Der Satz von Pythagoras

Größe: px
Ab Seite anzeigen:

Download "Der Satz von Pythagoras"

Transkript

1 Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

2 Inhaltsverzeichnis 1 Einleitung Historische Entwicklung Historisches zu Pythagoras 2 Der Satz von Pythagoras 3 Beweis des Satzes von Pythagoras Vorbemerkungen Geometrischer Beweis 4 Ergänzungen Umkehrung und Kosinussatz W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

3 Inhaltsverzeichnis 1 Einleitung Historische Entwicklung Historisches zu Pythagoras 2 Der Satz von Pythagoras 3 Beweis des Satzes von Pythagoras Vorbemerkungen Geometrischer Beweis 4 Ergänzungen Umkehrung und Kosinussatz W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

4 Inhaltsverzeichnis 1 Einleitung Historische Entwicklung Historisches zu Pythagoras 2 Der Satz von Pythagoras 3 Beweis des Satzes von Pythagoras Vorbemerkungen Geometrischer Beweis 4 Ergänzungen Umkehrung und Kosinussatz W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

5 Inhaltsverzeichnis 1 Einleitung Historische Entwicklung Historisches zu Pythagoras 2 Der Satz von Pythagoras 3 Beweis des Satzes von Pythagoras Vorbemerkungen Geometrischer Beweis 4 Ergänzungen Umkehrung und Kosinussatz W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

6 Einleitung Historische Entwicklung Historisches Auf babylonischen Keilschrifttafel (ca bis 1530 v. Chr) mit pythagoreischen Zahlentripeln Das sind Tripel der Form a 2 + b 2 = c 2 In indischen Schulregeln (ca. 600 bis 400 v. Chr) wurde Satz von Pythagoras benutzt Jedoch kein allgemeiner Beweis vorhanden W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

7 Einleitung Historische Entwicklung Historisches Auf babylonischen Keilschrifttafel (ca bis 1530 v. Chr) mit pythagoreischen Zahlentripeln Das sind Tripel der Form a 2 + b 2 = c 2 In indischen Schulregeln (ca. 600 bis 400 v. Chr) wurde Satz von Pythagoras benutzt Jedoch kein allgemeiner Beweis vorhanden W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

8 Einleitung Historische Entwicklung Historisches Auf babylonischen Keilschrifttafel (ca bis 1530 v. Chr) mit pythagoreischen Zahlentripeln Das sind Tripel der Form a 2 + b 2 = c 2 In indischen Schulregeln (ca. 600 bis 400 v. Chr) wurde Satz von Pythagoras benutzt Jedoch kein allgemeiner Beweis vorhanden W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

9 Einleitung Historische Entwicklung Historisches Auf babylonischen Keilschrifttafel (ca bis 1530 v. Chr) mit pythagoreischen Zahlentripeln Das sind Tripel der Form a 2 + b 2 = c 2 In indischen Schulregeln (ca. 600 bis 400 v. Chr) wurde Satz von Pythagoras benutzt Jedoch kein allgemeiner Beweis vorhanden W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

10 Einleitung Historisches zu Pythagoras Historisches zu Pythagoras von Samos * um 570 v. Chr. auf Samos; nach 510 v. Chr. in Metapont griechischer Philosoph, Mathematiker und Naturwissenschaftler gründete die Schule der Pythagoreer gehört zu den rätselhaftesten Persönlichkeiten der Antike gilt als erster, der den nach ihm benannten Satz bewies (ist allerdings umstritten!) W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

11 Einleitung Historisches zu Pythagoras Historisches zu Pythagoras von Samos * um 570 v. Chr. auf Samos; nach 510 v. Chr. in Metapont griechischer Philosoph, Mathematiker und Naturwissenschaftler gründete die Schule der Pythagoreer gehört zu den rätselhaftesten Persönlichkeiten der Antike gilt als erster, der den nach ihm benannten Satz bewies (ist allerdings umstritten!) W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

12 Einleitung Historisches zu Pythagoras Historisches zu Pythagoras von Samos * um 570 v. Chr. auf Samos; nach 510 v. Chr. in Metapont griechischer Philosoph, Mathematiker und Naturwissenschaftler gründete die Schule der Pythagoreer gehört zu den rätselhaftesten Persönlichkeiten der Antike gilt als erster, der den nach ihm benannten Satz bewies (ist allerdings umstritten!) W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

13 Einleitung Historisches zu Pythagoras Historisches zu Pythagoras von Samos * um 570 v. Chr. auf Samos; nach 510 v. Chr. in Metapont griechischer Philosoph, Mathematiker und Naturwissenschaftler gründete die Schule der Pythagoreer gehört zu den rätselhaftesten Persönlichkeiten der Antike gilt als erster, der den nach ihm benannten Satz bewies (ist allerdings umstritten!) W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

14 Einleitung Historisches zu Pythagoras Historisches zu Pythagoras von Samos * um 570 v. Chr. auf Samos; nach 510 v. Chr. in Metapont griechischer Philosoph, Mathematiker und Naturwissenschaftler gründete die Schule der Pythagoreer gehört zu den rätselhaftesten Persönlichkeiten der Antike gilt als erster, der den nach ihm benannten Satz bewies (ist allerdings umstritten!) W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

15 Einleitung Historisches zu Pythagoras Historisches zu Pythagoras von Samos * um 570 v. Chr. auf Samos; nach 510 v. Chr. in Metapont griechischer Philosoph, Mathematiker und Naturwissenschaftler gründete die Schule der Pythagoreer gehört zu den rätselhaftesten Persönlichkeiten der Antike gilt als erster, der den nach ihm benannten Satz bewies (ist allerdings umstritten!) W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

16 Der Satz von Pythagoras Der Satz von Pythagoras Satz (Pythagoras) Sind in einem rechtwinkligem Dreieck a und b die Längen der Katheten, und c die Länge der Hypotenuse, so gilt Bemerkung a 2 + b 2 = c 2. In Worten ausgedrückt ist demnach in einem rechtwinkligen Dreieck die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat. Geometrische Veranschaulichung W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

17 Der Satz von Pythagoras Der Satz von Pythagoras Satz (Pythagoras) Sind in einem rechtwinkligem Dreieck a und b die Längen der Katheten, und c die Länge der Hypotenuse, so gilt Bemerkung a 2 + b 2 = c 2. In Worten ausgedrückt ist demnach in einem rechtwinkligen Dreieck die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat. Geometrische Veranschaulichung W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

18 Der Satz von Pythagoras Der Satz von Pythagoras Satz (Pythagoras) Sind in einem rechtwinkligem Dreieck a und b die Längen der Katheten, und c die Länge der Hypotenuse, so gilt Bemerkung a 2 + b 2 = c 2. In Worten ausgedrückt ist demnach in einem rechtwinkligen Dreieck die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat. Geometrische Veranschaulichung W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

19 Beweis des Satzes von Pythagoras Vorbemerkungen Vorbemerkungen zum Beweis Satz von Pythagoras ist meistbewiesene mathematische Satz mehr als 400 verschieden Beweise bekannt darunter Beweise von bekannten Persöhnlichkeiten wie Euklid, Thales von Milet, Leonardo da Vinci, Albert Einstein, Arthur Schopenhauer und James A. Garfield. alle benutzen algebraische oder geometrische Hilfsmittel (Kongruenz, Ähnlichkeit, Scherung etc.) Der folgende geometrische Beweis wurde 1975 von Rufus Isaac in Mathematics Magazine, Vol. 48 veröffentlicht. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

20 Beweis des Satzes von Pythagoras Vorbemerkungen Vorbemerkungen zum Beweis Satz von Pythagoras ist meistbewiesene mathematische Satz mehr als 400 verschieden Beweise bekannt darunter Beweise von bekannten Persöhnlichkeiten wie Euklid, Thales von Milet, Leonardo da Vinci, Albert Einstein, Arthur Schopenhauer und James A. Garfield. alle benutzen algebraische oder geometrische Hilfsmittel (Kongruenz, Ähnlichkeit, Scherung etc.) Der folgende geometrische Beweis wurde 1975 von Rufus Isaac in Mathematics Magazine, Vol. 48 veröffentlicht. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

21 Beweis des Satzes von Pythagoras Vorbemerkungen Vorbemerkungen zum Beweis Satz von Pythagoras ist meistbewiesene mathematische Satz mehr als 400 verschieden Beweise bekannt darunter Beweise von bekannten Persöhnlichkeiten wie Euklid, Thales von Milet, Leonardo da Vinci, Albert Einstein, Arthur Schopenhauer und James A. Garfield. alle benutzen algebraische oder geometrische Hilfsmittel (Kongruenz, Ähnlichkeit, Scherung etc.) Der folgende geometrische Beweis wurde 1975 von Rufus Isaac in Mathematics Magazine, Vol. 48 veröffentlicht. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

22 Beweis des Satzes von Pythagoras Vorbemerkungen Vorbemerkungen zum Beweis Satz von Pythagoras ist meistbewiesene mathematische Satz mehr als 400 verschieden Beweise bekannt darunter Beweise von bekannten Persöhnlichkeiten wie Euklid, Thales von Milet, Leonardo da Vinci, Albert Einstein, Arthur Schopenhauer und James A. Garfield. alle benutzen algebraische oder geometrische Hilfsmittel (Kongruenz, Ähnlichkeit, Scherung etc.) Der folgende geometrische Beweis wurde 1975 von Rufus Isaac in Mathematics Magazine, Vol. 48 veröffentlicht. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

23 Beweis des Satzes von Pythagoras Vorbemerkungen Vorbemerkungen zum Beweis Satz von Pythagoras ist meistbewiesene mathematische Satz mehr als 400 verschieden Beweise bekannt darunter Beweise von bekannten Persöhnlichkeiten wie Euklid, Thales von Milet, Leonardo da Vinci, Albert Einstein, Arthur Schopenhauer und James A. Garfield. alle benutzen algebraische oder geometrische Hilfsmittel (Kongruenz, Ähnlichkeit, Scherung etc.) Der folgende geometrische Beweis wurde 1975 von Rufus Isaac in Mathematics Magazine, Vol. 48 veröffentlicht. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

24 Beweis des Satzes von Pythagoras Geometrischer Beweis Geometrischer Beweis durch Ergänzung (1) Beweis In ein Quadrat mit der Seitenlänge a + b werden vier gleiche (kongruente) rechtwinklige Dreiecke mit den Seiten a, b und c (Hypotenuse) eingelegt. Dies kann auf zwei Arten geschehen, wie es in den folgenden beiden Zeichnungen dargestellt ist. a 2 b a b 2 c 2 b a Abbildung : Beide Quadrete besitzen die Seitenlängen a + b W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

25 Beweis des Satzes von Pythagoras Geometrischer Beweis Geometrischer Beweis durch Ergänzung (2) Beweis (Forsetzung) Das linke besteht aus den vier rechtwinkligen Dreiecken und einem Quadrat mit Seitenlänge c. a 2 b a b 2 Das rechte aus den gleichen Dreiecken sowie einem Quadrat mit Seitenlänge a und einem mit Seitenlänge b. c 2 b a Die Fläche c 2 entspricht also der Summe der Fläche a 2 und der Fläche b 2, also a 2 + b 2 = c 2. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

26 Beweis des Satzes von Pythagoras Geometrischer Beweis Geometrischer Beweis durch Ergänzung (2) Beweis (Forsetzung) Das linke besteht aus den vier rechtwinkligen Dreiecken und einem Quadrat mit Seitenlänge c. a 2 b a b 2 Das rechte aus den gleichen Dreiecken sowie einem Quadrat mit Seitenlänge a und einem mit Seitenlänge b. c 2 b a Die Fläche c 2 entspricht also der Summe der Fläche a 2 und der Fläche b 2, also a 2 + b 2 = c 2. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

27 Beweis des Satzes von Pythagoras Geometrischer Beweis Geometrischer Beweis durch Ergänzung (2) Beweis (Forsetzung) Das linke besteht aus den vier rechtwinkligen Dreiecken und einem Quadrat mit Seitenlänge c. a 2 b a b 2 Das rechte aus den gleichen Dreiecken sowie einem Quadrat mit Seitenlänge a und einem mit Seitenlänge b. c 2 b a Die Fläche c 2 entspricht also der Summe der Fläche a 2 und der Fläche b 2, also a 2 + b 2 = c 2. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

28 Ergänzungen Umkehrung und Kosinussatz Ergänzungen zum Satz von Pythagoras Die Umkehrung des Satzes gilt ebenso: Gilt die Gleichung a 2 + b 2 = c 2 in einem Dreieck mit den Seitenlängen a, b und c, so ist dieses Dreieck rechtwinklig, wobei der rechte Winkel der Seite c gegenüber liegt. Eine Verallgemeinerung stellt der Kosinussatz dar: Für ein beliebiges Dreieck mit den Seiten a, b, c und den jeweils gegenüberliegenden Winkeln α, β, γ gilt: c 2 = a 2 + b 2 2ab cos(γ). Der Satz von Pythagoras bildet mit dem Höhensatz und dem Kathetensatz zusammen die Satzgruppe des Pythagoras. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

29 Ergänzungen Umkehrung und Kosinussatz Ergänzungen zum Satz von Pythagoras Die Umkehrung des Satzes gilt ebenso: Gilt die Gleichung a 2 + b 2 = c 2 in einem Dreieck mit den Seitenlängen a, b und c, so ist dieses Dreieck rechtwinklig, wobei der rechte Winkel der Seite c gegenüber liegt. Eine Verallgemeinerung stellt der Kosinussatz dar: Für ein beliebiges Dreieck mit den Seiten a, b, c und den jeweils gegenüberliegenden Winkeln α, β, γ gilt: c 2 = a 2 + b 2 2ab cos(γ). Der Satz von Pythagoras bildet mit dem Höhensatz und dem Kathetensatz zusammen die Satzgruppe des Pythagoras. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

30 Ergänzungen Umkehrung und Kosinussatz Ergänzungen zum Satz von Pythagoras Die Umkehrung des Satzes gilt ebenso: Gilt die Gleichung a 2 + b 2 = c 2 in einem Dreieck mit den Seitenlängen a, b und c, so ist dieses Dreieck rechtwinklig, wobei der rechte Winkel der Seite c gegenüber liegt. Eine Verallgemeinerung stellt der Kosinussatz dar: Für ein beliebiges Dreieck mit den Seiten a, b, c und den jeweils gegenüberliegenden Winkeln α, β, γ gilt: c 2 = a 2 + b 2 2ab cos(γ). Der Satz von Pythagoras bildet mit dem Höhensatz und dem Kathetensatz zusammen die Satzgruppe des Pythagoras. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

31 Ergänzungen Umkehrung und Kosinussatz Ergänzungen zum Satz von Pythagoras Die Umkehrung des Satzes gilt ebenso: Gilt die Gleichung a 2 + b 2 = c 2 in einem Dreieck mit den Seitenlängen a, b und c, so ist dieses Dreieck rechtwinklig, wobei der rechte Winkel der Seite c gegenüber liegt. Eine Verallgemeinerung stellt der Kosinussatz dar: Für ein beliebiges Dreieck mit den Seiten a, b, c und den jeweils gegenüberliegenden Winkeln α, β, γ gilt: c 2 = a 2 + b 2 2ab cos(γ). Der Satz von Pythagoras bildet mit dem Höhensatz und dem Kathetensatz zusammen die Satzgruppe des Pythagoras. W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober / 9

Geschichte von Pythagoras

Geschichte von Pythagoras Satz von Pythagoras Inhalt Geschichte von Pythagoras Entdeckung des Satzes von Pythagoras Plimpton 322 Lehrsatz Beweise Kathetensatz und Höhensatz Pythagoreische Tripel Kosinussatz Anwendungen des Satzes

Mehr

Geometrie Satz des Pythagoras

Geometrie Satz des Pythagoras TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe:

Mehr

Der Satz des Pythagoras: a 2 + b 2 = c 2

Der Satz des Pythagoras: a 2 + b 2 = c 2 Der Satz des Pythagoras: a 2 + b 2 = c 2 Beweise: Mathematiker versuchen ihre Behauptungen durch Beweise zu untermauern. Die Suche nach absolut wasserdichten Argumenten ist eine der treibenden Kräfte der

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich.

Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich. 1 9. Ähnlichkeit rechtwinkliger Dreiecke Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich. Die Höhe h zerlegt das Dreieck in zwei ähnliche Teildreiecke

Mehr

3. Stegreifaufgabe aus der Mathematik Lösungshinweise

3. Stegreifaufgabe aus der Mathematik Lösungshinweise (v0.1 16.1.09) Schuljahr 008/009. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Der Satz des Pythagoras lässt sich zum Beispiel so formulieren: In einem rechtwinkligen Dreieck

Mehr

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit).

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). Das geometrische π π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). nach Hans-Werner Meixner und Coautor Christian Meixner Als Basis für die Ausführungen zur geometrischen

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

Sinus-und Kosinussatz

Sinus-und Kosinussatz Sinus-und Kosinussatz Referentin: Theresia Herrmann a sinα = b sin β = c sinγ = 2r r 1 = r 2 = r a 2 = b 2 +c 2 2 b c cosα b 2 = a 2 +c 2 2 a c cosβ c 2 = a 2 +b 2 2 a b cosγ Gliederung: 1.Sinussatz 2.Beweis

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

I. Pythagoras - der Weise von Samos

I. Pythagoras - der Weise von Samos I. Pythagoras - der Weise von Samos Im Allgemeinen ist über das Leben von Pythagoras, dem Weisen von Samos nicht viel bekannt. Pythagoras wurde etwa um 570 v.chr. in Samos geboren und ist wahrscheinlich

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse. Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen

Mehr

Gruppenarbeit Satzgruppe des Pythagoras

Gruppenarbeit Satzgruppe des Pythagoras Anregungen zur Gestaltung schülerzentrierter, materialgestützter Unterrichtsphasen Gruppenarbeit Satzgruppe des Pythagoras Lösungshinweise für Lehrkräfte ie folgenden Lösungshinweise sollen die Lehrkräfte

Mehr

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte 1 Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 19. Tag der Mathematik 17. Mai 014, TU Berlin Pythagoräische

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23 Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

Didaktik des Sachrechnens

Didaktik des Sachrechnens Didaktik des Sachrechnens 6. Geometrie in der Anwendung Eine Auswahl Pont de la Caille, Frankreich (eigenes Foto) 1 6. Geometrie in der Anwendung Eine Auswahl 6.1 Satzgruppe des Pythagoras 6.2 Ähnlichkeit

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Pythagoras & Trigonometrie. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Pythagoras & Trigonometrie. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Pythagoras & Trigonometrie Das komplette Material finden Sie hier: School-Scout.de Marco Bettner/Erick Dinges Grundwissen Pythagoras

Mehr

Zahlentheorie und Geometrie

Zahlentheorie und Geometrie 1 Zahlentheorie und Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin Herbsttagung der Mathematischen Gesellschaft in Hamburg 15. November 2014 Zahlentheorie

Mehr

Der Satz von Pythagoras

Der Satz von Pythagoras Der Satz von Pythagoras Unterrichtsfach Themenbereich/e Mathematik Der Lehrsatz von Pythagoras einführende Arbeiten Schulstufe (Klasse) 7 / 8 Fachliche Vorkenntnisse Fachliche Kompetenzen Sprachliche Kompetenzen

Mehr

Gruppenarbeit Satzgruppe des Pythagoras

Gruppenarbeit Satzgruppe des Pythagoras Arbeitsauftrag 1 Glaspyramide des Louvre Lest zunächst die folgenden Ausführungen eines Touristenführers aufmerksam durch. Auch Freunde der Moderne kommen in Paris auf ihre Kosten. Es gibt hier viele moderne

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Grundwissen Pythagoras und Trigonometrie

Grundwissen Pythagoras und Trigonometrie Marco Bettner, Erik Dinges Bergedorfer Kopiervorlagen Kopiervorlagen Bergedorfer Grundwissen Pythagoras und Trigonometrie 9./10. Klasse 2012 Persen Verlag, Hamburg P Lehrerfachverlage GmbH lle Rechte vorbehalten.

Mehr

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum:

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.) den rechten Winkel einschließen heißen die Seiten, die Katheten, 1 Im rechtwinkligen Dreieck

Mehr

1. Elementare Dreiecksgeometrie

1. Elementare Dreiecksgeometrie 1. Elementare Dreiecksgeometrie Die Menge s A1B 2 der Punkte, die von zwei Punkten A und B gleich weit entfernt sind, bilden die Streckensymmetrale der Punkte A und B. Ist A B, so ist dies eine Gerade.

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr),

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), 12.01.11 Thema: Der Satz des Pythagoras (Einführung) Lernziele Groblernziel Die Schülerinnen und Schüler entdecken anhand

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks

Mehr

Referat über Thales, Pythagoras & Euklid. von Steffen Dremel Klasse 9a

Referat über Thales, Pythagoras & Euklid. von Steffen Dremel Klasse 9a Referat über Thales, Pythagoras & Euklid von Steffen Dremel Klasse 9a Thales von Milet Geboren: ca. 624 v. Chr. in Milet, Kleinasien Gestorben: ca. 546 v. Chr. War ein griechischer Naturphilosoph, Staatsmann,

Mehr

Grundwissen 9. Klasse

Grundwissen 9. Klasse Grundwissen 9. Klasse ) Rationale und irrationale Zahlen Quadratwurzel b ist diejenige nichtnegative Zahl, die quadriert b ergibt: b b ( 5 ) 5 Die Zahl b heißt Radikand; b 0 : es gibt keine Quadratwurzel

Mehr

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski 02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau

Mehr

Um welche Flächen geht es beim Sehnensatz? Dr. Emese Vargyas Prof. Dr. Ysette Weiss-Pidstrygach Johannes Gutenberg - Universität Mainz

Um welche Flächen geht es beim Sehnensatz? Dr. Emese Vargyas Prof. Dr. Ysette Weiss-Pidstrygach Johannes Gutenberg - Universität Mainz Um welche Flächen geht es beim Sehnensatz? Dr. Emese Vargyas Prof. Dr. Ysette Weiss-Pidstrygach Johannes Gutenberg - Universität Mainz Vorlesung Sehnensatz Sekantensatz Sekanten-Tangenten-Satz Umkreis

Mehr

III. Geometrie 1 /

III. Geometrie  1 / III. Geometrie www.udo-rehle.de 1/ 20 2014 1. D R E I E C K E Was haben wir in der Schule über Dreiecke gelernt? Auf diese Frage folgt nach einiger Überlegung meist: Den Satz des Pythagoras: a²+b²=c² Das

Mehr

Trigonometrie. Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Trigonometrie. Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe. Ronald Balestra CH Zürich Trigonometrie Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 31. Januar 2013 Überblick über die bisherigen ALGEBRA - Themen:

Mehr

Download. Mathe an Stationen Klasse 9. Satzgruppe des Pythagoras. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Klasse 9. Satzgruppe des Pythagoras. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Mathe an Stationen Klasse 9 Satzgruppe des Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht. Der

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Geheimnisse des Pythagoras. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Geheimnisse des Pythagoras. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Geheimnisse des Pythagoras Das komplette Material finden Sie hier: School-Scout.de Ab 9. Schuljahr Barbara Theuer Geheimnisse des

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras Die Satzgruppe des Pythagoras von Prof. Dr. Anna Maria Fraedrich Pädagogische Hochschule Weingarten Wissenschaftsverlag Mannheim Leipzig Wien Zürich Inhalt Vorwort 1 I. Sachinformationen zur Satzgruppe

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Trigonometrie Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 29. Januar 2012 Inhaltsverzeichnis 3 Trigonometrie 1 3.1 Warum Trigonometrie........................

Mehr

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

Dreiecke erkunden Rechter Winkel gesucht!

Dreiecke erkunden Rechter Winkel gesucht! Dreiecke erkunden Rechter Winkel gesucht! Jahrgangsstufe: 8-9 Zeitbedarf: Beschreibung: In einem Leserbrief wird ein rechter Winkel gesucht und die Schüler sollen sich mit dieser Realsituation auseinandersetzen.

Mehr

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt. Flächeninhalt 1 Kapitel 6: Der Flächeninhalt Flächeninhalt einer Figur soll etwas über deren Größe aussagen Flächeninhaltsbegriff intuitiv irgendwie klar, ab der Grundschule durch Auslegen von Figuren

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Mathematik Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 1

Mathematik Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 1 Mathematik Nachhilfe Blog Mathe so einfach wie möglich erklärt Mathematik Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 1 Veröffentlicht am 30. August 2013 Die berühmte Mathe Gesetzmäßigkeit Satz des

Mehr

Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15

Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15 Dreieckssätze Pythagoras und Co 1 Pythagoras 300 v.chr.: Elemente des Euklid, Stoicheia unterteilt in 15 Bücher (Kapitel) I bis XV wobei die beiden letzten erst später dazu kamen, deshalb redet man oft

Mehr

Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Lösung von Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Länge x der Hypotenuse: Ansatz: x² = 8² + 15² x = 17 cm b ) Beispiel für den Nachweis der Rechtwinkligkeit:

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

Gittergeometrie und pythagoreische Dreiecke

Gittergeometrie und pythagoreische Dreiecke Alfred Hoehn und Hans Walser Gittergeometrie und pythagoreische Dreiecke Dieser Artikel wurde von der Praxis der Mathematik zur Publikation angenommen und erscheint demnächst. Kurzfassung Werden in einem

Mehr

Didaktik der Elementargeometrie

Didaktik der Elementargeometrie Humboldt-Universität zu Berlin Sommersemester 2014 Institut für Mathematik A. Filler. Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 3 Argumentieren, Beweisen, lokales Ordnen

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Jürgen Roth Didaktik der Geometrie Modul 5: Fachdidaktische Bereiche 4.1 Inhalt Didaktik der Geometrie 1 Ziele und Inhalte 2 Begriffsbildung 3 Konstruieren 4 Argumentieren und Beweisen 5 Problemlösen 6

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Jürgen Roth Didaktik der Geometrie Modul 5: Fachdidaktische Bereiche 4.1 Inhalt Didaktik der Geometrie 1 Ziele und Inhalte 2 Begriffsbildung 3 Konstruieren 4 Argumentieren und Beweisen 5 Problemlösen 6

Mehr

Panorama der Mathematik und Informatik

Panorama der Mathematik und Informatik Panorama der Mathematik und Informatik 0: Übersicht, Organisatorisches / 1. Anfänge Dirk Frettlöh Technische Fakultät 7.4.2015 Idee: Gesamtbild zeichnen. Dazu: Geschichte, Methoden, Meilensteine, Persönlichkeiten,

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

FWU Schule und Unterricht. Didaktische DVD. Der Satz des Pythagoras. FWU das Medieninstitut der Länder

FWU Schule und Unterricht. Didaktische DVD. Der Satz des Pythagoras. FWU das Medieninstitut der Länder 46 02396 Didaktische DVD FWU Schule und Unterricht Der Satz des Pythagoras FWU das Medieninstitut der Länder 00 Lernziele Die Schülerinnen und Schüler sollen anhand von Aufgabenbeispielen erkennen, dass

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

1. Rechensteine und Pythagoräischer Lehrsatz.

1. Rechensteine und Pythagoräischer Lehrsatz. 1. Rechensteine und Pythagoräischer Lehrsatz. Der Beginn der wissenschaftlichen Mathematik fällt mit dem Beginn der Philosophie zusammen. Er kann auf die Pythagoräer zurückdatiert werden. Die Pythagoräer

Mehr

Mathe mit GeoGebra 9/10. Funktionen, Pythagoras, Ähnlichkeiten. Arbeitsheft mit CD. Werner Zeyen 1. Auflage, 2013 ISBN:

Mathe mit GeoGebra 9/10. Funktionen, Pythagoras, Ähnlichkeiten. Arbeitsheft mit CD. Werner Zeyen 1. Auflage, 2013 ISBN: Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-238-1 Mathe mit GeoGebra 9/10 Funktionen, Pythagoras, Ähnlichkeiten Arbeitsheft mit CD RS-MA-GEGE3 2 Quadratische Funktionen 2.1 In der Umwelt häufig anzutreffen:

Mehr

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr.

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. 16 9 25 4 3 5 144 25 169 12 13 49 625 24 7 25 9 25 3 64 100 8 225 64 289 15 144 225 15 1296 225

Mehr

Tag der Mathematik 2008

Tag der Mathematik 2008 Tag der Mathematik 008 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

DAS RECHTWINKLIGE DREIECK

DAS RECHTWINKLIGE DREIECK DAS RECHTWINKLIGE DREIECK [Text eingeben] Wenn wir ein Rechteck durch eine seiner beiden Diagonalen halbieren, erhalten wir ein rechtwinkliges Dreieck. Hat das Dreieck eine Länge von 4 und eine Breite

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Trigonometrie - die Grundlagen in einem Tag

Trigonometrie - die Grundlagen in einem Tag Trigonometrie - die Grundlagen in einem Tag Fachtage Dezember 2012 an der Kantonsschule Zürich Nord Klasse W3n R. Balestra Name: Vorname: 6. Dezember 2012 Inhaltsverzeichnis 1 Zielsetzung & Ablauf 1 2

Mehr

Perlen der Mathematik

Perlen der Mathematik Claudi Alsina Roger B. Nelsen Perlen der Mathematik 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen Aus dem Englischen übersetzt von Thomas Filk ~ Springer Spektrum Inhaltsverzeichnis

Mehr

5 Anwendungen des Lehrsatzes des Herrn Pythagoras

5 Anwendungen des Lehrsatzes des Herrn Pythagoras 5 Anwendungen des Lehrsatzes des Herrn Pythagoras 288 Fläche: Gemüse pflanzen, Wand ausmalen usw.; Umfang: Randsteine setzen, Zaun aufstellen usw. H3 K1 287 Tom und seine Freunde wollen eine zweitägige

Mehr

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates: Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

Preprint ausgewählter Seiten eines meiner nächsten Bücher für die Referate 11 bis 15 zum Thema Beweise des Pythagoreischen Lehrsatzes

Preprint ausgewählter Seiten eines meiner nächsten Bücher für die Referate 11 bis 15 zum Thema Beweise des Pythagoreischen Lehrsatzes 0 Preprint ausgewählter Seiten eines meiner nächsten Bücher für die Referate 11 is 15 zum Thema Beweise des Pythagoreischen Lehrsatzes im Rahmen des Geometrieunterrichts (dm) der Realisten der 4AD sowie

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Planimetrie Lernziele befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Selbständiges Erarbeiten der Kurztheorie Kenntnis

Mehr

Kompetenzen. Schülerinnen und Schüler. vergrößern und verkleinern einfache Figuren maßstabsgetreu untersuchen und beschreiben Auswirkungen

Kompetenzen. Schülerinnen und Schüler. vergrößern und verkleinern einfache Figuren maßstabsgetreu untersuchen und beschreiben Auswirkungen 1. Wiederholung aus Jg 8 und Vorbereitung auf den Einstellungstest Seiten 206-228 2. Ähnlichkeit Bauzeichnungen Seiten 8-32 Inhalte Mathematik 9 Brüche und Dezimalzahlen Brüche und Dezimalzahlen: Addieren

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Der Weg zur Wirklichkeit

Der Weg zur Wirklichkeit Der Weg zur Wirklichkeit Die Teilübersetzung für Seiteneinsteiger Bearbeitet von Roger Penrose, Anita Ehlers 1. Auflage 2010. Taschenbuch. XXXVI, 357 S. Paperback ISBN 978 3 8274 2341 2 Format (B x L):

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016 Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016 Anzahl der schriftlichen Arbeiten: 4, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe Anlage,

Mehr

Flächenverwandlung von Rechtecken

Flächenverwandlung von Rechtecken Durch die Hintereinanderausführung zweier Scherungen, zuerst an der Scherungsachse a 1, danach an der Scherungsachse a 2, wird ein Rechteck ~ABCD in ein neues Rechteck ~A''B''C''D'' übergeführt. Gib Näherungswerte

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

1.4 Steigung und Steigungsdreieck einer linearen Funktion

1.4 Steigung und Steigungsdreieck einer linearen Funktion Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer

Mehr

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b Blatt Nr 1906 Mathematik Online - Übungen Blatt 19 Dreieck Geometrie Nummer: 41 0 2009010074 Kl: 9X Aufgabe 1911: (Mit GTR) In einem allgemeinen Dreieck ABC sind a = 18782, c = 1511 und β = 33229 gegeben

Mehr

Dreieckskonstruktionen und Kongruenzsätze

Dreieckskonstruktionen und Kongruenzsätze Dreieckskonstruktionen und Kongruenzsätze 27. Oktober 2009 Vertr. Prof. Dr. Katja Krüger Universität Paderborn Didaktik der Geometrie II (Klasse 7-10) 1 Inhalt Was sollen eigentlich Figuren sein? Kongruente

Mehr

Beispiellösungen zu Blatt 65

Beispiellösungen zu Blatt 65 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 65 Welche regelmäßigen n-ecke der Seitenlänge 1 kann man in kleinere

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Dreiecke Kurzfragen. 30. Juni 2012

Dreiecke Kurzfragen. 30. Juni 2012 Dreiecke Kurzfragen 30. Juni 2012 Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks angeschrieben? Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks

Mehr

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9 Zahlen. Die Quadratwurzel Die Quadratwurzel a ist die nicht negative Lösung der Gleichung x a. a 0 0 0 a heißt Radikand Ein Teil der Quadratwurzeln sind rationale Zahlen (z.b. 9, 0,0 oder ), 9 andere dagegen

Mehr