Technische Informatik I
|
|
|
- Jasmin Holzmann
- vor 9 Jahren
- Abrufe
Transkript
1 Rechnerstrukturen Dario Linsky Wintersemester 2010 / 2011
2 Zeit und Ort Mittwochs, 16 bis 18 Uhr Hörsaal V, Mehrzweckgebäude Lahnberge Zwischenklausur am Abschlussklausur am Zulassungskriterien zur Klausur Mindestens 50 % der erreichbaren Zettelpunkte Regelmäßige und aktive Mitarbeit im Tutorium
3 Zettelabgabe Jeweils spätestens eine Woche nach Ausgabe Schriftlich oder per an Maximal zwei unbearbeitete Zettel Ablauf des Tutoriums Vertiefung und Ergänzung der Vorlesung Zwischenfragen jederzeit erwünscht Mitarbeit erforderlich
4 Teil 1: Einleitung Überblick Schnittstelle zwischen Informatik und Elektrotechnik Information als berechenbare Größe Computerinterne Darstellung von Informationen Logik und Boolesche Algebra
5 Grundlagen der Physik Größen und Einheiten Größe besteht aus Wert und Einheit Sieben Basiseinheiten: Zeit, Strom, Länge, Lichtstärke, Masse, Temperatur und Stoffmenge Durch Kombination weitere Einheiten möglich Größenordnungen durch Präfixe oder Potenzen Signale Wert (Amplitude) als zeitabhängige Funktion s(t) In der Natur immer kontinuierlich Umwandlung in diskrete (digitale) Signale
6 Digitalisierung von Signalen Verfahren Zeitlich diskrete Abtastung (Sampling) Einteilung in diskrete Wertintervalle (Quantisierung) Schritte unabhängig voneinander ausführbar Anschließende Überlagerung von Sampling und Quantisierung Codierung Wird später behandelt
7 Digitalisierung von Signalen s(t) s(t) (a) zeit- und wertkontinuierlich s(t) t (b) zeitdiskret, wertkontinuierlich s(t) t (c) zeitkontinuierlich, wertdiskret t (d) zeit- und wertdiskret t
8 Vom Signal zur Information Informationsgehalt Signale sind Träger von Information Informationsparameter I = log B p(a) 1 (1) Abhängig von Ereignissen Binäre, atomare Informationseinheit (bit,»binary digit«) b {0, 1} Tupel von Bits (Worte) Wiele Bits sind nötig, um ein Ereignis darzustellen?
9 Vom Signal zur Information Physische Darstellung Spannung als Informationsträger Fest definierte Potentiale (Pegel): High und Low Logische Darstellung U H,max U H,min U L,max U L,min High Nicht definiert Low Zuordnung von Pegeln zu Wahrheitswerten Positive Logik: 1 High, 0 Low Negative Logik: 0 High, 1 Low
10 Wie zählen wir eigentlich? Darstellung ganzer Zahlen Zahlen als Worte von Symbolen (Ziffern) z n 1,..., z 1, z 0 Alphabete von Symbolen L B = {0,..., B 1} Jede Ziffer z i L B gibt die Wertigkeit ihrer Stelle an Stellenwertsystem mit Basis B = L Zahlen darstellbar als Polynom z = n 1 i=0 z i B i (2) Transformierbar in Zahlensysteme mit anderer Basis
11 Wie zählen wir eigentlich? Übertrag Bei Überschreiten des Wertebereichs für eine Ziffer Zurücksetzen der Ziffer auf 0 Erhöhen der nächsten Ziffer um 1 Weitere wichtige Zahlensysteme Binärsystem: Basis B = 2 Oktalsystem: Basis B = 8 Hexadezimalsystem: Basis B = 16, L = {0,..., 9, A, B,..., F} Die Darstellung unterscheidet sich, Wert bleibt gleich
12 Transformation zwischen Zahlensystemen Algorithmischer Ansatz 1. Dividiere z 0 durch die Basis des Zielsystems 2. Notiere ganzzahliges Zwischenergebnis z und Divisionsrest r 3. Falls z 0: Wiederhole mit z 0 = z 5 2 = 2 Rest: = 1 Rest: = 0 Rest: 1 Ende Binär: 1 0 1
13 Transformation zwischen Zahlensystemen Abkürzendes Verfahren Möglich bei Transformation von Basis B nach Basis B n Zusammenfassen von n Stellen im Zahlensystem mit Basis B Rechts beginnen, links bei Bedarf mit 0 auffüllen Beispiel Wir transformieren die Binärzahl in das Hexadezimalsystem: =D 2 12=C 9
14 Logische Operationen Algebraisches Rechnen mit Binärwerten Verknüpfen von binären Werten b {0, 1} Berechnungen sind abgeschlossen, d.h. Ergebnisse sind wieder im Binäralphabet Notation über Wahrheitstabellen Definition eines vollständigen Satzes an Operationen x y f (x, y)
15 Logische Operationen Elementare Operationen Negation (»nicht«): f (x) = x = x Konjunktion (»und«): f (x, y) = x y = xy Disjunktion (»oder«): f (x, y) = x y = x + y Abgeleitete Operationen Negiertes Oder (»nor«): f (x, y) = x y = x + y Negiertes Und (»nand«): f (x, y) = x y = xy Antivalenz (»xor«): f (x, y) = (x y) ( x y) Äquivalenz (»xnor«): f (x, y) = (x y) ( x y)
16 Allgemeine Rechenregeln Regel Definition Kommutativität (x y) = (y x), (x y) = (y x) Assoziativität (x y) z = x (y z), (x y) z = x (y z) Distributivität x (y z) = (x y) (x z), x (y z) = (x y) (x z) Idempotenz x x = x, x x = x Absorption x (y z) = x, x (y z) = x Neutralität x 1 = x, x 0 = x Extremalgesetz x 0 = 0, x 1 = 1 Involution ( x) = x Dualität 0 = 1, 1 = 0 Komplement x ( x) = 0, x ( x) = 1
17 Allgemeine Rechenregeln Vollständige Logiken Die Menge der Operationen {,, } definiert eine vollständige Logik auf dem Binäralphabet Alternativ definiert die Menge {, } ebenfalls eine vollständige Logik De Morgans Theoreme Beide Logiken sind äquivalent und können mit Hilfe der Theoreme von De Morgan ineinander überführt werden x y = x y x y = x y (3) (4)
18 Allgemeines zur Codierung Allgemeines zur Codierung Bijektive Abbildungen Darstellung durch Berechnungsvorschrift oder Zuordnungstabelle Minimale Wortlänge (oft nicht erreichbar) Redundanz sinnvoll ausnutzen Binär codierte Dezimalzahlen Einfachster Code Binärzahlen durch Transformation des Zahlensystems
19 Codierung quantisierter Signale Binäre Codierung Abgetastete Werte werden binär codiert Überlauf vermeiden Höhere Frequenz erforderlich Serielle oder parallele Übertragung s(t) t
20 Hamming-Distanz Hamming-Distanz Maß für Unterschiedlichkeit von Wörtern Anzahl der unterschiedlichen Symbole in zwei Wörtern Berechnung durch bitweise Antivalenz und Abzählen der Einsen (x, y) = x i y i 1, i = 0,..., n (5) Hamming-Gewicht Hamming-Distanz eines Wortes zum Nullwort
21 Hamming-Distanz
22 Gray-Code Gray-Code Code mit einer Hamming-Distanz von (x n, x n+1 ) = 1 Zirkulärer Code Vorteilhaft beim Entwurf von Zählern Algorithmisch aus Binärcodes berechenbar n x n x n
23 Gray-Code Zeichencodierung Klassisch über ASCII-Code (7 Bit) Lateinische Buchstaben, Zahlen, Sonderzeichen Großbuchstaben ab 65 (entspricht»a«) Kleinbuchstaben ab 92 (entspricht»a«) Ziffern ab 48 (entspricht»0«) Niedrige Stellen (unter 32) mit Steuerzeichen belegt Heutige Alternativen: ISO-8915, Unicode,...
24 Positive und negative Zahlen Problem Computer kennt nur 1 und 0 Keine Vorzeichen vordefiniert Zweierkomplement Algorithmischer Lösungsansatz Entspricht Vorzeichenwechsel der binär codierten Zahlen Links stehen nur noch Einsen 1. Invertiere jedes einzelne Bit (Einerkomplement) 2. Addiere 1 (Zweierkomplement)
25 Positive und negative Zahlen Beispiel Binär codierte Zahl 2 = Invertieren zum Einerkomplement: Inkrementieren zum Zweierkomplement: Entspricht Vorzeichenumkehr (in beide Richtungen) Zirkulärer Wertebereich Auf Bereichsfehler achten!
26 Reelle Zahlen Problem Bisher nur ganze Zahlen möglich Darstellung von reellen Zahlen Erweiterung der Polynomdarstellung z = z i B i i= (6) Ideale Darstellung ohne Rundungsfehler Praktisch nicht realisierbar wegen endlichem Speicher Stattdessen werden Fließkommazahlen verwendet
27 Reelle Zahlen Fließkommazahlen Idee: Bei sehr großen Zahlen sind kleine Werte vernachlässigbar Aufteilung in Mantisse und Exponent Vorzeichenbit (1 für negative, 0 für positive Zahlen) Normierte Codierung nach IEEE-754 Standard Nachteil: Rundungsfehler nicht ausgeschlossen Sign Exponent Mantisse 1 Bit 8 Bit 23 Bit
28 Reelle Zahlen Exponent Verschiebung (Bias) um 127 Größenordnung n = e 127 der codierten Zahl Mantisse Legt die Nachkommastellen der codierten Zahl fest Verschoben um n Bits Imaginäre Eins vorm Komma
1. Informationsdarstellung. Darstellung und Bedeutung. Darstellung und Bedeutung. Interpretation ??? 1. Kapitel
Wintersemester 207/208. Informationsdarstellung Äquivalente Information in verschiedenen Darstellungen: Schrift: Die Katze sitzt am Fenster Bild Sprache Zeichensprache. Kapitel Prof. Matthias Werner Professur
Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit
Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert
Vorlesung Programmieren
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
Übung Praktische Informatik II
Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim [email protected] 06.03.09 2-1 Heutige große Übung Allgemeines
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Axel Arnold Institut für Computerphysik Universität Stuttgart Wintersemester 2010/11 Wie rechnet ein Computer? Ein Mikroprozessor ist ein
2 Repräsentation von elementaren Daten
2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis
Basisinformationstechnologie I
Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // [email protected]
21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
Technische Informatik I
Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt [email protected] Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,
Einführung in die Computerorientierte Mathematik
Einführung in die Computerorientierte Mathematik Wintersemester 2014/15 Thomas Gerstner Institut für Mathematik Goethe-Universität Frankfurt 28. Oktober 2014 Inhaltsverzeichnis Inhaltsverzeichnis ii 1
Einführung in die Informatik I
Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen
Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -
Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010
5 Zahlenformate und deren Grenzen
1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4
Signalverarbeitung 1
TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte
Einführung in die Computerorientierte Mathematik
Einführung in die Computerorientierte Mathematik Wintersemester 2014/15 Thomas Gerstner Institut für Mathematik Goethe-Universität Frankfurt 17. Oktober 2014 Inhaltsverzeichnis Inhaltsverzeichnis ii 1
Kapitel 5: Daten und Operationen
Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter
Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8
Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung
Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär
Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten
Zahlen in Binärdarstellung
Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen
Technische Informatik I
Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise
Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2
Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller
Daten, Informationen, Kodierung. Binärkodierung
Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen
3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......
2. Tutorium Digitaltechnik und Entwurfsverfahren
2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,
Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000
Zahlensysteme und Kodes. Prof. Metzler
Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form
1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung
1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,
Lösung 1. Übungsblatt
Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung
Binäre Darstellung ganzer Zahlen
Vorlesung Objektorientierte Softwareentwicklung Exkurse use Binäre Darstellung ganzer Zahlen Binärdarstellung natürlicher Zahlen Ganze Zahlen im Einerkomplement Ganze Zahlen im Zweierkomplement Elementare
Grundlagen der Informatik
Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................
, 2015S Übungstermin: Mi.,
VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel
Teil II. Schaltfunktionen
Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)
Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen
Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: [email protected]
Numerisches Programmieren
Informatics V - Scientific Computing Numerisches Programmieren Tutorübung 1 Jürgen Bräckle, Christoph Riesinger 2. Mai 2013 Tutorübung 1, 2. Mai 2013 1 Einführung in die Binärzahlen Zahlendarstellung im
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 15/16 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
Rückblick. Addition in der b-adischen Darstellung wie gewohnt. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Addition in der b-adischen Darstellung wie gewohnt 5 0 C E + D 4 2 D = 44 Rückblick Multiplikation in der b-adischen Darstellung wie gewohnt 1 0 1 0 1 0 1 = 45 Rückblick Darstellung negativer
7. Übung zur Vorlesung Grundlagen der Informatik
7. Übung zur Vorlesung Grundlagen der Informatik 13.Interne Darstellung von Daten In der Vorlesung wurde bereits darauf hingewiesen, dass ein Rechner intern lediglich die Zustände 0 (kein Signal liegt
Computergrundlagen Zahlensysteme
Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren
Kapitel 5: Darstellung von Daten im Rechner
Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel
1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14
Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*
There are only 10 types of people in the world: those who understand binary, and those who don't
Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul
Informationsdarstellung im Rechner
Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer
Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme
Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.
Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79
Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator
Grundlagen der Informatik
Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung
2. Vorlesung: Boolesche Algebra
2. Vorlesung: Boolesche Algebra Wiederholung Codierung, Decodierung Boolesche Algebra UND-, ODER-Verknüpfung, Negation Boolesche Postulate Boolesche Gesetze 1 Wiederholung 2 Bits und Bitfolgen Bit: Maßeinheit
Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik
Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche
Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016
Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den
Kapitel 2. Zahlensysteme, Darstellung von Informationen
Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
Einführung in Informatik 1
Einführung in Informatik Prof. Dr.-Ing. Andreas Penningsfeld Zahlensysteme Allgemein: Zahl b := zn * bn +... + z * b + z ( ) * b (-) +... + z (-m) * b (-m) ; zi: Koeffizienten b: Basis Dezimalsystem Dualsystem
GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK
1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:
Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände
1 2 Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 3 Die Zuordnung der Himmelsrichtungen zu den dreistelligen Binärzahlen, also Norden 000 Süden 001
Rechnerorganisation (RO)
Rechnerorganisation (RO) Dr.-Ing. Heinz-Dietrich Wuttke Dr.-Ing. Karsten Henke H.-D. Wuttke / K. Henke 2015 www.tu-ilmenau.de/iks 1 Hier fanden Sie uns bisher: ehemaliges Informatikgebäude Lehre und Forschung
Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. Informatik 1 / Kapitel 2: Grundlagen
2. Grundlagen Inhalt 2.1 Darstellung von Zahlen 2.2 Darstellung von Zeichen 2.3 Boolesche Algebra 2.4 Aussagenlogik 2 2.1 Darstellung von Zahlen Im Alltag rechnen wir gewöhnlich im Dezimalsystem, d.h.
Grundlagen der Betriebssysteme
Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Zahlendarstellungen
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
4. Zahlendarstellungen
121 4. Zahlendarstellungen Wertebereich der Typen int, float und double Gemischte Ausdrücke und Konversionen; Löcher im Wertebereich; Fliesskommazahlensysteme; IEEE Standard; Grenzen der Fliesskommaarithmetik;
Kodierung. Bytes. Zahlensysteme. Darstellung: Zahlen
2 Einführung in die Informationstechnik VI Information und ihre Darstellung: Zahlen, Zeichen, Texte Heute 1. Information und Daten 2. Informationsdarstellung 1. Zahlen 1. Binärsystem 2. Dezimalsystem 3.
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
1. Tutorium Digitaltechnik und Entwurfsverfahren
1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1
Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i
Lösung 1. Übungsblatt
Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung
Wertebereiche, Overflow und Underflow
Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die
Rechnerorganisation (RO)
Rechnerorganisation (RO) Dr.-Ing. Heinz-Dietrich Wuttke Dr.-Ing. Karsten Henke H.-D. Wuttke / K. Henke 2016 www.tu-ilmenau.de/iks 1 Hier fanden Sie uns bisher: ehemaliges Informatikgebäude Lehre und Forschung
Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2
Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie
Technische Informatik 1 Rechnerorganisation (RO)
Technische Informatik 1 Rechnerorganisation (RO) Dr.-Ing. Heinz-Dietrich Wuttke H.-D. Wuttke `13 10.10.2013 www.tu-ilmenau.de/iks 1 Hier fanden Sie uns: nun Informatikgebäude, EG, Sekretariat Zi. 1031
Digitaltechnik I WS 2006/2007. Klaus Kasper
Digitaltechnik I WS 2006/2007 Klaus Kasper Studium 6 Semester 5. Semester: Praxissemester im Anschluss: Bachelorarbeit 6. Semester: WPs Evaluation der Lehre Mentorensystem 2 Organisation des Studiums Selbständigkeit
Grundlagen der Technischen Informatik. 3. Übung
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen
Darstellung von Informationen
Darstellung von Informationen Bit, Byte, Speicherzelle und rbeitsspeicher Boolesche Operationen, Gatter, Schaltkreis Bit Speicher (Flipflop) Binär- Hexadezimal und Dezimalzahlensystem, Umrechnungen Zweierkomplement
Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner
Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer
Inhalt. Zahlendarstellungen
Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen
Zahlen und Zeichen (1)
Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis
Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.
Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.
Datendarstellung Teil 1
Informatik 1 für Nebenfachstudierende Grundmodul Datendarstellung Teil 1 Kai-Steffen Hielscher Folienversion: 18. Oktober 2017 Informatik 7 Rechnernetze und Kommunikationssysteme Inhaltsübersicht Kapitel
Rechnenund. Systemtechnik
Rechnen- und Systemtechnik 1 / 29 Rechnenund Systemtechnik Skript und Unterrichtsmitschrift April 22 Rechnen- und Systemtechnik 2 / 29 nhaltsverzeichnis 1. Grundbausteine der Digitaltechnik... 4 1.1. UND-Verknüpfungen
Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.
Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,
Grundlagen der Informationverarbeitung
Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,
Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen
Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert
Binäre Repräsentation von Information Bits und Bytes Binärzahlen ASCII Ganze Zahlen Rationale Zahlen Gleitkommazahlen Motivation Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert
Vorzeichenbehaftete Festkommazahlen
106 2 Darstellung von Zahlen und Zeichen Vorzeichenbehaftete Festkommazahlen Es gibt verschiedene Möglichkeiten, binäre vorzeichenbehaftete Festkommazahlen darzustellen: Vorzeichen und Betrag EinerKomplement
