Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Größe: px
Ab Seite anzeigen:

Download "Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab"

Transkript

1 Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250 Hz. 1. Bestimmen Sie die Schallgeschwindigkeit v s in Stahl. Hier hat man es mit stehenden Wellen mit zwei festen Enden zu tun. Der Länge des Stabes entspricht hier gerade einer halben Wellenlänge der Grundschwingung. Dies kann man an folgender Skizze sehen: Die Grundschwingung ist diejenige Schwingung mit der kleinsten Frequenz, bzw. mit der größten Wellenlänge. Da beide Enden fest sind, können hier nur Wellenknoten sein, die größte Wellenlänge ist diejenige mit nur einem Wellenbauch entlang der Länge des Stabes. Für die Grundschwingung gilt: l = λ 0 2 λ 0 = 2l v s = λ 0 f 0 = 2lf 0 = 2 1 m 250 Hz = 5060 m s 2. Berechnen Sie die Frequenzen der nächsten zwei Oberschwingungen. Die nächsten Oberschwingungen zeigen folgende Skizzen:

2 Seite 2 Wie in den Skizzen zu sehen ist, gilt: λ 1 = 1 2 λ 0, λ 2 = 1 λ 0 f 1 = v s λ 1 = 2 vs λ 0 = 2f 0 = Hz = 5060 Hz f 2 = v s λ 2 = vs λ 0 = f 0 = 250 Hz = 7590 Hz. Der Stab werde nun in der Mitte fest eingespannt, die Enden bleiben frei. Bestimmen Sie nun die Frequenzen der Grundschwingung, sowie die der ersten beiden Oberschwingungen.

3 Seite Wird der Stab in der Mitte fest eingespannt, und bleiben die Enden lose, so muß in der Mitte immer ein Wellenknoten sein und an den Enden müssen Wellenbäuche auftreten. Folgende Skizzen zeigen die Grundschwingung, sowie die ersten beiden Oberschwingungen.

4 Seite 4 In der Grundschwingung entspricht auch hier der Länge des Stabes eine halbe Wellenlänge. In der ersten Oberschwingung sind es /2 Wellenlängen, und in der zweiten Oberschwingung 5/2 Wellenlängen. Also sind: f 0 = 250 Hz, f 1 = f 0 = 250 Hz = 7590 Hz, f 2 = 5 f 0 = Hz = Hz. Aufgabe 2: Dopplereffekt Vor einigen Jahren tappte Formel-1-Pilot Ralf Schumacher bei der Fahrt nach Kitzbühel zur BMW- Weihnachtsfeier in Österreich mit 10 km/h statt der erlaubten 80 km/h in eine Radarfalle. Diese Falle sendet elektromagnetische Strahlung von 9.4 GHz aus. Das (sicher teure) BMW-Blech des sich entfernenden Starpiloten reflektierte diese Strahlung auf Grund des Dopplereffekts mit erniedrigter Frequenz zum Radar-Empfänger der Polizei, wo sie mit noch einmal geänderter Frequenz empfangen wird (das reflektierende Fahrzeug stellt einen sich bewegenden Sender dar). 1. Mit welcher Frequenz kam die reflektierte Radarwelle bei der Polizei an? Die Sendefrequenz beträgt f S,P = 9.4 GHz. Das Auto empfängt die Frequenz f E,A = f S,P (1 v/c), und strahlt sie auch wieder zur Polizei zurück, f S,A = f E,A. Die Polizei empfängt f E,P = f S,A (1 + v/c) 1 f E,P = f S,P 1 v/c 1 + v/c = Hz 2. Wie genau musste die Polizei die Frequenz messen, damit die Geschwindigkeit auf km/h genau bestimmt werden konnte? Mit f 0 = f S,P gilt es die Fehlerfortpflanzung für die Funktion f(v) = f 0 1 v/c 1 + v/c zu bestimmen. Diese ist: ( f ) 2 f = v v = f v v

5 Seite 5 Für die Ableitung gilt: ( ) ( f v = f 1 c 1 + v c 1 v 0 ( ) 1 + v 2 c f v = 2f 0 c ( 1 + v c ) 2 c ) 1 c Mit v/c = ergibt sich für den Zahlenwert: f = GHz 10 8 m/s.6 m/s = 52.2 Hz P.S.: Keine Angst vor hohen Frequenzen. Die Formeln für den Dopplereffekt aus der Akustik gelten (zufällig) auch für elektromagnetische Strahlung (also relativistisch). Aufgabe : Stoß und Federpendel Ein Körper der Masse m 1 = m = 1 kg ist durch eine Feder mit Federkonstante k = 400 N/m mit einer vertikalen Wand verbunden. Er kann reibungsfrei auf einer horizontalen Ebene gleiten. Der Körper ist in Ruhe, bevor ihn ein zweiter Körper (Masse m 2 = 2 m) zentral und völlig inelastisch stößt (siehe Abbildung). Körper 2 habe vor dem Stoß die Geschwindigkeit v 0 (v 0 = 1 m/s) in horizontaler Richtung. 1. Zeigen Sie, daß für den Verlust an kinetischer Energie E kin beim Stoß gilt: E kin = mv 2 0/. Hier haben wir es mit zwei getrennten physikalischen Vorgängen zu tun. Zuerst erfolgt ein inelastischer Stoß, dann eine harmonische Federschwingung. Wir betrachten zuerst den inelastischen Stoß. Die kinetische Energie vor dem Stoß T vor ist gleich der kinetischen Energie der Masse m 2, da sich nur diese bewegt, also: T vor = 1 2 m 2v 2 0 = mv 2 0 Beim inelastischen Stoß gilt der Impulserhaltungssatz, aus dem wir die Geschwindigkeit u beider Massen nach dem Stoß berechnen: m 2 v 0 = (m 1 + m 2 )u u = m 2 v 0 = 2m m 1 + m 2 m + 2m v 0 = 2 v 0

6 Seite 6 Also ist die kinetische Energie beider Massen nach dem Stoß: T nach = 1 2 (m 1 + m 2 )u 2 = 1 ( ) m v 0 = 2 mv2 0 Also gilt für den Energieverlust beim inelastischen Stoß: E kin = T nach T vor = 2 mv2 0 mv0 2 = 1 mv2 0 = 1 1 kg 12 m2 s 2 = 0. J 2. Berechnen Sie die Frequenz f und die Amplitude A der angestoßenen Schwingung. Die Frequenz f eines harmonischen Federschwingers mit Masse m ist: f = ω 0 2π = 1 k 2π m = N m = 1.8 Hz 2π 1 kg Die Amplitude A der Schwingung lässt sich aus einer Energiebetrachtung ableiten. Die Gesamtenergie des harmonischen Federschwingers mit Masse m ist E ges = 1 2 ka2. Diese Gesamtenergie ist gleich der kinetischen Energie T nach beider Massen nach dem Stoß: 1 2 ka2 = 2 m mv2 0 A = 2v 0 k = 2 1 m s 1 kg 400 N m = 5.8 cm Aufgabe 4: Stoßdämpfer Ein Lastwagen der Masse M = 4 t besitzt vier gleiche Stoßdämpfer, je einen für jedes Rad. Mit einem Kran wird Ladegut der Masse M/4 genau über dem Schwerpunkt des Lastwagens abgeladen. Dabei wird jeder der vier Stoßdämpfer um die Länge h = 5 cm zusammengedrückt. 1. Berechnen Sie die Federkonstante k jedes Stoßdämpfers. Wir definieren als Ruhelage des Systems den unbeladenen Lastwagen. Nach dem Absenken des Ladegutes auf den Lastwagen wirkt auf alle Federn zusammen die zusätzliche Kraft: F Ladung = 1 4 Mg Da die Last über dem Schwerpunkt abgeladen wird, wirkt auf jede Feder die Kraft: F Feder = 1 4 F Ladung = 1 16 Mg

7 Seite 7 Da alle Federn gleich sind, bewirkt diese Kraft ein Zusammendrücken einer jeden Feder um die Länge h. Also berechnet sich die Federkonstante k jeder einzelnen Feder zu: F Feder = 1 Mg Mg = kh k = 16 16h = 4000 kg 9.81 N kg m = 4.9 N 104 m 2. Berechnen Sie die Schwingungsfrequenzen f leer des leeren und f voll des beladenen Lastwagens. Dabei soll angenommen werden, dass sich die Stoßdämpfer wie perfekt elastische Federn verhalten. Das Gesamtsystem besteht aus vier Federn mit der gleichen Federkonstanten k, die parallel geschaltet sind. Also ist die Federkonstante des Gesamtsystems k tot gerade viermal so groß wie die Federkonstante k der einzelnen Stoßdämpfer. Also ist: k tot = 4k = Mg 4h = 4000 kg 9.81 N kg m = N m Allgemein gilt für die harmonische Federschwingung: f = ω 0 2π = 1 k 2π m (a) Unbeladener Lastwagen: Die Federkonstante ist k tot, die Masse ist M. Also folgt: f leer = 1 ktot 2π M = 1 g 2π 4h = m s 2 = 1.11 Hz 2π m (b) Beladener Lastwagen: Die Federkonstante ist k tot, die Masse ist 5M/4. Also folgt: f voll = 1 2π k tot 5M/4 = 1 2π g 5h = m s 2 = 1.00 Hz 2π m Aufgabe 5: Physikalisches Pendel

8 Seite 8 Ein physikalisches Pendel besteht aus einem dünnen Stab, der an einem Ende aufgehängt wird und sich um die horizontale Achse drehen kann, und einer Last, die am anderen Ende befestigt ist; die Skizze verdeutlicht dies. Die Last ist ein Kubus der Seitenlänge a = 40 mm, der Stab besitzt die Länge l = 400 mm und einen quadratischen Querschnitt mit Seitenlänge b = 4 mm. Stab und Last bestehen aus dem gleichen Material. 1. Leiten Sie aus der Bedingung M = d L/dt die Bewegungsgleichung für kleine Auslenkungen und eine Formel für die Winkelgeschwindigkeit ω ab. Der Auslenkwinkel des Pendels sei φ, die Gesamtmasse des Pendels sei m, und der Abstand des Massenmittelpunkts von der Drehachse sei d. Einzige angreifende Kraft, die die Bewegung bewirkt, ist die Gewichtskraft F g = mg. Dann ist das resultierende Drehmoment M: M = d F g Die rücktreibende Kraft F R senkrecht zu d ist: F R = F g sin φ = mg sin φ Dann folgt für das Drehmoment bei kleinen Auslenkungen: M = dmg sin φ dmgφ Andererseits gilt für das Drehmoment (mit ω = dφ/dt): M = dl dt = d(iω) = I d2 φ dt dt 2 Also findet man für die Bewegung folgende Differentialgleichung: d 2 φ dt 2 = dmg I φ = ω 2 φ

9 Seite 9 Die Lösung dieser klassischen Schwingungsgleichung ist bekanntlich φ(t) = φ max sin(ωt + φ 0 ) mit dmg ω = I 2. Berechnen Sie die ungefähre Schwingungsdauer dieses Pendels für kleine Auslenkungen. Um die Schwingungsdauer T (bzw. die Winkelgeschwindigkeit ω) ausrechnen zu können, müssen wir das Trägheitsmoment I bestimmen. Wir bezeichnen die Entfernungen der Massenmittelpunkte von der Drehachse mit x Stab,Last, und die Massen der einzelnen Teile mit m Stab,Last. Dann sind (ρ sei die Dichte des Materials): x Stab = l 2 m Stab = ρlb 2 x Last = l + a 2 m Last = ρa Damit können wir die Entfernung d des Schwerpunkts von der Drehachse ausrechnen: l 2 d = ρlb2 + ( ) l + a 2 ρa = ρ l2 b 2 + 2a l + a 4 m Stab + m Last 2m Entsprechend folgt für die Trägheitsmomente bezüglich der Drehachse: l I Stab = x 2 dm = x 2 ρb 2 dx = ρb2 l l+a 0 I Last = x 2 ρa 2 dx = (l + a) l ρa 2 = ρa (l 2 + la + a 2 ) l I = I Stab + I Last = ρ b2 l + a ( l 2 + la + a 2) Damit erhält man für den Term ( l 2 b 2 mgd = ρg 2 + a l + a4 2 und somit für die Winkelgeschwindigkeit mgd g (l ω = = 2 b 2 + 2a l + a 4 ) I 2 b 2 l + a l 2 + a 4 l + a 5 ) Einsetzen der Zahlenwerte liefert ω = 4.87 s 1 und T = 2π/ω = 1.29 s.

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung

(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung Schwingungen SW1: 2 Ein Körper bewegt sich harmonisch. Bei einer Auslenkung aus der Ruhelage um x = 7,5 mm erfährt er eine Beschleunigung von a = 1,85 m s 2. Wie viele Schwingungen pro Sekunde führt er

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

SA Saitenschwingungen

SA Saitenschwingungen SA Saitenschwingungen Blockpraktikum Frühjahr 2007 (Gruppe 2) Freitag, 13. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Allgemeine Wellengleichung............... 2 2.2 Transversalwelle

Mehr

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2: Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Phsik Abzüge für Darstellung: Rundung:. Klausur in K am.0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Experimentalphysik EP, WS 2012/13

Experimentalphysik EP, WS 2012/13 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/3 Probeklausur (ohne Optik)-Nummer: 7. Januar 03 Hinweise zur Bearbeitung Alle benutzten

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 016/17 Übung 4 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) A. Übungen A.1. Schwingung

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 2 Anmerkung: Diese Klausur enthält 9 Aufgaben, davon eine Multiple

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB)) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

Nachklausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie

Nachklausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie Nachklausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie Othmar Marti, (othmar.marti@physik.uni-ulm.de) 15. April 2002 Prüfungstermin 12. 4. 2002, 9:00 bis 11:00 Name

Mehr

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s Aufgabe 1: Wie schnell muss ein Wagen in einem Looping mit 8 m Durchmesser am höchsten Punkt sein, damit er gerade nicht herunterfällt? (im Schwerefeld der Erde) A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5

Mehr

Physik Klasse 12 ÜA 07 stehende Wellen Ks 2012

Physik Klasse 12 ÜA 07 stehende Wellen Ks 2012 Afg.1: Zwei Lautsprecher liegen mit Einem Mikrofon fast auf einer Geraden. Δ x einige Meter Die Lautsprecher schwingen phasengleich mit 1,36 khz. Für Δx = 0 cm registriert das Mikrofon eine Wechselspannung

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31

Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Bitte Rückseite beachten! D-93053 Regensburg Physik Postfach: D-93040 Regensburg Prof. Dr. A. Penzkofer Telefon (0941) 943-2107

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Experimentalphysik EP, WS 2013/14

Experimentalphysik EP, WS 2013/14 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Physik LK 12, Klausur 01 Wellenmechanik Lösung =265,6 Hz.

Physik LK 12, Klausur 01 Wellenmechanik Lösung =265,6 Hz. Aufgabe 1: Ein Modellflugzeug durchfliegt mit konstanter Bahngeschwindigkeit und konstanter Höhe eine horizontale Kreisbahn. Der Flugzeugmotor erzeugt einen Ton mit konstanter Frequenz. Ein Beobachter

Mehr

Grundwissen. Physik. Jahrgangsstufe 10

Grundwissen. Physik. Jahrgangsstufe 10 Grundwissen Physik Jahrgangsstufe 10 1. Impuls Grundwissen Physik Jahrgangsstufe 10 Seite 1 Definition: p=m v [ p]=1 kg m s Impulserhaltungssatz: p vorher = p nachher p= p ' p 1 p = p' 1 p ' m 1 =1kg stößt

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 1 Lösungen Anmerkung: Diese Klausur enthält fünf multiple choice-aufgaben.

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Klausur zur Physik I für Chemiker. February 23, 2016

Klausur zur Physik I für Chemiker. February 23, 2016 WS 2015/2016 zur Physik I für Chemiker February 23, 2016 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T TOT.../4.../4.../4.../4.../4.../4.../24 R1 R2 R3 R4 R5 R6 R7 R8 R TOT.../6.../6.../6.../6.../6.../6.../6.../6.../48

Mehr

Experimentalphysik EP, WS 2011/12

Experimentalphysik EP, WS 2011/12 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/ Probeklausur (ohne Optik)-Nummer:. Februar 0 Hinweise zur Bearbeitung Alle benutzten

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

Probeklausur Physik für Ingenieure 1

Probeklausur Physik für Ingenieure 1 Probeklausur Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 19. 1. 001 Probeklausur für Ingenieurstudenten Prüfungstermin 19. 1. 001, 8:15 bis 9:15 Name Vorname Matrikel-Nummer

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

2. Übungstest aus Physik für ET A

2. Übungstest aus Physik für ET A 2. Übungstest aus Physik für ET 14.12.2012 A Zuname: Vorname(n): Matr.Nr.: Übungsgruppe: Jedes abgegebene Blatt muss oben Ihren Namen/Matr.Nr./ Übungsgruppe tragen. 1. Eine Masse m=0,3 kg schwingt ungedämpft

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Wellen Eine an einem Draht befestigte Stimmgabel schwinge senkrecht zum Draht und erzeuge so auf diesem eine Transversalwelle. Die Amplitude der Stimmgabelschwingung

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Übungen zu Physik I für Physiker Serie 12 Musterlösungen

Übungen zu Physik I für Physiker Serie 12 Musterlösungen Übungen zu Physik I für Physiker Serie 1 Musterlösungen Allgemeine Fragen 1. Warum hängt der Klang einer Saite davon ab, in welcher Entfernung von der Mitte man sie anspielt? Welche Oberschwingungen fehlen

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur

Mehr

2. Schulaufgabe aus der Physik

2. Schulaufgabe aus der Physik Q Kurs QPh0 2. Schulaufgabe aus der Physik Be max 50 BE Punkte am 22.06.207 Name : M U S T E R L Ö S U N G Konstanten: c Schall =340 m s,c Licht=3,0 0 8 m s.wie können Sie den Wellencharakter von Mikrowellenstrahlung

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Übungen zu Physik I für Physiker Serie 6 Musterlösungen

Übungen zu Physik I für Physiker Serie 6 Musterlösungen Übungen zu Physik I für Physiker Serie 6 Musterlösungen Allgemeine Fragen. Wie kann eine Person, die auf einem reibungslosen Tisch sitzt, jemals aus eigener Kraft von diesem herunterkommen? Unter praktischer

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Übung 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1. Ein U-förmiger Schlauch ist etwa zur Hälfte mit Wasser gefüllt. Wenn man

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr