Warum konvergieren Genetische Algorithmen gegen ein Optimum?

Größe: px
Ab Seite anzeigen:

Download "Warum konvergieren Genetische Algorithmen gegen ein Optimum?"

Transkript

1 1 / 21 Gliederung 1 Das Schematheorem Motivation Begriffe Herleitung Ergebnis Das Schematheorem Das Schematheorem Motivation 3 / 21 Warum konvergieren Genetische Algorithmen gegen ein Optimum? Theoretische Untersuchung von Holland (1975): Untersuche die Entwicklung von partiell definierten Chromosomen (sog. Chromosomenschemata) über die Generationen Wie entwickelt sich die Anzahl der Chromosomen, die zu einem Schema passen? Ziel: Leite grobe statistische Aussage ab Führe dazu folgende Vereinfachungen ein Repräsentation ist Bitstring mit fester Länge l Fitnessproportionale Selektion Standardmutation Ein-Punkt-Crossover

2 Definitionen Das Schematheorem Begriffe 4 / 21 Schema Ein Schema ist ein partiell definierter Bitstring der Länge l Erweitere dazu den Grundbereich um ein Jokerzeichen Für das Schema h gilt dann: h {0, 1, } l Offensichtlich gibt es 2 l Chromosomen und 3 l Schemata der Länge l Passung Ein Chromosom c {0, 1} l passt zu einem Schema h {0, 1, } l falls es an dessen definierten Stellen mit ihm übereinstimmt, notiert als c h Stellen an denen im Schema ein Jokerzeichen steht werden nicht beachtet Schema Beispiel Das Schematheorem Begriffe 5 / 21 Gegeben sein ein Schema h = {0, 1, } 10 sowie die Chromosomen c i {0, 1} 10 mit x 1 = x 2 = x 3 = x 4 = Offensichtlich gilt: Chromosom c 2 und c 4 passen zum Schema h, d.h. c 2 h, c 4 h Chromosom c 1 und c 3 passen nicht zum Schema h, d.h. c 1 h, c 3 h

3 Das Schematheorem Begriffe 6 / 21 Interpretation des Schemas als Hyperebene Ein Schema beschreibt einen Unterraum des gesamten Suchraums Fasst man den Suchraum als Hypereinheitswürfel auf, beschreibt ein Schema achsenparallele Hyperebenen Beispiel 0 0 entspricht der Kante von 000 nach entspricht der rechten Würfelfläche entspricht dem gesamten Würfel 010 0* *0* * ** 10* Das Schematheorem Begriffe 7 / 21 Eigenschaften eines Schemas Definition: Ordnung Die Ordnung eines Schemas h ist die Anzahl seiner definierten Positionen, d.h. die Anzahl der Nullen und Einsen ord(h) = count 0 (h) + count 1 (h) = length(h) count (h) Beispiel: ord( ) = 6 Definition: Definierende Länge Die definierende Länge eines Schemas h ist die Länge seines definierten Bereichs, d.h. die Differenz der Positionsnummern der letzten und der ersten 0/1 in h dl(h) = max(i h i {0, 1}) max(i h i {0, 1}), i {1,..., l} Beispiel: dl( ) = 10 2 = 8

4 Das Schematheorem Herleitung 8 / 21 Herleitung des Schematatheorems Frage Wie entwickelt sich die Anzahl der Chromosomen, die zu einem Schema passen, über die Generationen? Ansatz Um Aussagen über die Ausbreitung von zu einem Schema passenden Chromosomen machen zu können, müssen die Auswirkungen der Selektion und der genetischen Operatoren untersucht werden Selektion Welche Fitness haben Chromosomen, die zum Schema passen? Genetische Operatoren (Mutation und Crossover) Mit welcher Wahrscheinlichkeit geht die Passung zu einem Schema verloren bzw. bleibt sie erhalten? Das Schematheorem Herleitung 9 / 21 Einfluss der Selektion Welche Fitness haben Chromosomen, die zum Schema h passen? Ansatz Mittlere Fitness der passenden Chromosomen Mittlere Fitness Die mittlere Fitness der Chromosomen der Generation t, die zum Schema h passen, ist c pop(t),c h f rel (h) = f rel(c) size({c pop(t) c h}) Durchschnittlich erzeugt ein zum Schema h passendes Chromosom f rel (h) popsize Nachkommen Die zu erwartende Zahl von Chromosomen die nach der Selektion zum Schema h passen ist abhängig von der Zahl der vorher passenden Chromosomen: size({c pop(t 1) c h}) f rel (h) popsize

5 Einfluss der Selektion Das Schematheorem Herleitung 10 / 21 Die Formel für die von einem zum Schema h passenden Chromosom durchschnittlich erzeugten Nachkommen kann umgeformt werden zu c pop(t),c h f rel (h) popsize = f rel(c) size({c pop(t) c h}) popsize (h) = = c pop(t),c h f (c) c pop(t) f (c ) size({c pop(t) c h}) popsize c pop(t),c h f (c) size({c pop(t) c h}) c pop(t) f (c ) popsize = (h) mittlere Fitness der zum Schema h passenden Chromosomen der Generation t mittlere Fitness aller Chromosomen der Generation t Enspricht somit dem Verhältnis der mittleren Fitness des Schemas zur mittleren Gesamtfitness Einfluss des Crossover Das Schematheorem Herleitung 11 / 21 Mit welcher Wahrscheinlichkeit geht die Passung zu einem Schema durch das Crossover verloren bzw. bleibt sie erhalten? Beispiel Bei einem Chromosoms der Länge l gibt es beim Ein-Punkt-Crossover l 1 gleichwahrscheinliche Schnittpositionen dl(h) dieser Positionen liegen so, dass festgelegte Gene des Schemas getrennt würden, wodurch die Passung verloren gehen könnte Somit gilt p c (h) = dl(h) l 1 Bemerkung: Die Passung kann verloren gehen, was aber nicht immer der Fall sein muss

6 Einfluss der Mutation Das Schematheorem Herleitung 12 / 21 Mit welcher Wahrscheinlichkeit geht die Passung zu einem Schema durch die Mutation verloren bzw. bleibt sie erhalten? Beispiel Wird jedes Gen des Chromosoms der Länge l mit gleicher Wahrscheinlichkeit für die Mutation gewählt, so geht die Passung zum Schema h mit folgenden Wahrscheinlichkeiten verloren p m (h) = ord(h), falls das Bit gekippt wird l p m (h) = ord(h), falls das Bit zufällig neu bestimmt wird 2l Definitionen Das Schematheorem Herleitung 13 / 21 Im Folgenden werden die Definitionen einiger Erwartungswerte benötigt: Erwartungswert passender Chromosmen E (t) (h) ist die im mittel erwartete Anzahl von Chromosomen, die in der t-ten Generation zum Schema h passen Erwartungswert nach der Selektion E (t) s (h) ist die im mittel erwartete Anzahl von Chromosomen, die in der t-ten Generation nach der Selektion zum Schema h passen Erwartungswert nach dem Crossover E (t) s,c(h) ist die im mittel erwartete Anzahl von Chromosomen, die in der t-ten Generation nach Selektion und Crossover zum Schema h passen Erwartungswert nach der Mutation E (t) s,c,m(h) ist die im mittel erwartete Anzahl von Chromosomen, die in der t-ten Generation nach Selektion, Crossover und Mutation zum Schema h passen. Folglich gilt E (t) s,c,m(h) = E (t+1) (h)

7 Das Schematheorem Herleitung 14 / 21 Herleitung des Schematatheorems Ziel Finde (näherungsweise) den Zusammenhang zwischen E (t) (h) und E (t+1) (h) Vorgehensweise Betrachte schrittweise die Auswirkungen der Selektion, des Crossover und der Mutation. Hilfsmittel Nutze hierzu die mittlere Fitness, die Ordnung und die definierende Länge eines Schemas. Selektion Das Schematheorem Herleitung 15 / 21 Die Auswirkung der Selektion wird durch die mittlere Fitness beschrieben E (t) s (h) = E (t) (h) f rel (h) popsize E (t) (h) f rel (h) f rel (h) popsize Wahrscheinlichkeit, dass ein zum Schema h passendes Chromosom ausgewählt wird Mittlere Anzahl Nachkommen eines zum Schema h passenden Chromosoms Hinweis: Da die Anzahl der zum Schema h passenden Chromosomen über den Erwartungswert geschätzt wird, kann die relative Fitness f rel (h) nicht exakt bestimmt werden

8 Das Schematheorem Herleitung 16 / 21 Crossover Die Auswirkung des Crossover wird beschrieben durch s,c(h) = (1 p c ) E (t) s (h) + p c E (t) s (h) (1 p loss ) +C }{{}}{{} A B E (t) p c p loss A B C Wahrscheinlichkeit des Crossover Wahrscheinlichkeit, dass durch das Ein-Punkt-Crossover die Passung des Chromosoms zum Schema h verloren geht Mittlere Anzahl der Chromosomen, die zum Schema h passen und nicht am Crossover teilnehmen Mittlere Anzahl der Chromosomen, die am Crossover teilnehmen und deren Passung zum Schema h nicht verletzt wird Gewinn an Chromosomen, die zum Schema h passen Beispiel Das Schematheorem Herleitung 17 / 21 Mutation Die Auswirkung der Mutation wird durch die Ordnung des Schemas beschrieben Ansatz E (t+1) (h) = E (t) s,c,m(h) = E (t) s,c(h) (1 p m ) ord(h) p m Mutationswahrscheinlichkeit eines Bits, d.h. jedes Bit wird mit Wahrscheinlichkeit p m mutiert (gekippt) und mit Wahrscheinlichkeit (1 p m ) nicht mutiert Damit die Passung nicht verletzt wird, darf offensichtlich keines der ord(h) Gene, die das Schema definieren, verändert werden Alternative Mutiere genau ein Gen des Chromosoms E (t+1) (h) = E (t) s,c,m(h) = E (t) s,c(h) ord(h) l ord(h) l Wahrscheinlichkeit mit der ein das Schema definierendes Bit gekippt wird

9 Schematheorem Das Schematheorem Ergebnis 18 / 21 Insgesamt folgt (mit dem ersten Mutationsmodell) E (t+1) (h) = f rel (h) popsize (1 p m ) ord(h) E (t) (h) ( ) dl(h) 1 p c l 1 (1 E(t) (h) f rel (h)) Einsetzten der Fitnesswahrscheinlichkeit liefert schließlich das Schematheorem E (t+1) (h) = (h) ( 1 p c dl(h) l 1 (1 p m ) ord(h) E (t) (h) ( 1 E(t) (h) popsize )) (h) Das Schematheorem Ergebnis 19 / 21 Analyse des Schematheorems E (t+1) (h) = (h) ( 1 p c dl(h) l 1 (1 p m ) ord(h) E (t) (h) ( 1 E(t) (h) popsize )) (h) Besonders stark vermehren sich Schemata, mit überdurchschnittlicher Bewertung kurzer definierender Länge geringer Ordnung

10 Baustein-Hypothese Das Schematheorem Ergebnis 20 / 21 Interpretation Das Schematheorem besagt, dass Schemata mit überdurchschnittlicher Bewertung, kurzer definierender Länge und geringer Ordnung sich stark vermehren Das bedeutet aber, dass der Suchraum besonders intensiv in den durch die beschriebenen Schemata definierten Hyperebenen (d.h. Regionen) durchsucht wird Schemata mit o.g. Eigenschaften werden auch als Bausteine ( building blocks ) bezeichnet, obige Aussage deshalb auch als Baustein-Hypothese Hinweis: Die Baustein-Hypothese gilt in dieser Form nur für Kodierungen durch Bitstrings, fitnessproportionale Selektion, Standardmutation und Ein-Punkt-Crossover Kritik Das Schematheorem Ergebnis 21 / 21 Genau genommen gilt das Schematheorem nur für unendlich große Populationen In der Herleitung wurden Erwartungswerte genutzt, deren Werte erheblich von den Werten für konkrete Populationen abweichen können Das Phänomen der Epistase wurde vernachlässigt Implizit wurde unterstellt, dass die Wechselwirkungen zwischen den Genen gering sind; die Fitness von zu einem Schema passenden Chromosomen somit ähnlich ist Implizite Annahme der Nachbarschaft zusammengehöriger Gene Interagierende Gene bilden so kleine Bausteine. Kritik trifft im Grunde jedoch nicht die Genetische Algorithmen an sich und lässt sich durch den Wechsel vom Ein-Punkt-Crossover auf andere Operatoren bzw. geänderte Definitionen für die definierende Länge entkräften

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen Einführung in die Methoden der Künstlichen Intelligenz Evolutionäre Algorithmen Dr. David Sabel WS 2012/13 Stand der Folien: 12. November 2012 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung

Mehr

Computational Intelligence

Computational Intelligence / 4 Computational Intelligence Wintersemester 007/008 4. Genetische Algorithmen Stefan Berlik Fachgruppe Praktische Informatik FB, Elektrotechnik und Informatik Universität Siegen 5. November 007 Gliederung

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Shawn Keen Zusammenfassung Eine weitere Herangehensweise an das maschinelle Lernen ist die Nachahmung evolutionärer Prozesse. Hier wollen wir uns mit den sogenannten Genetischen

Mehr

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008 Genetische Algorithmen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung

Mehr

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten? Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (1), 2015 Aufgabe 1. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp,

Mehr

Optimale Produktliniengestaltung mit Genetischen Algorithmen

Optimale Produktliniengestaltung mit Genetischen Algorithmen Optimale Produktliniengestaltung mit Genetischen Algorithmen 1 Einleitung 2 Produktlinienoptimierung 3 Genetische Algorithmen 4 Anwendung 5 Fazit Seite 1 Optimale Produktliniengestaltung mit Genetischen

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 1)

Genetische und Evolutionäre Algorithmen (Vol. 1) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. ) von Adam El Sayed Auf und Kai Lienemann Gliederung: ) Einführung 2) Grundkonzept 3) Genaue Beschreibung des Genetischen Algorithmus Lösungsrepräsentation

Mehr

Synthese Eingebetteter Systeme. Übung 6

Synthese Eingebetteter Systeme. Übung 6 12 Synthese Eingebetteter Systeme Sommersemester 2011 Übung 6 Michael Engel Informatik 12 TU Dortmund 2011/07/15 Übung 6 Evolutionäre Algorithmen Simulated Annealing - 2 - Erklären Sie folgende Begriffe

Mehr

10. Vorlesung Stochastische Optimierung

10. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Jana Müller Seminar Das Virtuelle Labor Otto von Guericke Universität Magdeburg Gliederung 1. Motivation

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Von Valentina Hoppe und Jan Rörden Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Gliederung Biologische Evolution Genetischer Algorithmus Definition theoretischer

Mehr

Populationsbasierte Suche. Evolutionäre Algorithmen (1)

Populationsbasierte Suche. Evolutionäre Algorithmen (1) Populationsbasierte Suche Bisherige Meta-Heuristiken: Simulated Annealing Tabu Search Ausgehend von einer Lösung wird gesucht Populationsbasierte Heuristiken Suche erfolgt ausgehend von mehreren Lösungen

Mehr

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen) Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige

Mehr

Proseminar Genetische und Evolutionäre Algorithmen

Proseminar Genetische und Evolutionäre Algorithmen Proseminar Genetische und Evolutionäre Algorithmen Genetische Algorithmen Erweiterungen und Analyse Seite 1/11 Inhaltsverzeichnis 1. Erweiterungen zu den Genetischen Algorithmen 1.1. Der steady-state-ga

Mehr

4 Genetische Algorithmen

4 Genetische Algorithmen WS1993/94 AuD II 113 4 Genetische Algorithmen Gegeben: Problem P Menge potentieller Lösungen S= {L 1,,L s } (auch Suchraum) Zielfunktion z : S [0,1] IR (manchmal auch z : S IR ) Gesucht: z(l) > z(l') L

Mehr

Survival of the Fittest Optimierung mittels Genetischer Algorithmen

Survival of the Fittest Optimierung mittels Genetischer Algorithmen Übung zu Organic Computing Survival of the Fittest Optimierung mittels Genetischer Algorithmen Sabine Helwig Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design) Universität Erlangen-Nürnberg sabine.helwig@informatik.uni-erlangen.de

Mehr

Optimierung auf rekonfigurierbaren Rechensystemen

Optimierung auf rekonfigurierbaren Rechensystemen Optimierung auf rekonfigurierbaren Rechensystemen Evolution in dynamisch rekonfigurierbarer Hardware Peter Bungert Hartmut Schmeck Institut für Angewandte Informatik und Formale Bescheibungsverfahren (AIFB)

Mehr

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =. 2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n

Mehr

Computational Intelligence 1 / 28. Computational Intelligence Evolutionsstrategien 3 / 28

Computational Intelligence 1 / 28. Computational Intelligence Evolutionsstrategien 3 / 28 1 / 28 Gliederung 1 Evolutionsstrategien Selektion Rekombination Mutation Ablauf 2 Genetische Programmierung Repräsentation Genetische Operatoren Ablauf Überblick Evolutionsstrategien 3 / 28 Repräsentation

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen

Mehr

Genetische Programmierung

Genetische Programmierung Bernd Ebersberger Genetische Programmierung Ein Instrument zur empirischen Fundierung ökonomischer Modelle A 234920 Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Diskrete dynamische Systeme in der Populationsgenetik Hofbauer J., und Sigmund K.: Evolutionary Games and Population Dynamics, Cambridge

Diskrete dynamische Systeme in der Populationsgenetik Hofbauer J., und Sigmund K.: Evolutionary Games and Population Dynamics, Cambridge Diskrete dynamische Systeme in der Populationsgenetik Hofbauer J., und Sigmund K.: Evolutionary Games and Population Dynamics, Cambridge Dominik Urig Saarbrücken, den 10.01.2012 Inhaltsangabe 1 Biologische

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Evolution und Algorithmen

Evolution und Algorithmen Kapitel 6 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Hauptseminar Repräsentationen für Optimierungsalgorithmen

Hauptseminar Repräsentationen für Optimierungsalgorithmen Stefan Bens Hauptseminar Dresden, 03.07.2008 Inhalt 1. Motivation 2. Einleitung 3. Repräsentationsarten und Eigenschaften 4. Beispiel 5. Zusammenfassung Folie 2 Als Repräsentation bezeichnet man die Kodierung

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Allgemeine Betriebswirtschaftslehre Planungs- und Entscheidungstechniken

Allgemeine Betriebswirtschaftslehre Planungs- und Entscheidungstechniken FernUniversität in Hagen Lehrstuhl für Betriebswirtschaftslehre, insb. Operations Research Prof. Dr. Wilhelm Rödder Allgemeine Betriebswirtschaftslehre Planungs- und Entscheidungstechniken Sandra Rudolph,

Mehr

Probleme bei reinen Strategien. Nash Gleichgewichte in gemischten Strategien Kopf 1, 1 1, 1 Zahl 1, 1 1, 1. Gemischte Strategien

Probleme bei reinen Strategien. Nash Gleichgewichte in gemischten Strategien Kopf 1, 1 1, 1 Zahl 1, 1 1, 1. Gemischte Strategien Probleme bei reinen Strategien Bisher hatten wir angenommen, daß sich jeder Spieler b auf genau eine Strategie S b S b festlegt. Das ist nicht immer plausibel. Nash Gleichgewichte in gemischten Strategien

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Hochschule Regensburg. Übung 12_3 Genetische Algorithmen 1. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer

Hochschule Regensburg. Übung 12_3 Genetische Algorithmen 1. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Hochschule Regensburg Übung 12_ Genetische Algorithmen 1 Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Name: Vorname: 1. Was sind GA? - Ein GA ist ein Algorithmus, der Strategien aus der Evolutionstheorie

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

Seminararbeit zum Thema Genetische Algorithmen

Seminararbeit zum Thema Genetische Algorithmen Seminararbeit zum Thema Genetische Algorithmen Seminar in Intelligent Management Models in Transportation und Logistics am Institut für Informatik-Systeme Lehrstuhl Verkehrsinformatik Univ.-Prof. Dr.-Ing.

Mehr

Können Gene Depressionen haben?

Können Gene Depressionen haben? Können Gene Depressionen haben? DTzt. Chromosomen, Gene und so... Die Sache mit der Vererbung oder warum sieht eine Kuh aus wie eine Kuh? Die kleinste Datenbank Desoxyribonukleinsäure - DNA Speicher für

Mehr

Das Lebesgue-Maß im R p

Das Lebesgue-Maß im R p Das Lebesgue-Maß im R p Wir werden nun im R p ein metrisches äußeres Maß definieren, welches schließlich zum Lebesgue-Maß führen wird. Als erstes definieren wir das Volumen von Intervallen des R p. Seien

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

InformatiCup 2009 EvolutionConsole

InformatiCup 2009 EvolutionConsole InformatiCup 2009 EvolutionConsole Wilhelm Büchner Hochschule 19. März 2010 1 1. Das Team Teammitglieder Ralf Defrancesco KION Information Services GmbH Systemadministrator Daniel Herken Scooter Attack

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen 1 Grundlagen 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen Die Überlegungen dieses Kapitels basieren auf der Informationstheorie von Shannon. Er beschäftigte

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus 5. Lokale Suchverfahren Lokale Suche 5. Lokale Suchverfahren Beispiel TSP: k-change Nachbarschaft Optimale Lösungen können oft nicht effizient ermittelt werden. Heuristiken liefern zwar zulässige Lösungen,

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Teil A hilfsmittelfreier Teil

Teil A hilfsmittelfreier Teil Klassenarbeit GYM Klasse 0 Seite Datum: Thema: Name: Zeit: Erreichte Punkte: Note: Hilfsmittel: keine Teil A hilfsmittelfreier Teil Aufgabe : (4 Punkte) Entscheide, ob das Zufallsexperiment eine Bernoulli-Kette

Mehr

K4 Bedingte Wahrscheinlichkeiten. 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B:

K4 Bedingte Wahrscheinlichkeiten. 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B: K4 Bedingte Wahrscheinlichkeiten 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B: P(A B) = P(A B)/P(B) (4.1.1) Meistens benutzen wir diese Form: P(A B) = P(A B)*P(B) weil P(A B) schwer

Mehr

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen In dieser Ausarbeitung gemäss Aufgabenstellung auf der Kurshomepage des Moduls Knowledge- Based Systems wird die Funktionsweise und Nutzung von genetischen Algorithmen erläutert.

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Die Evolutionsstabilität von Verhaltensstrategien

Die Evolutionsstabilität von Verhaltensstrategien Die Evolutionsstabilität von Verhaltensstrategien Dargestellt und verifiziert mit Hilfe einfacher Excel-Simulationen ROLAND KÖPPL Online-Ergänzung MNU 65/8 (1.12.2012) Seiten 1 5, ISSN 0025-5866, Verlag

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Projektgruppe 431 Metaheuristiken Bianca Selzam Inhaltsverzeichnis 1 Einleitung......................................................... 1 2 Grundlagen aus der Biologie.......................................

Mehr

Evolutionäre Robotik

Evolutionäre Robotik Evolutionäre Robotik Evolutionäre Robotik Evolutionäre Robotik Lernen / Adaption erfolgt auf (mindestens 3 Ebenen) Evolutionäre Robotik Lernen / Adaption erfolgt auf (mindestens 3 Ebenen) 1. Adaption Evolutionäre

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Weitere Eigenschaften von Punktschätzern

Weitere Eigenschaften von Punktschätzern Weitere Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Ein zweiter Schätzer für p bei Binomialverteilung Vergleich der Schätzer anhand einer Simulation Erwartungstreue Bias Asymptotische

Mehr

1. Inhaltsverzeichnis

1. Inhaltsverzeichnis 1. Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung 1.1. Darwins Evolutionstheorie 1.2. Darwins Evolutionstheorie als Inspiration für Evolutionäre Algorithmen 1.3. Die Unterschiede der verschiedenen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 2. Mai 2 Einführung in die Theoretische Informatik

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

1.5.4 Quantile und Modi. Bem [Quantil, Modus] 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.73. [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten Lösungen zu Übungsblatt 0 Höhere Mathematik Master KI Hinweise: Die Aufgaben - beziehen sich auf das Thema Diskrete Zufallsgrößen, Ihre Verteilungen und Erwartungswerte. Siehe dazu auch das auf der Homepage

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Hauptklausur zur Stochastik für Lehramt

Hauptklausur zur Stochastik für Lehramt Universität Duisburg-Essen Essen, den 20.02.203 Fakultät für Mathematik Dr. Daniel Herden Dipl.-Inf. Christian Thiel Matthias aus der Wiesche Hauptklausur zur Stochastik für Lehramt Bearbeitungszeit: mind.

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

7 Die Sätze von Fermat, Euler und Wilson

7 Die Sätze von Fermat, Euler und Wilson 53 7 Die Sätze von Fermat, Euler und Wilson Es gibt einige Sätze aus der elementaren Zahlentheorie, die Spezialfälle von Aussagen über endliche Gruppen sind. Z.B. gilt für ein beliebiges Element x einer

Mehr

Genetische Algorithmen

Genetische Algorithmen Michael Gerhäuser Universität Bayreuth 28.06.2008 1 Motivierende Beispiele 2 Grundbegriffe der biologischen Evolution 3 Formalisierung der Grundbegriffe 4 Modellierung mit Markov-Ketten 5 Konvergenzanalyse

Mehr

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t 1 6. Wachstumsformen Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t momentane Wachstumsrate: geometrisch: Tangentensteigung, unabhängig

Mehr

Kapitel GWBS:III. III. Regeln mit Konfidenzen. Einführung. Verrechnung von Konfidenzen. Probleme des Ansatzes. Beispiel für ein Diagnosesystem

Kapitel GWBS:III. III. Regeln mit Konfidenzen. Einführung. Verrechnung von Konfidenzen. Probleme des Ansatzes. Beispiel für ein Diagnosesystem Kapitel GWBS:III III. Regeln mit Konfidenzen Einführung Verrechnung von Konfidenzen Probleme des Ansatzes Beispiel für ein Diagnosesystem GWBS: III-1 Konfidenzen c BUBECK/LETTMANN 2009-2010 Glaubwürdigkeit

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Genetische Algorithmen

Genetische Algorithmen Technische Universität Dortmund Fakultät für Mathematik Lehrstuhl III: Angewandte Mathematik und Numerik Genetische Algorithmen Wirtschaftsmathematisches Projekt zur Numerik im WS 2013/14 Qendresa Mehmeti,

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Kapitel 2. Kombinatorische Schaltungen. Codierer und Decodierer

Kapitel 2. Kombinatorische Schaltungen. Codierer und Decodierer Kapitel 2 Kombinatorische Schaltungen Definition nach DIN 44300/93 Ein Schaltnetz oder kombinatorischer Funktionsblock ist eine Funktionseinheit zum Verarbeiten von Schaltvariablen, deren Wert am Ausgang

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Computational Intelligence

Computational Intelligence Vorlesung Computational Intelligence Stefan Berlik Raum H-C 80 Tel: 027/70-267 email: berlik@informatik.uni-siegen.de Inhalt Überblick Rückblick Optimierungsprobleme Optimierungsalgorithmen Vorlesung Computational

Mehr

Datenbanken. Schemaerweiterung zur Abbildung von Imperfekten Daten. Andreas Merkel

Datenbanken. Schemaerweiterung zur Abbildung von Imperfekten Daten. Andreas Merkel Seminar Impferfektion und Datenbanken Schemaerweiterung zur Abbildung von Imperfekten Daten Andreas Merkel Inhalt Einführung - Eigenschaften des relationalen Modells - Erweiterungsmöglichkeiten Zwei unterschiedliche

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

11 Unabhängige Ereignisse

11 Unabhängige Ereignisse 11 Unabhängige Ereignisse In engem Zusammenhang mit dem Begriff der bedingten Wahrscheinlichkeit steht der Begriff der Unabhängigkeit von Ereignissen. Wir klären zuerst, was man unter unabhängigen Ereignissen

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Aufgabenblatt 5: Abgabe am vor der Vorlesung

Aufgabenblatt 5: Abgabe am vor der Vorlesung Aufgabenblatt 5: Abgabe am 15.10.09 vor der Vorlesung Aufgabe 17. In Beispiel 2.24 wurde die abelsche Gruppe (Z/kZ, ) eingeführt und in Definition 2.33 um die Verknüpfung erweitert (in Beispiel 2.25 und

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Kardinalzahlen. Bemerkung. Eine unendliche Kardinalzahl α muss eine Limesordinalzahl sein. (Beweis zur Übung)

Kardinalzahlen. Bemerkung. Eine unendliche Kardinalzahl α muss eine Limesordinalzahl sein. (Beweis zur Übung) Kardinalzahlen Kardinalzahlen sollen die Größe von Mengen messen, daher suchen wir eine Aussage der Form, dass jede Menge bijektiv auf eine Kardinalzahl abgebildet werden kann. Um eine brauchbare Theorie

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr