Frequenzgangmessung, Entwurf eines PID-Reglers nach dem Frequenzkennlinienverfahren

Größe: px
Ab Seite anzeigen:

Download "Frequenzgangmessung, Entwurf eines PID-Reglers nach dem Frequenzkennlinienverfahren"

Transkript

1 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Frequenzgangmessung, Entwurf eines PID-Reglers nach dem Frequenzkennlinienverfahren 1 Einführung In der Vorlesung Grundlagen der Regelungstechnik wurde die Wirkungsweise einfacher Reglertypen vermittelt und es wurde der Entwurf einfacher Regler nach dem Frequenzkennlinienverfahren oder dem Wurzelortverfahren behandelt. Ein in der Anwendung häufig verwendeter Reglertyp ist der PID-Regler. Ein PID-Regler ist in diesem Laborversuch nach dem Frequenzkennlinienverfahren zu dimensionieren und im Labor praktisch zu erproben. Die zum Reglerentwurf notwendige Kenntnis des Streckenfrequenzganges werden wir uns im ersten Versuchsteil durch Messung verschaffen. Grundlagen.1 Frequenzgangmessung Der Frequenzgang eines Übertragungssystems G( jω) = G( jω) e jϕ(ω) = u a e jϕ a(ω) u e e jϕ e(ω) kann prinzipiell durch eine Reihe von Verfahren ermittelt werden. Am naheliegendsten ist es, die Beträge der Einund Ausgangsspannungen sowie deren Phasendifferenz punktweise (d.h. für diskrete ω) zu messen und daraus gemäß (1) den Frequenzgang zu zeichnen. Bei einem anderen Verfahren sind die Spannungen u e und u a auf die x- und y-ablenkung eines Oszilloskopes zu geben, um dann aus Form und Lage der entstehenden Lissajousfiguren die Werte des Frequenzganges bei festgelegten Frequenzen zu ermitteln. Ein drittes Verfahren, die sog. Korrelationsmethode, wird weiter unten beschrieben und ist im praktischen Teil des Laborversuches anzuwenden. Es zeichnet sich dadurch aus, dass es leicht automatisierbar ist, so dass die Messungen direkt von einem Rechner gesteuert ablaufen können. (1)

2 Das Prinzip der Messschaltung zeigt das Bild 1, wobei der Block TP einen Tiefpass geeigneter Frequenz darstellt. u e (t) = û e sin(ωt) G(jω) u a (t) = û a sin(ωt + ϕ) + Einschwingvorgaenge TP TP ûaû e cosϕ û a Abbildung 1: Frequenzgangmessung mittels Korrelationsverfahren Vorgehensweise bei dem Korrelationsverfahren Nach Aufschalten der Eingangsgröße u e (t)=û e sin(ωt) erhält man im eingeschwungenen Zustand (stabiles System) für das lineare zeitinvariante System die Ausgangsgröße u a (t)=û a sin(ωt+ϕ)=û e G( jω) sin(ωt+ G( jω)). () Die Ausgänge der beiden Multiplizierer im Bild 1 liefern dann nach der Tiefpassfilterung die Messwerte u e (t)u a (t) = û e û a [ sin(ωt) sin(ωt+ϕ) ] = ûeû a cos(ϕ) ûeû a cos(ωt+ϕ) u a (t)u a (t) ûeû a cosϕ (3) = û a[ ] 1 cos(ωt+ϕ) û a, (4) wobei die Näherungen nur gelten, wenn die Tiefpässe die Anteile mit den Frequenzen ω ausreichend unterdrücken. Z.B. bei Tiefpässen 1. Ordnung ist deren Knickfrequenz klein gegenüber ω zu wählen. Andererseits ist eine Begrenzung nach unten durch die auftretende Einschwingzeit der Tiefpässe gegeben.

3 Da û e als bekannt vorausgesetzt werden kann, lassen sich aus den Gleichungen (3) und (4) unmittelbar der Betrag und die Phase des Frequenzganges ermitteln. Das Vorzeichen ist nicht angebbar, da der Phasenwinkel nur in der symmetrischen Funktion cos ϕ in (3) vorkommt. Im Zweifelsfall sollte man sich hierüber z.b. durch Betrachten von u e (t) und u a (t) Klarheit verschaffen. Die punktweise aufgenommenen Messungen sind Stützpunkte, um dann durch Interpolation den Frequenzgang nach Betrag und Phase zu zeichnen.. Der PID - Regler Der ideale PID - Regler wird im Zeitbereich durch die Gleichung u(t) t d e(t) = K p e(t) + K i e(τ) dτ+ K D } {{ } 0 P } {{ }} {{ d t} I D Anteil = K p e(t)+ 1 t d e(t) e(τ) dτ+t v T n d t 0 (5) (6) beschrieben, wobei nach DIN 196 die folgenden Bezeichnungen gelten: K p Proportionalbeiwert, K I Integralbeiwert, K D Differenzierwert, T n Nachstellzeit, T v Vorhaltzeit. Da der D-Anteil in den Gleichungen (5) und (6) nicht realisierbar ist, muss der reale PID - Regler noch eine parasitäre Polstelle enthalten. Wenn diese Polstelle einen großen negativen Realteil besitzt, kann dieser Einfluss beim Entwurf des Reglers in der Regel vernachlässigt werden. In der Tabelle 1 sind die Übertragungsfunktionen, Sprungantworten, Rampenantworten, Frequenzgänge sowie die Pol - Nullstellenverteilungen sowohl für den idealen als auch für den realen PID - Regler zusammengefasst. Die Bedeutung der einzelnen Kennwerte lässt sich hieraus ablesen. 3

4 Tabelle 1: Idealer und realer PID - Regler 4

5 3 Versuchsdurchführung Zur Vorbereitung sind bis zum. Mai die gesamte Aufgabenbeschreibung durchzuarbeiten und die analytischen Aufgaben 3..b zu lösen. Am. Mai findet ein schriftlicher Test im Raum TC006 statt. Anschließend werden die Vorbereitungsaufgaben besprochen und eventuelle Fragen zu den Versuchen geklärt. 3.1 Frequenzgangmessung In diesem Laborversuch stehen ein lineares zeitinvariantes System mit unbekanntem Übertragungsverhalten (blackbox) sowie ein PC mit Datenerfassungskarte zu Verfügung. Über den PC können verschiedene Testsignale generiert werden, die auf den Eingang der Black-Box angewandt werden können. Ein- und Ausgangssignal der Black-Box werden online erfasst und über den PC dargestellt. Eine Weiterverarbeitung der Messungen in Echtzeit ist möglich. Die Echtzeitprogramme werden mittels Scilab/Scicos für RTAI-Linux durch automatische Codegenerierung erzeugt. Zur Steuerung der Programme und Darstellung der Daten wird das Programm XRTAILAB 1 eingesetzt. (a) Zur ersten Orientierung wird die Sprungantwort y(t) des unbekannten Systems aufgenommen. Es ist dazu ein Eingangssignal u(t) = 1 [V]σ(t) auf den Systemeingang zu geben und die Sprungantwort aufzuzeichnen. Daraus sind dann die Grenzwerte lim G( jω) und lim G( jω) (7) ω 0 ω abzulesen und der für den Frequenzgang relevante Frequenzbereich zu schätzen. (b) Mit dem im Abschnitt.1 beschriebenen Verfahren sind die Messwerte des Frequenzganges von dem unbekannten System aufzunehmen. Die Signalverarbeitung ist in Scicos zu realisieren. (c) Aus den Messdaten sind der Frequenzgang nach Betrag und Phase zu berechnen und das Bodediagramm zu zeichnen. 3. Entwurf eines PID - Reglers (a) Realisieren Sie den realen PID Regler unter Scicos. (b) Es sei eine Regelstrecke mit dem in der PDF-Datei Anhang_Frequenzgang.pdf dargestellten Frequenzgang gegeben (Frequenz in [rad/s]). Machen Sie sich anhand der Vorlesungsmitschrift noch einmal mit den Begriffen dominierendes Polpaar und Standardregelkreis vertraut. Es ist nach dem Frequenzkennlinienverfahren ein PID-Regler so zu entwerfen, so dass der geschlossene Regelkreis die folgenden Spezifikationen erfüllt: 1. Kein stationärer Regelfehler, d.h. lim t e(t)=0.. Der geschlossene Regelkreis soll sich in guter Näherung wie ein "dominierendes Polpaar"verhalten. 3. Es darf kein Überschwingen geben. 4. Die Anstiegszeit t r soll minimal sein. 1 bucher/rtai.html 5

6 Hinweis: Die Spezifikationen 3 und 4 bedeuten für die Überschwingweite M p = 1. Wie groß wird t r Ihrer Meinung nach sein? Bei welchem K p = K pkritisch wird die Stabilitätsgrenze erreicht? Zu dem entworfenen Regler sind anzugeben: die Pol- und Nullstellen sowie die Kenngrößen K p, T n, T v, T 1. Hinweis: Für den Reglerentwurf muß zunächst die Übertragungsfunktion der Regelstrecke aus dem Frequenzgang in Anhang_Frequenzgang.pdf genau abgelesen werden. Drucken Sie hierzu das Dokument aus und zeichnen Sie die Asymptoten ein. 3.3 Erprobung des PID-Reglers (a) Zur Veranschaulichung der regelungstechnischen Begriffe Regelgröße y(t), Stellgröße u(t), Sollwert r(t) und Regelfehler e(t) ist im geschlossenen Regelkreis das menschliche Reglerverhalten zu erproben. Erzeugen Sie in Scicos Sollwertsprünge, die später zusammen mit der Ausgangsgröße der Stecke in XRTAILAB angezeigt werden. Es ist zu versuchen, die Regelgrößey(t) durch Handsteuerung der Stellgröße u(t) dem Sollwert r(t) nachzuführen, vgl. Abbildung. Können Sie dabei die Reglerspezifikationen aus 3..b erfüllen? Die beste Sprungantwort ist aufzuzeichnen. Abbildung : Handgeregelte Strecke (b) Sie finden im Labor eine Regelstrecke mit dem Frequenzgang nach Datei Anhang_Frequenzgang.pdf vor. Zur Beurteilung des Verhaltens der ungeregelten Strecke sind ein Testsignal u(t) = 1[V]σ(t) auf den Streckeneingang zu geben und die Sprungantwort aufzuzeichnen. (c) Erstellen Sie einen Regelkreis mit dem PID-Regler aus Abschnitt 3.. Schließen Sie den Regelkreis nach Abbildung 3. (c1) Der Einheitssprung der Führungsgröße r(t) = 1 [V]σ(t) ist auf den Regelkreis anzuwenden und die Antwort y(t) aufzuzeichnen. (c) Ein Einheitssprung der Störgröße d e = 1 [V]σ(t) ist auf den Streckeneingang zu geben und die Störübergangsfunktiony(t) aufzuzeichnen. (c3) Ein Einheitssprung der Störgröße d a = 1 [V]σ(t) ist auf den Streckenausgang zu geben und die Störübergangsfunktiony(t) aufzuzeichnen. 6

7 Abbildung 3: Regelkreisstruktur der Laborübung (c4) Stellen Sie r=0, d e = 0, d a = 0 ein. Der Proportionalbeiwert K p ist bis zur Stabilitätsgrenze (Dauerschwingungen) zu vergrößern. Stimmt K p mit dem theoretisch erwarteten Wert K Pkritisch aus Abschnitt 3..b überein? (d) Tragen Sie in der unten angegebenen Tabelle die Kennwerte des Übertragungsverhaltens aus den erhaltenen Messergebnissen (soweit sinnvoll) und die aufgrund des Regelkreisentwurfs erwarteten Kennwerte ein. e( ) erwartet e( ) gemessen M p erw. M p gem. t r erw. t r gem. t 5% gem. manuelle Regelung ungeregelte Strecke Führungsverhalten (Regelkreis) Eingangsstörverhalten (Regelkreis) Ausgangsstörverhalten (Regelkreis) Hinweis: t 5% ist die Zeit, bis zu der sich e(t) = r(t) y(t) endgültig auf einen Wert 0, 05 e(t) max verringert hat. Vergleichen und Diskutieren Sie die Ergebnisse qualitativ. Vergleich zwischen der manuellen und PID-Regelung. Vergleich zwischen geregelter und ungeregelter Strecke. Vergleich zwischen der Güte des Führungs- und Störverhaltens. Vergleich mit den Spezifikationen aus Abschnitt 3..b. 7

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr

Frequenzgang und Übergangsfunktion

Frequenzgang und Übergangsfunktion Labor Regelungstechnik Frequenzgang und Übergangsfunktion. Einführung In diesem Versuch geht es um: Theoretische und experimentelle Ermittlung der Frequenzgänge verschiedener Übertragungsglieder (Regelstrecke,

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

Optimierung von Regelkreisen. mit P-, PI und PID Reglern

Optimierung von Regelkreisen. mit P-, PI und PID Reglern mit P-, PI und PID Reglern Sollwert + - Regler System Istwert Infos: Skript Regelungstechnisches Praktikum (Versuch 2) + Literatur Seite 1 Ziegler und Nichols Strecke: Annäherung durch Totzeit- und PT1-Glied

Mehr

Lösungen zur 7. Übung

Lösungen zur 7. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

- Analoge Regelung -

- Analoge Regelung - Labor Mechatronik Versuch V1 - Analoge Regelung - 1. Zielstellung... 2 2. Theoretische Grundlagen... 2 3. Versuchsdurchführung... 4 3.1. Versuchsaufbau... 4 3.2. Aufgabenstellung und Versuchsdurchführung...

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Zusammenfassung der 9. Vorlesung

Zusammenfassung der 9. Vorlesung Zusammenfassung der 9. Vorlesung Analyse des Regelkreises Stationäres Verhalten des des Regelkreises Bleibende Regelabweichung für ffür r FFührungs- und und Störverhalten Bleibende Regelabweichung für

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

Mathias Arbeiter 09. Juni 2006 Betreuer: Herr Bojarski. Regelschaltungen. Sprungantwort und Verhalten von Regelstrecken

Mathias Arbeiter 09. Juni 2006 Betreuer: Herr Bojarski. Regelschaltungen. Sprungantwort und Verhalten von Regelstrecken Mathias Arbeiter 09. Juni 2006 Betreuer: Herr Bojarski Regelschaltungen Sprungantwort und Verhalten von Regelstrecken Inhaltsverzeichnis 1 Sprungantwort von Reglern 3 1.1 Reglertypen............................................

Mehr

Klausur im Fach: Regelungs- und Systemtechnik 1

Klausur im Fach: Regelungs- und Systemtechnik 1 (in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs : FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

Regelung. Max Meiswinkel. 8. Dezember Max Meiswinkel () Regelung 8. Dezember / 12

Regelung. Max Meiswinkel. 8. Dezember Max Meiswinkel () Regelung 8. Dezember / 12 Regelung Max Meiswinkel 8. Dezember 2008 Max Meiswinkel () Regelung 8. Dezember 2008 1 / 12 Übersicht 1 Einführung Der Regelkreis Regelschleife 2 stetige Regelung P-Regler I-Regler PI-Regler PD-Regler

Mehr

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine Bewegungssteuerung durch geregelte elektrische Antriebe Übung 1 (WS17/18) Alle Abbildungen und Übungsunterlagen (Einführungsfolien, Übungsblätter, Musterlösungen, MATLAB-Übungen/Lösungen und Formelsammlung)

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

Bestimmung der Reglerparameter aus den Frequenzkennlinien

Bestimmung der Reglerparameter aus den Frequenzkennlinien 1 Kapitel Bestimmung der Reglerparameter aus den Frequenzkennlinien Mit PSPICE lassen sich die Frequenzgänge der Amplitude und der Phase von Regelkreisen simulieren, graphisch darstellen und mit zwei Cursors

Mehr

Ergänzung zur Regelungstechnik

Ergänzung zur Regelungstechnik Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig

Mehr

Synthese durch Rechner-Optimierung

Synthese durch Rechner-Optimierung 4.2.4. Synthese durch Rechner-Optimierung Möglichkeiten zum Finden passender Reglerparameter: 1. Theoretische Synthese (Herleitung der optimalen Werte) 2. Einstellregeln Messungen an der Strecke (z. B.

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Standardregelkreis

Mehr

Regelungstechnik. Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder. i c =C du dt. Zustands.- und Ausgangsgleichungen:

Regelungstechnik. Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder. i c =C du dt. Zustands.- und Ausgangsgleichungen: Regelungstechnik Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder Energiespeicher: Zustandsgröße: Kondensator Spannung i c C du Zustands.- und Ausgangsgleichungen: Aus den Knoten:

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage Heinz JUnbehauen Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme 3., durchgesehene Auflage Mit 192 Bildern V] Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Der Mensch als Regler

Der Mensch als Regler Institut für Mess- und Regeltechnik H. P. Geering, L. Guzzella, C. H. Onder Studiengang Maschinenbau und Verfahrenstechnik Praktikum Mess- und Regelungstechnik Anleitung zum Versuch Der Mensch als Regler

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Einführung in die Regelungstechnik Alexander Schaefer 1 Inhalt Was ist Regelungstechnik? Modellbildung Steuerung Anwendungsbeispiel Regelung Reglertypen 2 Was ist Regelungstechnik? Ingenieurwissenschaft

Mehr

Einstieg in die Regelungstechnik

Einstieg in die Regelungstechnik Hans-Werner Philippsen Einstieg in die Regelungstechnik Vorgehensmodell für den praktischen Reglerentwurf mit 263 Bildern und 17 Tabellen Fachbuchverlag Leipzig im Carl Hanser Verlag 1 Einführung 13 1.1

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 26.2.21 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 1 2 3 4 erreichbare

Mehr

Regelungs-und Steuerungstechnik

Regelungs-und Steuerungstechnik Modul: Labor und Statistik OPTIMIERUNG M.SC.KRUBAJINI KRISHNAPILLAI; PROF.DR.ROBBY ANDERSSON Regelungs-und Steuerungstechnik Inhaltsverzeichnis Einleitung Grundlagen Beschreibung dynamischer Systeme Regelkreis

Mehr

Ausarbeitung Regelungstechnik

Ausarbeitung Regelungstechnik Ausarbeitung Regelungstechnik by Poth & Fiechtner 2005 by Poth & Fiechtner Seite 1/14 Inhalt Grundsätzliches zur Regelungstechnik Untersuchung des als Regelstrecke verwendeten Heizlüfters Regelkreis als

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Regelungs-und Steuerungstechnik

Regelungs-und Steuerungstechnik Modul: Labor und Statistik OPTIMIERUNG M.SC.KRUBAJINI KRISHNAPILLAI; PROF.DR.ROBBY ANDERSSON Regelungs-und Steuerungstechnik Optimierung Regelungs-und Steuerungstechnik Inhaltsverzeichnis Einleitung Grundlagen

Mehr

Aufschwingen eines invertierten Pendels: Energiebasierter Reglerentwurf Versuch Nr. 2 Version der Versuchsbeschreibung: 1.0 (9.

Aufschwingen eines invertierten Pendels: Energiebasierter Reglerentwurf Versuch Nr. 2 Version der Versuchsbeschreibung: 1.0 (9. Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Aufschwingen eines invertierten Pendels: Energiebasierter Reglerentwurf

Mehr

INSTITUT FÜR REGELUNGSTECHNIK

INSTITUT FÜR REGELUNGSTECHNIK Aufgabe 9: Regler mit schaltendem Stellglied führen auf besonders einfache technische Lösungen. Durch pulsbreitenmoduliertes Schalten mit genügend hoher Frequenz ist auch hier eine angenähert lineare Betriebsweise

Mehr

Praktikum Grundlagen Regelungstechnik

Praktikum Grundlagen Regelungstechnik Praktikum Grundlagen Regelungstechnik Versuch P-GRT 05 Versuchsziel Versuch 5 - Reglerentwurf im Frequenzbereich COM3LAB Veränderung des Streckenfrequenzganges durch einen vorgeschalteten Regler Datum

Mehr

Regelungstechnik 1 Praktikum Versuch 2.1

Regelungstechnik 1 Praktikum Versuch 2.1 Regelungstechnik 1 Praktikum Versuch 2.1 1 Prozeßidentifikation Besteht die Aufgabe, einen Prozeß (Regelstrecke, Übertragungssystem,... zu regeln oder zu steuern, wird man versuchen, so viele Informationen

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Grundkurs der Regelungstechnik

Grundkurs der Regelungstechnik Grundkurs der Regelungstechnik Einführung in die praktischen und theoretischen Methoden von Dr.-Ing. Ludwig Merz em. o. Professor und Direktor des Instituts für Meßund Regelungstechnik der Technischen

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

G S. p = = 1 T. =5 K R,db K R

G S. p = = 1 T. =5 K R,db K R TFH Berlin Regelungstechnik Seite von 0 Aufgabe 2: Gegeben: G R p =5 p 32ms p 32 ms G S p = p 250 ms p 8 ms. Gesucht ist das Bodediagramm von G S, G R und des offenen Regelkreises. 2. Bestimmen Sie Durchtrittsfrequenz

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Einführung in die Regelungstechnik WS-Vorlesung SRT Mechatronik 2007 TEIL REGELUNG Prof. Datum Termin Veranstaltung Doppelstunde Teil1 Doppelstunde Teil2 Folien 1 Sa 01.09.2007 8:30 11:45 V1 V Einführung

Mehr

Frequenzganganalyse, Teil 2: P-, I- und D - Glieder

Frequenzganganalyse, Teil 2: P-, I- und D - Glieder FELJC Frequenzganganalyse_neu_2.odt 1 Frequenzganganalyse, Teil 2: P-, I- und D - Glieder 2.1 P0-Glieder P0: P-Glied ohne Verzögerung P-Glied nullter Ordnung Aufgabe 2.1: Bestimme den Proportionalbeiwert

Mehr

Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik

Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Mess- und Elektrotechnik Laborleiter: Prof. Dr. Ing. Prochaska Versuch 5: Laborbetreuer: Schwingkreise 1. Teilnehmer: Matrikel-Nr.:

Mehr

Prof. Dr. Tatjana Lange

Prof. Dr. Tatjana Lange Prof. Dr. Tatjana Lange Lehrgebiet: Regelungstechnik Laborübung 1: Thema: Einführrung in die digitale Regelung Übungsziele Veranschaulichung der Abtastung von bandbegrenzten Signalen und der Reproduktion

Mehr

Praktikum Grundlagen Regelungstechnik

Praktikum Grundlagen Regelungstechnik Praktikum Grundlagen Regelungstechnik Versuch P-GRT 03 Versuchsziel Versuch 3 Photonenstromregelung Untersuchung vom Führungs- und Störverhalten Datum Versuchsdurchführung: Datum Protokoll: Versuchsgruppe:

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 206 Allgemeine Informationen: Der deutschsprachige Eingangstest

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 10.12.2010 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer:

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Regelungstechnik I (WS 12/13) Klausur ( )

Regelungstechnik I (WS 12/13) Klausur ( ) Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.1 Modellbildung und Regelung. Labor für Automatisierung und Dynamik AuD FB 03MB C 1 2. Kesseldruck.

Fahrzeugmechatronik Masterstudiengang M 3.1 Modellbildung und Regelung. Labor für Automatisierung und Dynamik AuD FB 03MB C 1 2. Kesseldruck. C C h i zu h Abb. Hydraulisches PT -System R R i ab Eingangsdruck u Drossel (z.. Zuleitung) Strömungswiderstand R Strömungswiderstand R Kesseldruck x Kessel Kapazität C Kesseldruck x Kessel Kapazität C

Mehr

Praktikum Grundlagen Regelungstechnik

Praktikum Grundlagen Regelungstechnik Praktikum Grundlagen Regelungstechnik Versuch P-GRT 01 Versuchsziel Versuch 1 Füllstandsregelung Analyse und Optimierung unterschiedlicher Regelstrecken Datum Versuchsdurchführung: Datum Protokoll: Versuchsgruppe:

Mehr

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler FELJC 4a_Geschlossener_ Regelkreis_Störverhalten.odt 1 4. Der geschlossene Regelkreis mit P-Strecke und P-Regler 4.1. Störverhalten (disturbance behaviour, comportement au perturbations) 4.1.1 Angriffspunkt

Mehr

Modellbasierte Software- Entwicklung eingebetteter Systeme

Modellbasierte Software- Entwicklung eingebetteter Systeme Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS Folie

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Lehrgruppe Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1. Versuchsbezeichnung GET 10: Fourieranalyse

Mehr

Digitale Regelung unbekannter Strecken unter Einsatz des CAE-Paketes SIMID 5.0

Digitale Regelung unbekannter Strecken unter Einsatz des CAE-Paketes SIMID 5.0 INGENIEURWISSENSCHAFTLICHES ZENTRUM FACHHOCHSCHULE KÖLN INSTITUT FÜR REGELUNGSTECHNIK PROF. DR. -ING. H. M. SCHAEDEL Gruppe: DSP Praktikum Thema des Versuchs: Digitale Regelung unbekannter Strecken unter

Mehr

Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler.

Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler. Ziel des vierten Versuchs: Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler. 4. Berechnung, Simulation und Messung des Frequenzgangs einer I-Strecke F R (s) F S (s)

Mehr

Einführung in die Mechatroniksimulation

Einführung in die Mechatroniksimulation in die Mechatroniksimulation Prof. Dr. Ruprecht Altenburger ZHAW Institut für Mechatronische Systeme VPE Workshop, Rapperswil am 23.1.2014 1 / 19 1 Einleitung Mechatroniksimulation Modell starrer Körper

Mehr

2.5.3 Innenwiderstand der Stromquelle

2.5.3 Innenwiderstand der Stromquelle 6 V UA(UE) 0. 1. 2. U E Abbildung 2.4: Kennlinie zu den Messwerten in Tabelle 2.1. 2.5.3 Innenwiderstand der Stromquelle Die LED des Optokopplers wird mittels Jumper kurzgeschlossen. Dadurch muss der Phototransistor

Mehr

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden.

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden. Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übung 5 Sommer 216 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Skizzieren

Mehr

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Behrang Monajemi Nejad Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Systeme Teil II: Systemtheorie für Informatiker Dr. Mohamed Oubbati Institut für Neuroinformatik Universität Ulm SS 2007 Wiederholung vom letzten Mal! Die Übertragungsfunktion Die Übertragungsfunktion

Mehr

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung der Diplomarbeit: Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen

Mehr

Lösungen zur 5. Übung

Lösungen zur 5. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Regelungstechnik Aufgaben

Regelungstechnik Aufgaben Serge Zacher Regelungstechnik Aufgaben Lineare, Zweipunkt- und digitale Regelung 2., überarbeitete und erweiterte Auflage Mit 126 Aufgaben und MATLAB-Simulationen ZACHE VII Inhalt 1. Formelsammlung 1 1.1

Mehr

PSpice 1. Versuch 9 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik

PSpice 1. Versuch 9 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro- und Nanoelektronik Fachgebiet Elektronische Schaltungen und Systeme PSpice 1 Versuch 9 im Informationselektronischen Praktikum Studiengang

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

GRT Laborbericht Realisierung einer Drehzahlregelung

GRT Laborbericht Realisierung einer Drehzahlregelung GRT Laborbericht Realisierung einer Drehzahlregelung Andreas Hofmeier Auftraggeber: Prof. Dr. Philippsen, Fachhochschule Bremen Ort der Durchführung: FH Bremen, Flughafenallee 10, Labor-Platz 5 im Raum

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 2007 Allgemeine Informationen: Der deutschsprachige Eingangstest

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

Labor Mess- und Elektrotechnik

Labor Mess- und Elektrotechnik Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Mess- und Elektrotechnik Laborleiter: Prof. Dr. Prochaska Laborbetreuer: Versuch 4: Filterschaltungen 1. Teilnehmer: Matrikel-Nr.:

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr