Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Größe: px
Ab Seite anzeigen:

Download "Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen"

Transkript

1 Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle Atomkern Für ein neutrales Atom gilt: Anzahl der Protonen = Anzahl der Elektronen

2 Aufbau von leitenden Stoffen Im Metall sind die positiv geladenen Atomrümpfe unbeweglich. Atomrumpf Der Stromfluss kommt durch bewegliche Elektronen zustande. Elektron

3 Der Bandgenerator kleine Metallkugel große Metallkugel Gummiband Kurbel Plastikbürste

4 Ladungstrennung erfolgt, wenn sich zwei unterschiedliche Nichtmetalle berühren. vor der Berührung Tuch Plastikstab Tuch und Plastikstab sind ungeladen während der Berührung Es werden Elektronen zwischen Tuch und Plastikstab ausgetauscht nach der Berührung Elektronenmangel () Elektronenüberschuss () Tuch und Plastikstab sind geladen.

5 Aufbau einer Gewitterwolke 14 km 12 km 10 km 8 km 6 km 4 km 2 km Eiskristalle 40 C 10 C 0 C 10 C Erdoberfläche Warme, feuchte Luft steigt nach oben. Es bilden sich Wassertropfen, Eiskristalle und Hagelkörner. Durch das schnelle Aufsteigen von Luft mit Wassertropfen und das Herabfallen schwerer Hagelkörner kommt es zur Ladungstrennung.

6 Ladungsausgleich in Form von Blitzen Länge von Blitzen: meist 2 3 km Dicke von Blitzen: meist cm Dauer von Blitzen: etwa 1/1000 s

7 Das elektrische Feld Ein elektrisches Feld existiert im Raum um elektrisch geladene Körper, in dem auf andere elektrisch geladene Körper Kräfte ausgeübt werden.

8 Das elektrische Feld

9 Kondensator als Ladungs- und Energiespeicher Auf den Platten eines Kondensators wird Ladung gespeichert. Die Speicherfähigkeit für Ladung wird durch die Kapazität C gekennzeichnet: C = Q } U Q d Q C = ε 0 ε r A } d (für einen Plattenkondensator) U Die im elektrischen Feld des Kondensators gespeicherte Feldenergie E hängt von der Ladung Q der Platten und der Spannung U zwischen den Platten ab: E = 1 } 2 Q U E = 1 } 2 C U 2

10 Analogien zwischen Gravitationsfeld und elektrischem Feld Gravitationsfeld m Elektrisches Feld q F G Erdoberfläche Gravitationskraft: F G = m g F E negativ geladene Platte elektrische Kraft: F E = q E Energie: E pot = m g h Energie: E pot = q E s Potenzial: V = } m g h m = g h E s Potenzial: φ = } q q = E s Potenzialverlauf um eine Masse Potenzialverlauf um eine Ladung V φ Masse m V ~ 1 } r r Ladung q φ ~ 1 } r r

11 Bewegung geladener Teilchen in elektrischen Feldern In homogenen elektrischen Feldern wirkt auf geladene Teilchen eine konstante Kraft längs der Feldlinien: F = Q E Bewegung längs der Feldlinien (Längsfeld) Bewegung senkrecht zu den Feldlinien (Querfeld) Geladene Teilchen werden beschleunigt oder abgebremst. Geladene Teilchen werden abgelenkt.

12 Magnete und ihre Eigenschaften Magnete sind Körper, die andere Körper aus ferromagnetischen Stoffen (Eisen, Cobalt, Nickel) anziehen. Diese Stoffe sind magnetisierbar. unmagnetisches Eisen magnetisiertes Eisen Jeder Magnet hat mindestens zwei Pole (Nordpol, Südpol). gleichnamige Pole: Abstoßung Ungleichnamige Pole: Anziehung N S S N N S N S S N N S S N S N

13 Bewegung geladener Teilchen in magnetischen Feldern In homogenen magnetischen Feldern wird auf bewegte geladene Teilchen eine Kraft ausgeübt. Bewegen sich die Teilchen senkrecht zu den Feldlinien, dann gilt: F = Q v B (Lorentzkraft) Für die geladenen Teilchen gilt die Linke-Hand-Regel: Richtung des magnetischen Felds (N g S) Magnetfeld zeigt in die Ebene hinein. Magnetfeld zeigt aus der Ebene heraus. Kraftrichtung Stromrichtung (von nach ) Die Lorentzkraft wirkt bei v B immer als Radialkraft. Damit gilt: Q v B = m } v 2 und r = m v } r Q B

14 Geladene Teilchen im homogenen elektrischen Feld In einem homogenen elektrischen Feld wirkt auf geladene Teilchen eine konstante Feldkraft F = Q E in Richtung der Feldlinien oder entgegengesetzt zu ihnen. Im elektrischen Längsfeld (links) erfolgt ein Beschleunigen oder Abbremsen, im Querfeld (rechts) eine Ablenkung. U Q F F v d Positiv und negativ geladene Teilchen werden beschleunigt. Q U = 1 } 2 m v 2 Positiv geladene Teilchen werden in Feldrichtung, negativ geladene Teilchen entgegengesetzt beschleunigt und damit abgelenkt.

15 Geladene Teilchen im homogenen magnetischen Feld In einem homogenen magnetischen Feld wirkt auf bewegte geladene Teilchen eine Kraft senkrecht zur Bewegungsrichtung und senkrecht zur Richtung des Magnetfelds. Die Richtung der Ablenkung hängt auch von der Art der Ladung ab v F L F L F L Magnetfeld in Blattebene hinein v F L F L F L Magnetfeld aus Blattebene heraus Der Betrag der Lorentzkraft kann mit folgender Gleichung berechnet werden: F L = Q v B Die Richtung der Lorentzkraft ergibt sich mit der Linke-Hand- Regel.

16 Elektrische Felder Ein elektrisches Feld existiert um elektrisch geladene Körper. Die Feldlinien verlaufen von nach. Die Richtung der Feldlinien gibt die Richtung der Kraft auf einen positiv geladenen Körper an. Die Feldlinien beginnen und enden an Ladungen. Die Stärke des elektrischen Felds wird mit der Größe elektrische Feldstärke E beschrieben: E = } F Q E = } U d Einheit: ein Volt durch Meter (1 } m V ) Ein elektrisches Feld besitzt Energie. Auf ein geladenes Teilchen wirkt die Feldkraft: F = Q E F

17 Magnetische Felder Ein magnetisches Feld existiert um Permanentmagnete und um stromdurchflossene Leiter bzw. Spulen. Die Feldlinien verlaufen von Nord nach Süd. Die Richtung der Feldlinien gibt an, wie sich kleine Magnetnadeln im Feld ausrichten. Die Feldlinien sind geschlossene Linien. N S Die Stärke des magnetischen Felds wird mit der Größe magnetische Flussdichte B beschrieben: B = } F I l v Einheit: ein Tesla (1 T = 1 } N A m ) F L Auf ein geladenes Teilchen wirkt die Lorentzkraft: F L = Q v B (v B)

18 Induktion in einem Leiter Elektromotorisches Prinzip Generatorprinzip l F l v U i F = B l I U i = B l v

19 Bedingungen für das Entstehen einer Induktionsspannung Zeitlich konstantes Magnetfeld U i Zeitlich veränderliches Magnetfeld U i Bewegung Änderung der Stromstärke Alle Experimente zeigen: In einer Spule wird eine Spannung induziert, solange sich das von ihr umfasste Magnetfeld ändert.

20 Selbstinduktion beim Ein- und Ausschalten Experiment 1 Experiment 2 L1 L2 L1 leuchtet später als L 2 auf. Beim Öffnen des Schalters leuchtet die Glimmlampe auf.

21 Ein- und Ausschaltvorgang bei einer Spule I Einschalten I = konstant Ausschalten t U U i = 0 t

22 Induktionsherd Spule Glaskeramik Magnetfeld Topfboden

23 Die Maxwellgleichungen 1. In der Elektrostatik beginnen elektrische Feldlinien immer auf positiven Ladungen und enden auf negativen Ladungen 2. Magnetische Feldlinien sind geschlossen, Es gibt keine Quellen und Senken. 3. Eine Änderung der magnetischen Flussdichte, die eine Fläche durchsetzt, erzeugt ein elektrisches Wirbelfeld umdie Fläche herum. 4. Ein elektrischer Strom sowie eine zeitliche Änderung des elektrischen Felds, das eine Fläche durchsetzt, erzeugt um die Fläche ein magnetisches Wirbelfeld. ε 0 R E da = Σ Q R B da = 0 R E ds = } d R B da d t µ 0 Σ I µ 0 ε 0 } d R E da d t

24 Induktion einer Wechselspannung homogenens Magnetfeld U i T } 4 T } 2 3 } T 4 t In Spulen, die in einem homogenen magnetischen Feld gleichförmig rotieren, wird eine sinusförmige Wechselspannung induziert.

25 Anwendungen des Induktionsgesetzes Induktion im zeitlich konstanten Magnetfeld (B = konstant) Anwendung: Generator Stator Induktion im zeitlich veränderlichen Magnetfeld (A = konstant) Anwendung: Transformator Primärspule Sekundärspule N S N 1 N 2 U 1 ~ ~ U 2 Rotor U i geschlossener Eisenkern aus Dynamoblechen

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Magnetfeldrichtung - +

Magnetfeldrichtung - + S. 280 Aufgabe 1: In Versuch 2 gilt (ohne Änderungen): Die Richtung der Lorentzkraft auf einen stromdurchflossenen Leiter erhält man durch Anwendung der 3-Finger-Regel der linken Hand. Dabei (S.280 V2)

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Elektrik. Inhaltsverzeichnis. M. Jakob. 6. November 2016

Elektrik. Inhaltsverzeichnis. M. Jakob. 6. November 2016 M. Jakob Gymnasium Pegnitz 6. November 2016 Inhaltsverzeichnis In diesem Abschnitt Magnete und ihre Eigenschaften Magnete sind Körper, die andere Körper aus Eisen, Nickel oder Cobald (ferromagnetische

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Elektrik. M. Jakob. 6. November Gymnasium Pegnitz

Elektrik. M. Jakob. 6. November Gymnasium Pegnitz Elektrik M. Jakob Gymnasium Pegnitz 6. November 2016 Inhaltsverzeichnis 1 Magnetisches und elektrisches Feld Magnetismus Das Magnetfeld von elektrischen Leitern Kräfte auf bewegte Ladungen Elektrisches

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren.

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren. Elektrizitätslehre 1 Ein elektrischer Strom fließt nur dann, wenn ein geschlossener Stromkreis vorliegt. Batterie Grundlagen Schaltzeichen für Netzgerät, Steckdose: Glühlampe Schalter Stoffe, durch die

Mehr

Antworten zu Wiederholungsfragen Stand:

Antworten zu Wiederholungsfragen Stand: 1.1) Was bedeutet der Begriff ionisiert? 1.2) Jede gegebene Ladungsmenge Q setzt sich aus Elementarladungen zusammen. Wieviele Elementarladungen enthält die Einheitsladung 1C? 1.3) Was sagt der Ladungserhaltungssatz

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Grundwissen Physik 7. Jahrgangsstufe

Grundwissen Physik 7. Jahrgangsstufe Grundwissen Physik 7. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. Der elektrische Strom ist nur durch seine Wirkungen erkennbar: magnetische, chemische, Licht- und Wärmewirkung. Vorsicht Strom

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am. 3. 0 Achte auf die Darstellung und vergiss nicht: Geg., Ges., Ansatz, Formeln, Einheiten, Rundung...! Angaben:

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Grundwissen Physik 9. Jahrgangsstufe

Grundwissen Physik 9. Jahrgangsstufe Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop)

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop) Grundwissen Physik 9. Jahrgangsstufe Gymnasium Eckental I. Elektrik 1. Magnetisches und elektrisches Feld a) Elektrisches Feld Feldbegriff: Im Raum um elektrisch geladene Körper wirkt auf Ladungen eine

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

Das statische elektrische Feld

Das statische elektrische Feld Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Darstellung eines elektrischen Feldes (6 Std.) Wiederholung Die elektrische Ladung Das elektrische Feld

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

6.4.2 Induktion erzeugt Gegenkraft ******

6.4.2 Induktion erzeugt Gegenkraft ****** V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

r = F = q E Einheit: N/C oder V/m q

r = F = q E Einheit: N/C oder V/m q 1 Wiederholung: Elektrische Ladung: Einheit 1 Coulomb = 1 C (= 1 As) Elementarladung e = 1.6 10 19 C Kraft zwischen zwei elektrischen Ladungen: r F ' Q1 Q = f 2 r 2 r e r f ' = 8.99 10 9 Nm 2 C 2 Elektrische

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

Grundwissen. Physik. Jahrgangsstufe 7

Grundwissen. Physik. Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Physik Stand: September Seite 1 von 5

Physik Stand: September Seite 1 von 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Unterrichtliche Umsetzung Fachwissen grundlegendes Anforderungsniveau Zusatz für erhöhtes Anforderungsniveau Zusatz für erhöhtes Anforderungsniveau

Mehr

und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Die Lorentzkraft Versuch:

und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Die Lorentzkraft Versuch: Die Lorentzkraft Versuch: und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Wie kann man die Bewegungsrichtung der Leiterschaukel bei bekannter technischer

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab

Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Elektrostatik 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Beschreibe und erkläre die Exp. stichpunkartig. Ergebnis: - Es gibt

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Grundwissen Physik JS 9 Grundfertigkeiten

Grundwissen Physik JS 9 Grundfertigkeiten Grundwissen Physik JS 9 Grundfertigkeiten 1. Wozu ist ein Versuchsprotokoll notwendig und nach welchem Schema ist es aufgebaut? Was sind die Hauptfehler in Versuchsprotokollen? Der Versuch soll anhand

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Elektrisches Feld ================================================================== 1. a) Was versteht man unter einem elektrischen Feld?

Elektrisches Feld ================================================================== 1. a) Was versteht man unter einem elektrischen Feld? Elektrisches Feld 1. a) Was versteht man unter einem elektrischen Feld? b) Zwei Metallplatten, die mit der Ladung + Q bzw. Q aufgeladen sind, stehen sich parallel gegenüber. Zeichne das Feldlinienbild

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.5 Magnetische Kraft 4.1 Gravitation 4. Beispiele für Kräfte 4.1 Gravitation

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Körper besitzt 2 Arten

Körper besitzt 2 Arten Elektrizitäts lehre Schülerversuch 1: Schallplatte und Folie Beobachtung 1: Werden Folie und Platte einander genähert, ziehen sie sich an. Schülerversuch 2: 2 Folien Beobachtung 2: Die 2 Folien stoßen

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Physikalische Grundlagen Inhalt

Physikalische Grundlagen Inhalt Physikalische Grundlagen Inhalt Das Atommodell nach Bohr Die Gleichspannung Der Gleichstrom Der Stromfluss in Metallen Der Stromfluss in Flüssigkeiten Die Elektrolyse Die Wechselspannung Der Wechselstrom

Mehr

Repetitionen Magnetismus

Repetitionen Magnetismus TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,

Mehr

vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus

vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus vor ca. 2000 Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus ist permanent, durch Überstreichen können andere magnetische Materialien

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Magnetismus. Prof. DI Michael Steiner

Magnetismus. Prof. DI Michael Steiner Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete

Mehr

Grundwissen Physik 9. Klasse II

Grundwissen Physik 9. Klasse II Grundwissen Physik 9. Klasse II 1. Wärmelehre Die innere Energie eines Körpers enthält die Summe der kinetischen Energien und der potentiellen Energien aller seiner Teilchen, sie ist eine Speichergröße.

Mehr

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:

Mehr

Übungen zur Elektrizitätslehre Lösungen Serie 11

Übungen zur Elektrizitätslehre Lösungen Serie 11 Übungen zur Elektrizitätslehre Lösungen Serie 11 1. Der Drehspulgenerator (a) Erklärung der aktuellen Polung mit der Lorentzkraft auf Leitungselektronen i. Die Spule wird von uns aus gesehen im Gegenuhrzeigersinn

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

4. Klasse. Letzte Aktualisierung am 6. März Lehrer: Christian Graf, PHS Krems

4. Klasse. Letzte Aktualisierung am 6. März Lehrer: Christian Graf, PHS Krems 4. Klasse Letzte Aktualisierung am 6. März 2016 Lehrer: Christian Graf, PHS Krems Frage 1 Antwort 1 Woran erkennt man einen physikalischen Vorgang? Bei einem physikalischen Vorgang ändern sich die Stoffe

Mehr

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0. Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule,

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, 4 Induktion Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, induziert eine Spannung ( Stromfluss U=RI) in der Spule. Caren Hagner / PHYSIK 2 / Sommersemester 2015

Mehr

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld 5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

Inhaltsverzeichnis. 7. Astronomie Sonnen- und Mondfinsternis Was können wir sehen? Sonnenuhren Sternkarten...

Inhaltsverzeichnis. 7. Astronomie Sonnen- und Mondfinsternis Was können wir sehen? Sonnenuhren Sternkarten... Inhaltsverzeichnis 1. magnetische Phänomene... 4 Strom und Spannung... 6 Der Versuch von Oersted... 8 Spule und Relais... 10 Arten von Magnetismus... 12 Magnetische Influenz... 14 Das Erdmagnetfeld...

Mehr

3.3. Prüfungsaufgaben zur Magnetostatik

3.3. Prüfungsaufgaben zur Magnetostatik 3.3. Prüfungsaufgaben zur Magnetostatik Aufgabe 1a: Magnetisches Feld a) Zeichne jeweils eine kleine Magnetnadel mit ord- und üdpol an den Orten A und b des rechts skizzierten Magnetfeldes ein. b) Wie

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

Magnete die geheimnisvolle Kraft?

Magnete die geheimnisvolle Kraft? Magnete die geheimnisvolle Kraft? Magnete stellen für viele Leute etwas Mysteriöses dar. Schließlich kann der Mensch Magnetismus weder sehen, hören, riechen, schmecken noch direkt fühlen. Zudem ziehen

Mehr

Das statische elektrische Feld

Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis (6 Std.) (10 Std.) In diesem Abschnitt (6 Std.) (10 Std.) Elektrischer Strom E Elektrischer Strom In Metallen befinden sich frei bewegliche

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Magnetostatik. Magnetfelder

Magnetostatik. Magnetfelder Magnetostatik 1. Permanentmagnete i. Phänomenologie ii. Kräfte im Magnetfeld iii. Magnetische Feldstärke iv.erdmagnetfeld 2. Magnetfeld stationärer Ströme 3. Kräfte auf bewegte Ladungen im Magnetfeld 4.

Mehr

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Der Transformator Aufbau Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Wirkungsweise Zwei Spulen teilen sich den magnetischen Fluss Primärspule : Es liegt eine

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

Elektrostatik. wie 1., ein Stab aus Glas (GS) Anziehung

Elektrostatik. wie 1., ein Stab aus Glas (GS) Anziehung Elektrostatik (Die Lehre von quasi ruhenden elektrischen Ladungen) Erstelle ein Versuchsprotokoll! Verwendete Geräte: Kunststoffstäbe (KS), von denen einer frei drehbar gelagert ist Glasstab (GS) Polyestertuch

Mehr