerische Behandlung

Horst Niemeyer Edgar Wermuth. Lineare Algebra. Analytische und numerische Behandlung Horst Niemeyer Edgar Wermuth Lineare Algebra Analytische und numerische Behandlung v FriedrVieweg & Sohn Braunschweig/Wiesbaden VIII Inhaltsverzeichnis Symbolverzeichnis XII 1 Die euklidischen Vektorräume

Mehr

LINEARE ALGEBRA II JÜRGEN HAUSEN

LINEARE ALGEBRA II JÜRGEN HAUSEN LINEARE ALGEBRA II JÜRGEN HAUSEN i Jürgen Hausen Lineare Algebra II Shaker Verlag Aachen 2013 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie Max Koecher Lineare Algebra und analytische Geometrie Mit 35 Abbildungen Springer-Verlag Berlin Heidelberg New York Tokyo 1983 Inhaltsverzeichnis Teil A. Lineare Algebra I Kapitel 1. Vektorräume 1 1. Der

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Probeklausur Lineare Algebra für Physiker

Probeklausur Lineare Algebra für Physiker Fachbereich Mathematik Prof. Dr. K. Grosse-Brauckmann D. Frisch Probeklausur Lineare Algebra für Physiker SS 8 26./27.6.27 Name:..................................... Vorname:.................................

Mehr

Lineare Algebra 2 SS2012 Übungsblatt

Lineare Algebra 2 SS2012 Übungsblatt Lineare Algebra 2 SS2012 Übungsblatt 1 Übung 1. Seien A 1, A 2,..., A k quadratische n n-matrizen über einem Körper K. Zeige, daß das Produkt A 1 A 2... A k invertierbar ist genau dann, wenn alle A i invertierbar

Mehr

Schwerpunkte zum Stoff der linearen Algebra I, II Sommmersemester 03 Wintersemester 03/04

Schwerpunkte zum Stoff der linearen Algebra I, II Sommmersemester 03 Wintersemester 03/04 M. Roczen Schwerpunkte zum Stoff der linearen Algebra I, II Sommmersemester 03 Wintersemester 03/04 Monoid (Begriff, erste Beispiele) Produkt- und Summen-Notation in Monoiden Gruppe (Begriff und elementare

Mehr

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Lineare Algebra I/II LVA ,

Lineare Algebra I/II LVA , Lineare Algebra I/II LVA 401-1151-00,401-1152-00 Prof. G. Wüstholz, C. Fuchs Lösungen zur Basisprüfung, HS08/FS09 09.02.2010 1. a) (1 Punkt) Wir beginnen mit dem charakteristischen Polynom der Matrix A:

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

5. Übung zur Linearen Algebra II -

5. Übung zur Linearen Algebra II - 5. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 2. Aufgabe 7 5 A := 2. 3 2 (i) Berechne die Eigenwerte und Eigenvektoren von A. (ii) Ist A diagonalisierbar?

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lineare Algebra II. Sommersemester Wolfgang Ebeling

Lineare Algebra II. Sommersemester Wolfgang Ebeling Lineare Algebra II Sommersemester 2009 Wolfgang Ebeling 1 c Wolfgang Ebeling Institut für Algebraische Geometrie Leibniz Universität Hannover Postfach 6009 30060 Hannover E-mail: ebeling@mathuni-hannoverde

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

Inhalt der Vorlesung Lineare Algebra I

Inhalt der Vorlesung Lineare Algebra I Inhalt der Vorlesung Lineare Algebra I Prof. Dr. W. Plesken WS 2000/2001 1 1 Mengen und Abbildungen 1.1 Inhalt und Ziel der Vorlesung 1.2 Die mengentheoretische Sprechweise Lernziel: Einfache Notation

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 53 Norm von Endomorphismen und Matrizen Definition 53.1. Es seien V und W endlichdimensionale normierte K-

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Übungen zu Lineare Algebra und Geometrie 1

Übungen zu Lineare Algebra und Geometrie 1 Übungen zu Lineare Algebra und Geometrie 1 Andreas Čap Sommersemester 2015 Wiederholung grundlegender Begriffe (1 Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch f(x, y,

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette 1. Übungsblatt zur Vorlesung Abgabe Donnerstag, den 30.10.03 1 Finden 2 Sei Sie reelle Zahlen a, b, c, so dass a (2, 3, 1) + b (1, 2, 2) + c (2, 5, 3) = (3, 7, 5). (V,, ) ein euklidischer Vektorraum. Zeigen

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Kommutator, Kommutatorgrupe, Normalreihe, auflösbare Gruppe

reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Kommutator, Kommutatorgrupe, Normalreihe, auflösbare Gruppe 1 Lernliste 1.1 Relationen reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Äquivalenzrelation, Kongruenzrelation Klasseneinteilung Hauptsatz über Äquivalenzrelationen Jede

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Bonusmaterial Euklidische und unitäre Vektorräume Geometrie in höheren Dimensionen

Bonusmaterial Euklidische und unitäre Vektorräume Geometrie in höheren Dimensionen Bonusmaterial Euklidische und unitäre Vektorräume Geometrie in höheren Dimensionen Orthogonale und unitäre Endomorphismen Wir untersuchen nun lineare Abbildungen in euklidischen und unitären Vektorräumen

Mehr

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n-

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n- I. Lineare Algebra Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung 1. Determinanten (siehe Fischer/Kaul I, S.329-339) Matrix. Determinanten von 2 2- und 3 3-Matrizen. Alternierende Multilinearformen

Mehr

Lineare Algebra Klausur 1

Lineare Algebra Klausur 1 Lineare Algebra Klausur 1 (29.7.2015 Dozent: Ingo Runkel) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Lineare Algebra II. Sommersemester Wolfgang Ebeling

Lineare Algebra II. Sommersemester Wolfgang Ebeling Lineare Algebra II Sommersemester 2006 Wolfgang Ebeling 1 c Wolfgang Ebeling Institut für Mathematik Universität Hannover Postfach 6009 30060 Hannover E-mail: ebeling@mathuni-hannoverde 1 Euklidische und

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Zusammenfassung Lineare Algebra II

Zusammenfassung Lineare Algebra II Zusammenfassung Lineare Algebra II CC BY: Tim Baumann, http://timbaumanninfo/uni-spicker Notation Sofern nicht anders angegeben, bezeichne K im folgenden einen beliebigen Körper, V einen (möglicherweise

Mehr

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge 1 1 Check-Liste Analysis 1.1 Mengen und Abbildungen Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? kompakt? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge von R? Was

Mehr

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Zurück Stand 4.. 6 Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Im Allgemeinen werden Vektoren durch Multiplikation mit einer Matrix gestreckt und um einen bestimmten Winkel gedreht. Es gibt jedoch

Mehr

Lineare Algebra für PhysikerInnen

Lineare Algebra für PhysikerInnen Universität Wien, SS 2015 Lineare Algebra für PhysikerInnen Beispiele für Multiple-Choice-Fragen Punkteschlüssel: [Typ 1 aus 4] und [Typ 3 aus 4]... 0.8 Punkte [Typ 2 aus 4]... 1 Punkt Bei der schriftlichen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

Übungen zu Lineare Algebra und Geometrie für LAK

Übungen zu Lineare Algebra und Geometrie für LAK Übungen zu Lineare Algebra und Geometrie für LAK Andreas Cap Wintersemester 2010/11 Wiederholung grundlegender Begriffe (1) Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Abschnitt 1. Jordan Normalform

Abschnitt 1. Jordan Normalform Abschnitt Jordan Normalform Beispiel & Eigenschaften λ λ λ λ 2 λ 2 λ 2 λ 3 Voraussetzung: χ zerfällt Dann: ex. Basis, s.d. Darstellungsmatrix Jordan-Form hat Minimalpolynom µ hat Faktor zu jedem EW in

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Leitfaden 34. , dies ist eine reelle symmetrische Matrix, also diagonalisierbar.

Leitfaden 34. , dies ist eine reelle symmetrische Matrix, also diagonalisierbar. Leitfaden 34 5. Euklidsche und unitäre Räume (und selbstadjungierte, orthogonale, unitäre, normale Endomorphismen). 5.1. Reelle symmetrische Matrizen sind diagonalisierbar. Satz: Reelle symmetrische Matrizen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Grundlagen der Mathematik 2 Nachklausur

Grundlagen der Mathematik 2 Nachklausur Andreas Gathmann und Yue Ren Sommersemester 6 Grundlagen der Mathematik Nachklausur Bearbeitungszeit: 8 Minuten Aufgabe (6 Punkte): Es sei f : R R, (x,y) xye (x+y). (a) Bestimme alle lokalen Maxima und

Mehr

Grundbegriffe aus der Vorlesung Lineare Algebra I+II

Grundbegriffe aus der Vorlesung Lineare Algebra I+II Grundbegriffe aus der Vorlesung Lineare Algebra I+II 30. Juli 2009 Eine Gruppe ist ein Paar (G, ) bestehend aus einer Menge G und einer Verknüpfung : G G G, (a, b) a b, mit: 1. (a b) c = a (b c) (Assoziativität)

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Übungen zur Linearen Algebra II

Übungen zur Linearen Algebra II Blatt 1 Aufgabe 1. Sei V = Mat(n, K) und U V der Untervektorraum der Diagonalmatrizen. Welche Dimension hat der Quotientenvektorraum V/U? Aufgabe 2. Sei G eine Gruppe. Wir betrachten die Relation auf G.

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr