4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden

Größe: px
Ab Seite anzeigen:

Download "4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden"

Transkript

1 Kapitel 4 Das Dirichlet Prinzip Bevor wir uns der Lösung von Randwertproblemen mithilfe der eben entwickelten Techniken zuwenden, wollen wir uns einer Idee zur Lösung widmen, die einige Elemente dieser Entwicklung benötigt, jedoch historisch einer der fruchtbarsten mathematischen Ansätze ist und bleibt. Die Idee besteht darin die Lösung eines Randwertproblems als Lösung einer Minimierungsaufgabe zu charakterisieren. Inhaltsangabe 4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden Wir beginnen mit dem Dirichletschen Randwertproblem für harmonische Funktionen. In der allgemeinen Form hat es für ein Gebiet Ê n die Gestalt u = 0 in (4.1) u = g auf für eine gegebene stetige Funktion g : Ê. Das folgende Lemma motiviert die Untersuchung von partiellen Differentialgleichungen mit sogenannten Variationsmethoden. 79

2 80 KAPITEL 4. DAS DIRICHLET PRINZIP Lemma Eine Funktion u C 2 () C(), welche die Minimierungsaufgabe u 2 dx = min löst, löst die Gleichung (4.1). v 2 dx v C 2 () C(), v = g, Beweis. Für festes v C 2 () C() betrachten wir die Funktion j(t) = u + t v 2 dx. Aufgrund der Voraussetzung ist t = 0 ein Minimum dieser Funktion. Es gilt j(t) = u + t v, u + t v dx = j(0)+2t u, v dx+t 2 v 2 dx. Damit die Funktion j bei t = 0 ein Minimum hat, ist notwendig, dass u, v dx = 0 ist, für jedes v C 2 () C(). Wählen wir speziell eine Funktion v C 0 (), so ergibt sich, aufgrund unserer Überlegungen in Abschnitt 3.1, dass u, v dx = 0 ist. Nun gilt dies für alle v C0 (). Diese Menge liegt dicht in L2 () (nach Lemma 3.2.6). Damit ist u, v dx = 0 für alle v L 2 () (da das Skalarprodukt stetig ist). Also ist u = 0.

3 4.1. MOTIVATION VON VARIATIONSMETHODEN 81 Definition Das Integral (wenn immer es existiert) D(u) = wird als Dirichletintegral von u bezeichnet. u 2 dx Die eben angestellten Überlegungen lassen sich unschwer auf die Poissonsche Gleichung übertragen. Wir wollen dies nun ausführen. Wir betrachten die Gleichung u = f in u = g auf, (4.2) wobei f C() und g C( ) stetige Funktionen seien. Setze U = u C 2 () C() u = g. In diesem Raum würden wir gerne Lösungen für die Gleichung (4.2) finden. Definition Für u U sei J(u) = 1 2 u 2 dx + uf dx das Energieintegral von u. Satz Die Gleichung (4.2) besitzt höchstens eine Lösung. 2. Ist u C 2 () C() eine Lösung der Poissonschen Gleichung, so minimiert u das Energieintegral im folgenden Sinn: J(u) = min J(v) v U. 3. Ist u U ein Minimum des Energieintegrals auf U, so löst u die Poissonsche Gleichung. Beweis.

4 82 KAPITEL 4. DAS DIRICHLET PRINZIP 1. Angenommen wir hätten zwei Lösungen, so würde die Differenz w C 2 () C() die Gleichung mit f = 0 und g = 0 auf der rechten Seite lösen. Damit ist 0 = w w dx = w 2 dx. Also ist w konstant und damit ist w = 0 aufgrund der Randbedingung. 2. Sei u U eine Lösung der Gleichung (4.2). Für ϕ C0 () betrachten wir J(u + ϕ) = 1 (u + ϕ), (u + ϕ) dx + (u + ϕ)f dx 2 = J(u) + = J(u) = J(u) + u, ϕ dx + J(ϕ) uϕ dx + J(ϕ) ϕ 2 dx J(u). Nun liegt C 0 () dicht in H1 0 () und damit kann jedes v C2 () C 0 () H 1 0() durch ϕ C 0 () approximiert werden. Also ist für v C 2 () C 0 () J(u + v) J(u), insbesondere hat u die gewünschten Minimierungseigenschaften. 3. Dieser Schritt ist eine geringfügige Modifikation des Beweis von Lemma Für ϕ C0 () betrachten wir J(u + tϕ) = 1 (u + tϕ), (u + tϕ) dx + (u + tϕ)f dx 2 = J(u) + t u, ϕ dx + ϕf dx + t2 2 ϕ 2 dx.

5 4.2. VARIATIONSMETHODEN IM SOBOLEVRAUM 83 Notwendig für die Minimierungsbedingung ist, das Verschwinden des Faktors bei t. Dann ist 0 = u, ϕ dx + ϕf dx = ( u + f)ϕ dx. Wie oben folgt aus Tatsache, dass diese Gleichung für alle ϕ C 0 () gilt, dass u f = 0. Damit ist diese Aussage bewiesen. Weierstraß 1 [22] hat gezeigt, dass es nicht notwendig eine Funktion u C 2 () C() mit vorgegebenen Randwerten gibt, die das Dirichletintegral minimiert. Bis dahin ist man davon ausgegangen, dass ein solches Minimierungsproblem immer eine Lösung besitzt. Natürlich kann man andere Funktionenräume wählen um die Existenz eines Minimums zu erzwingen. Dabei ist naheliegend größere Funktionenräume heranzuziehen. Wir haben im letzten Kapitel schon vorgearbeitet und die Sobolevräume eingeführt. 4.2 Variationsmethoden im Sobolevraum In diesem Abschnitt wollen wir zeigen, dass für gewisse Gleichungen die Minimierungsmethoden aus dem letzten Abschnitt 4.1 im Sobolevraum H 1 () zum Erfolg führen. Wir beginnen wieder mit der Gleichung (4.1) u = 0 u = g in auf Ziel ist es, eine Funktion u H 1 () zu finden, so dass u g H 1 0() liegt und u das Dirichletintegral, das ja für Funktionen in H 1 () definiert ist, minimiert. Den Zusammenhang mit der klassischen Aufgabenstellung werden wir in einem getrennten Schritt untersuchen. Zunächst also die Formulierung des Ergebnisses. Satz Es sei Ê n ein beschränktes Gebiet, g H 1 (). Dann existiert eine Funktion u H 1 () mit folgenden Eigenschaften: 1 Karl Weierstraß ()

6 84 KAPITEL 4. DAS DIRICHLET PRINZIP 1. u g H0 1 () und 2. u 2 dx = min v 2 dx v H 1 (), v g H0 1 (). Beweis. Wir betrachten das Infimum τ := inf v 2 dx v H 1 (), v g H 1 0() und eine Folge u n n Æ in H 1 () mit u n g H0 1 () und τ = lim u n 2 dx. n Wir nennen die Folge u n n Æ eine Minimalfolge. Für das Dirichletintegral der Differenz zweier Folgenglieder ergibt sich D(u n u m ) = (u n u m ), (u n u m ) dx = D(u n ) + D(u m ) 2 u n, u m dx = 2 (D(u n ) + D(u m )) D(u n ) + 2 u n, u m dx + D(u m ) = 2 (D(u n ) + D(u m )) (u n + u m ), (u n + u m ) dx = 2 (D(u n ) + D(u m )) 4 ( 1(u 2 n + u m )), ( 1(u 2 n + u m )) dx ( ) un + u m = 2 (D(u n ) + D(u m )) 4D. 2

7 4.2. VARIATIONSMETHODEN IM SOBOLEVRAUM 85 Die Definition von τ ergibt (beachte un+um g = 1 ((u 2 2 n g) + (u m g)) H0()) 1 ( ) un + u m τ D. 2 Da D(u n ) τ konvergiert, gibt es zu ε > 0 eine Zahl N mit n > N impliziert, dass τ D(u n ) τ + ε Mit n, m > N folgt dann 0 D(u n u m ) = 2 (D(u n ) + D(u m )) 4D ( u n+u m ) 2 4τ + 4ε 4τ = 4ε. Damit ist die Folge u n n Æ (4.3) eine Cauchy-Folge in L 2 (). Aus Satz folgt nun (man beachte, dass u n u m = (u n g) (u m g) H 1 0 () liegt), dass die Folge u n n Æ eine Cauchy-Folge in L 2 () bildet und daher einen Grenzwert in L 2 () besitzt. Wegen der Konvergenz der ersten Ableitungen hat man sogar Konvergenz in H 1 () und man findet einen Grenzwert H 1 () u = lim n u n. Da das Dirichletintegral auf H 1 () stetig ist, folgt, dass D(u) = min D(v) v H 1 (), v g H0 1 (). Bemerkung Im Beweis haben wir in (4.3) quasi en passant die Ungleichung D ( 1 2 (u + v)) 1 2 D(u) D(v) gezeigt, da die linke Seite nichtnegativ ist. Tatsächlich gilt mehr, eine kleine Rechnung zeigt, dass für 0 λ 1 die folgende Ungleichung erfüllt ist. D(λu + (1 λ)v) λd(u) + (1 λ)d(v). (4.4)

8 86 KAPITEL 4. DAS DIRICHLET PRINZIP Definition Es sei V ein linearer Raum, I : V Ê eine Abbildung. Genügt diese Abbildung der Gleichung (4.4), d.h. gilt für alle 0 λ 1 und alle (u, v) V V I(λu + (1 λ)v) λi(u) + (1 λ)i(v), so nennen wir I konvex. Bemerkung Der Begriff der Konvexität ist für die Variationsrechnung zentral. Für die Existenzbeweise von Minimierern von Funktionalen spielt die Konvexität eine wichtige Rolle. Nun haben wir natürlich noch keine harmonische Funktion gefunden, die unsere Gleichung löst, sondern nur eine Funktion in H 1 (). Wir kommen nun zu einem ersten Regularitätsresultat, das besagt, dass die Minimallösung u tatsächlich harmonisch ist, d.h. schwache Lösungen der Laplacegleichung sind auch harmonisch. Satz (Weylsches 2 Lemma) Es sei u L 1 () und für alle ϕ C 0 () gelte u ϕ dx = 0. Dann ist u harmonisch auf. Beweis. Es sei h > 0 und h = x dist(x,ê n \ ) > h. Für x h sei J h u(x) die Regularisierung von u. Es sei ϕ C 0 ( h) und ρ, die zu J h gehörende Glättungsfunktion. Dann ist (unter Verwendung von 2 Hermann Weyl ( ) wurde in Elmshorn geboren und wirkte unter anderem an der ETH Zürich. Sein mathematisches Werk betrifft fast alle modernen Gebiete der Mathematik. Er gilt als einer der produktivsten Mathematiker des 20. Jahrhunderts.

9 4.2. VARIATIONSMETHODEN IM SOBOLEVRAUM 87 Satz 3.2.7) J h u(x) ϕ dx = = = = 1 h n 1 h n ( ) x y ρ u(y) dy ϕ(x) dx h ( ) x y ρ u(y) ϕ(x) dx dy h uj h ( ϕ) dy u (J h ϕ) dy Insbesondere ist = 0. J h u(x) ϕ dx = 0 für alle ϕ C0 ( h). Dann ist aber J h u harmonisch, denn wir können die Ableitungen auf J h u wälzen, d.h. 0 = J h u(x) ϕ dx = (J h u(x))ϕ dx d.h. für alle ϕ C0 ( h ). Der Beweis des Satzes zeigt, dass für jedes x h die Menge J h u(x) [ ρ L u L 1, ρ L u L 1 liegt. Wir schätzen nun die Differenz J h u(x 1 ) J h u(x 2 ) ab. Da J h u harmonisch ist, gilt die Mittelwertgleichung (auf hinreichend kleinen Kugeln in h ). Dies wollen wir ausnutzen. Also für B r (x i ) h J h u(x i ) = 1 ω n r n Dann hat man die folgende Abschätzung J h u(x 1 ) J h u(x 2 ) 1 ω n r n B r(x i ) u(y) dy. (B r(x 1 )\B r(x 2 )) (B r(x 2 )\B r(x 1 )) u(y) dy cµ((b r (x 1 ) \ B r (x 2 )) (B r (x 2 ) \ B r (x 1 )).

10 88 KAPITEL 4. DAS DIRICHLET PRINZIP Damit ist die Familie J h u gleichgradig stetig, also relativ kompakt. Damit gibt es eine Folge h i Æ mit und lim h i = 0 i J hi u i Æ ist gleichmäßig konvergent auf h. Damit ist die Grenzfunktion v stetig, der Grenzwert genügt der Mittelwertgleichung und ist demnach harmonisch. Es gilt v = u f.ü. und daher ist u harmonisch. Bemerkung Dies ist nicht die bestmögliche Formulierung des Weylschen Lemmas. Wir wollen nun die Poissonsche Gleichung (4.2) betrachten. Definition Es sei f L 2 (), g H 1 (). Eine Funktion u H 1 () heißt schwache Lösung des Dirichletproblems für die Poisson-Gleichung u = f u = g in auf, falls, u g H0() 1 und für alle v H0() 1 ( u, v + fv) dx = 0 ist. Bemerkung Im Gegensatz zur klassischen Aufgabenstellung verlangen wir hier, dass die Randfunktion im Inneren von definiert ist. Im Kontext schwacher Lösungen bedarf die Definition von Funktionen auf dünnen Mengen zusätzlicher nichttrivialer Überlegungen. Lemma Eine Funktion u H 1 () ist genau dann eine schwache Lösung des Randwertproblems für die Poissongleichung aus Definition 4.2.7, wenn die Funktion w = u g eine Lösung der Aufgabe w v dx = fv g v dx v H 1 0 (4.5) w H0 1().

11 4.2. VARIATIONSMETHODEN IM SOBOLEVRAUM 89 ist. Satz Schwache Lösungen u H 1 () des Dirichletproblems für die Poisson-Gleichung sind genau die Minimierer des Energieintegrals J auf H 1 () unter der Nebenbedingung, dass u g H0 1 () ist, also u ist schwache Lösung genau dann, wenn u g H 1 0() und J(u) = min J(v) v H0 1 (), v g H1 0 (). Beweis. Folgt aus den Überlegungen im Beweis von Satz Wir führen das Problem auf ein Problem mit Nullrandbedingungen zurück. Es sei u H 1 () die gesuchte Lösung und w = u g. Dann ist w H0 1 () eine schwache Lösung des Randwertproblems w = f g in w = 0 auf. Umgekehrt hat man eine schwache Lösung w H0 1 () dieses Problems, so entsteht durch u = w + g eine schwache Lösung des ursprünglichen Problems. Satz Zu jedem f L 2 (), g H 1 () gibt es eine Funktion u H 1 () mit u g H0 1 () und J(u) = min J(v) v H 1 (), v g H0 1 (). Beweis. Der Beweis folgt den Linien des Beweises von Satz Im ersten Schritt ist zu zeigen, dass J( ) nach unten beschränkt ist. Die Poincarésche Ungleichung garantiert uns ein c > 0 mit (u g) L 2 c u g 2 L 2. Mit

12 90 KAPITEL 4. DAS DIRICHLET PRINZIP w = u g ergibt sich J(u) = J(w + g) = 1 (w + g) 2 dx + 2 f(w + g) dx = 1 2 ( w w, g + g 2) dx c 2 w 2 H w, g dx + g 2 dx f L 2 w H 1 0 f L 2 g L 2 c 2 w 2 H 1 0 g H 1 0 w H 1 0 f L 2 w H 1 0 f L 2 g L 2 c 2 w 2 H 1 0 g H 1 0 w H 1 0 C. Dies ist offensichtlich nach unten beschränkt und damit gilt dies auch für das Energieintegral.Damit existiert die Zahl σ = inf J(v) v H 1 (), v g H0() 1 das Infimum des Energieintegrals. Sei u n n Æ eine Minimalfolge. Wie zuvor folgt aus der Eigenschaft der Minimalfolge zunächst die L 2 -Konvergenz von (u n g) und damit auch die von u n. Mit der Poincaréschen Ungleichung überträgt sich dies auf die L 2 -Konvergenz von u n g und damit auf die der Folge u n. Damit konvergiert die Folge u n n Æ in H 1 (). Der Grenzwert ist der Minimierer des Energieintegrals.

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Partielle Differentialgleichungen Kapitel 11

Partielle Differentialgleichungen Kapitel 11 Partielle Differentialgleichungen Kapitel Die Laplace- und Poisson- Gleichungen Die Struktur bei elliptischen Gleichungen zweiter Ordnung ist nicht wesentlich verschieden bei Operatoren mit konstanten

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Schwache Lösungstheorie

Schwache Lösungstheorie Kapitel 4 Schwache Lösungstheorie Bemerkung 4.1 Motivation. Dieses Kapitel stellt eine Erweiterung des Lösungsbegriffes von partiellen Differentialgleichungen vor die schwache Lösung. Diese Erweiterung

Mehr

Finite Elemente I 2. 1 Variationstheorie

Finite Elemente I 2. 1 Variationstheorie Finite Elemente I 2 1 Variationstheorie 1 Variationstheorie TU Bergakademie Freiberg, SoS 2007 Finite Elemente I 3 1.1 Bilinearformen Definition 1.1 Sei V ein reeller normierter Vektorraum. Eine Bilinearform

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2 D-MATH Funktionalanalysis FS 214 Prof. M. Struwe Lösung 2 1. a) Wir unterscheiden zwei Fälle. Fall 1: 1 < p < : Seien u L p () und (u k ) W 1,p () eine beschränkte Folge, so dass u k u in L p () für k.

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir =

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir = 4.2 Eigenschaften harmonischer Funktionen Die Mittelwerteigenschaft: Eine besondere Eigenschaft harmonischer Funktionen ist, dass der Funktionswert an einer Stelle x stets gleich dem Mittelwert von u über

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

die gewünschte Schranke gefunden, denn es gilt (trivialerweise) für n N

die gewünschte Schranke gefunden, denn es gilt (trivialerweise) für n N .5. VOLLSTÄNDIGKEIT VON R 37 Lemma.5. (Beschränktheit konvergenter Folgen) Konvergente Folgen in R sind beschränkt. Beweis. Angenommen die Folge a n n N konvergiert gegen A R. Zu ε > 0 existiert ein N

Mehr

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations Prof. Dr. H. J. Pesch Lehrstuhl für Ingenieurmathematik Universität Bayreuth Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations (Teil 1: SS 26) 4. Übung

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II für zur Lösung der Monge-Ampère-Gleichung, Teil II Andreas Platen Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zur Approximationstheorie im Wintersemester 2009/2010 1 / 27 Gliederung

Mehr

4.5 Schranken an die Dichte von Kugelpackungen

4.5 Schranken an die Dichte von Kugelpackungen Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren.

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren. 56 SS2016 Definition 6.17 (Unterlösung,Oberlösung). Ω R n seieingebietleinelliptischeroperator wie in Bedingung 6.1. Seien a i j, b i c stetig mit c 0 in Ω. Sei f stetig in Ω. Eine Funktion u C(Ω) heißt

Mehr

Projektionen auf abgeschlossene konvexe Mengen

Projektionen auf abgeschlossene konvexe Mengen Projektionen auf abgeschlossene konvexe Mengen Seminarvortrag von Veronika Pick Seminar Optimierung bei Herrn Prof. Dr. F. Jarre Heinrich-Heine-Universität Düsseldorf SS 2006 1 Vorbemerkung Das Seminarthema

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

8 KAPITEL 1. GRUNDLAGEN

8 KAPITEL 1. GRUNDLAGEN 8 KAPITEL 1. GRUNDLAGEN Beweis. 1. Sei A X abgeschlossen, dann ist X \ A offen und jede offene Überdeckung von A lässt sich durch Hinzunahme von X \ A auf ganz X fortsetzen. Die Kompaktheit von X erlaubt

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

Proseminar Analysis Vollständigkeit der reellen Zahlen

Proseminar Analysis Vollständigkeit der reellen Zahlen Proseminar Analysis Vollständigkeit der reellen Zahlen Axel Wagner 18. Juli 2009 1 Voraussetzungen Zunächst wollen wir festhalten, was wir als bekannt voraussetzen: Es sei (Q, +, ) der Körper der rationalen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion Carina Sobotta 7. Oktober 004 Einleitung Elliptische Funktionen erhielten ihren Namen, da sie anfangs bei Untersuchungen

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Die Perronsche Methode

Die Perronsche Methode Emilia Finsterwald und Peter Schrank 21.06.2012 Gliederung 1 Oskar Perron 2 3 4 5 6 7 8 Oskar Perron (1880-1975) b7.mai 1880 in Frankenthal - d22.feb. 1975 in München Lösung eines speziellen s Im Fall

Mehr

Finite Elemente am Beispiel der Poissongleichung

Finite Elemente am Beispiel der Poissongleichung am Beispiel der Poissongleichung Roland Tomasi 11.12.2013 Inhalt 1 2 3 Poissongleichung Sei R n ein Gebiet mit abschnittsweise glattem Rand und f L 2 (). Wir suchen u : R, so dass u = f in, u = 0 Physikalische

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

3.3. KONVERGENZKRITERIEN 67. n+1. a p und a n. beide nicht konvergent, so gilt die Aussage des Satzes 3.2.6

3.3. KONVERGENZKRITERIEN 67. n+1. a p und a n. beide nicht konvergent, so gilt die Aussage des Satzes 3.2.6 3.3. KONVERGENZKRITERIEN 67 und l n+1 wiederum als kleinsten Wert, so dass A 2n+2 = A 2n+1 + l n+1 k=l n < A. Alle diese Indizes existieren und damit ist eine Folge {A k } k N definiert. Diese Folge konvergiert

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

1 Konvergenz im p ten Mittel

1 Konvergenz im p ten Mittel Konvergenz im p ten Mittel 1 1 Konvergenz im p ten Mittel In diesem Paragraphen werden zunächst in Abschnitt 1.1 die L p Räume eingeführt. Diese erweisen sich als vollständige, lineare Räume über R. In

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Analysis der Eikonal-Gleichung Teil I

Analysis der Eikonal-Gleichung Teil I Analysis der Eikonal-Gleichung Teil I Seminararbeit zur angewandten Mathematik Matthäus Deutsch vorgelegt bei Prof Dr. Wolfgang Ring Institut für Mathematik und Wissenschaftliches Rechnen Universität Graz

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

Einführung in die Mehrdimensionale Variationsrechnung (Vorlesungsskript)

Einführung in die Mehrdimensionale Variationsrechnung (Vorlesungsskript) Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Einführung in die Mehrdimensionale Variationsrechnung (Vorlesungsskript) Univ. Prof.

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

2 - Konvergenz und Limes

2 - Konvergenz und Limes Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Kapitel 3 Sätze der offenen Abbildung

Kapitel 3 Sätze der offenen Abbildung Kapitel 3 Sätze der offenen Abbildung Wir werden in diesem Abschnitt uns folgender Frage zuwenden: Wann ist ein Morphismus f: G H von topologischen Gruppen offen, d.h. wann gilt für eine offene Menge U

Mehr

Schwartz Raum und gemässigte Distributionen

Schwartz Raum und gemässigte Distributionen 1 ETH Zürich (Pro)Seminar: Grundideen der Harmonischen Analysis Schwartz Raum und gemässigte Distributionen David Bernhardsgrütter und David Umbricht 18 Dezember 2007 Schwartz Raum und gemässigte Distributionen

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr