Nichtlineare Gleichungen, mehrere Unbekannte

Größe: px
Ab Seite anzeigen:

Download "Nichtlineare Gleichungen, mehrere Unbekannte"

Transkript

1 Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration, mehrdimensional Verfahren: Newton-Raphson und Varianten, Minimierung. 1

2 Mehrere Unbekannte: Aufgabentypen, Formulierungen Nichtlineares Gleichungssystem in zwei Unbekannten 4x y + xy = 1 x + 6y = 2 log(xy) Nullstelle einer vektorwertigen Funktion f : R 2 R 2 4x y + xy 1 = 0 x + 6y + log(xy) 2 = 0 f(x, y) = 0 g(x, y) = 0 f(x) = 0 Fixpunkt einer vektorwertigen Funktion Φ : R 2 R 2 x 1 = 1 4 (x 2 x 1 x 2 + 1) x 2 = 1 6 (x 1 log(x 1 x 2 ) + 2) x = Φ(x) Beispiel im Skriptum, ab S.21, durchgerechnet! 2

3 Vergleiche: Diese Folie aus der erster Vorlesung behandelte die entsprechenden eindimensionalen Formulierungen, siehe auch Skript.1.2 Nichtlineare Gleichungen in einer Unbekannten Hier behandelte Aufgabentypen: g(x) = h(x), (Finden der Lösung einer Gleichung) f(x) = 0, (Finden einer Nullstelle der Funktion f) x = φ(x), (Finden eines Fixpunktes der Funktion φ) Unter einer Nullstelle der Funktion f versteht man eine Lösung der Gleichung f(x) = 0. Unter einem Fixpunkt der Funktion φ versteht man eine Lösung der Gleichung x = φ(x). 3

4 Schreibweise Reellwertige Funktionen, Skalare: f : R R, y = f(x) Vektorwertige Funktionen, Vektoren: f : R n R n, y = f(x) Komponenten eines Vektors R n : x = x 1 x 2. x n oder x T = [x 1, x 2,..., x n ] Normalerweise ist mit x immer ein Spalten-, mit x T ein Zeilenvektor gemeint. Iterationsindizes sind (um sie von Vektorkomponenten zu unterscheiden) in der Regel hochgestellt, in Klammern: x (k), k = 0,1,2... 4

5 Fixpunkt-Iteration, mehrdimensional Gegeben sei eine Abbildung Φ : R n R n, x Φ(x). Fixpunkt-Iteration findet, falls konvergent, einen Fixpunkt ξ von Φ. x (0) als Startwert gegeben. Iterationsvorschrift x (k+1) = Φ(x (k) ) für k = 0,1,2... Abbruchbedingung x (k+1) x (k) < ǫ 5

6 Vektornormen Eine Norm ist eine Maßzahl für die Größe eines Vektors oder einer Matrix. Für einen Vektor x = [x 1, x 2,..., x n ] T ist x 1 = x 2 = n i=1 n i=1 x = max i x i Einsnorm (x i ) 2 euklidische Norm, Zweinorm x i Unendlich-Norm, Maximums-Norm In Matlab: x 1 = norm(x,1), x 2 = norm(x) oder norm(x,2), x = norm(x,inf). 6

7 Matrixnormen Achtung Ergänzung zum Skriptum! Eine Matrixnorm misst die Größe einer Matrix. Die 1,2 und - Normen lassen sich von den entsprechenden Vektornormen ableiten: geben für die Rechenoperation y = A x an, um wieviel y gegenüber x maximal vergrößert wird. A 1 A 2 A Einsnorm: maximale Spaltenbetragssumme Zweinorm: größter Singulärwert Unendlich-Norm: maximale Zeilenbetragssumme A F Frobenius-Norm: a 2 ij In Matlab: A 1 = norm(a,1),..., A F = norm(a, fro ). 7

8 Fixpunkt-Iteration konvergiert für kontrahierende Abbildungen R n R n Die Funktion Φ(x) besitze einen Fixpunkt ξ: Φ(ξ) = ξ. Sei ferner B eine Umgebung um den Fixpunkt ξ in der Form B = {x : ξ x < r}, r > 0, sodass Φ in B eine kontrahierende Abbildung ist, d. h.es gilt Φ(x) Φ(y) C x y, C < 1 für alle x,y B in (irgend-)einer Norm. Dann konvergiert die Fixpunkt-Iteration x (k+1) = Φ(x (k) ) mindestens linear gegen ξ für alle x (0) B. 8

9 Fixpunkt-Iteration konvergiert lokal für D φ < 1 Die Matrix der partiellen Ableitungen D φ = φ 1 x 1 φ 1 x 2... Achtung Ergänzung zum Skriptum! φ 1 x n φ 2 φ 2 φ... 2 x 1 x 2 x n... φ n φ n φ n... x 1 x 2 x n heißt die Jacobi-Matrix der Abbildung Φ(x). Ist in einen Fixpunkt von Φ(x) (irgend-) eine Norm D φ < 1, dann konvergiert die Fixpunkt- Iteration für Startwerte in einer Umgebung des Fixpunktes. 9

10 Beispiel von vorhin Die Funktion Φ ist hier ein Vektor aus zwei reellwertigen Funktionen φ 1 und φ 2, der Vektor x hat zwei Komponenten x 1 und x 2. [ ] [ 1 φ1 (x Φ(x) = 1, x 2 ) = 4 (x ] 2 x 1 x 2 + 1) φ 2 (x 1, x 2 ) 1 6 (x 1 log(x 1 x 2 ) + 2) D φ = x x x x 2 Ausgewertet für x = [ ] 0,35 ( Fixpunkt) D 0,64 φ = [ ] 0,160 0,163 0, 310 0, 260 D φ 1 = 0,4695 D φ 2 = 0,4051 D φ = 0,5699 D φ F = 0,

11 Sekantenmethode als zweidimensionales Fixpunkt-Verfahren Die Sekantenmethode berechnet aus zwei Näherungen x (0), x (1) eine verbesserte Näherung, rechnet dann mit zwei neuen Näherungen weiter. Fasse die beiden Näherungen als Komponenten eines Vektors auf. Die Schreibweise x = [ ] x1 x 2, Φ(x) = [ x 2 f(x 2 ) ] x 2 x 1 x 2 f(x 1 ) f(x 2 ) formuliert die Sekantenmethode als zweidimensionale Fixpunkt-Iteration x (k+1) = Φ(x (k) ) für k = 0,1,

12 Newton-Raphsonsches Verfahren für Systeme Gegeben eine differenzierbare vektorwertige Funktion f(x) und ein Startwert x (0). Gesucht eine Nullstelle von f. Iterationsvorschrift x (k+1) = x (k) + x (k) mit x (k) als Lösung von D f (x (k) ) x (k) = f(x (k) ) Auch dieses Verfahren ist ein Fixpunktverfahren. Die Iterationsfunktion lässt sich formal schreiben (Vorsicht rechnerische Ausführung in dieser Form ungünstig!) Φ(x) = x D f (x) 1 f(x) 12

13 Beispiel: Titration von 0,1m-Phosphorsäure mit 1m-NaOH Ein System sechs nichtlinearer Gleichungen bestimmt die Konzentration der undissoziierten H 3 PO 4 ; der Kationen H +, Na + ; und Anionen OH, H 2 PO 4, HPO 4, PO 4. H + OH = K w Ionenprodukt des Wassers H + H 2 PO 4 = K s1 H 3 PO 4 P-Säure, 1. Dissoziationsstufe H + HPO 4 = K s2 H 2 PO 4 2. Dissoziationsstufe H + PO 4 = K s2 HPO 4 3. Dissoziationsstufe H 3 PO 4 + H 2 PO 4 + HPO 4 + PO 4 = C 0PS P-Bilanz H 2 PO 4 + 2HPO 4 + 3PO 4 + OH = Na + + H + Elektroneutralität Die Lösung dieses Gleichungssystems für gegebene Na + -Konzentration bestimmt den ph-wert. Im Verlauf der Titration schwanken die einzelnen Konzentrationen über viele Zehnerpotenzen. Vorgefertigte Lösungsverfahren haben damit große Schwierigkeiten. Quelle: Dr. Josef Draxler, Verfahrenstechnik des industriellen Umweltschutzes, Leoben,

14 Lösung nichtlinearer Gleichungssysteme: Übersicht der Methoden Fixpunkt-Iteration: Allgemeine Formulierung; kein Rezept, um günstiges Φ zu finden. Newton-Raphson: Standard-Verfahren. Varianten: gedämpft: langsamere, aber verlässlichere Konvergenz. fixe Jacobi-Matrix: lin. Konvergenz, weniger Rechenaufwand MATLAB Symbolic Toolbox: solve liefert auch numerische Werte. Umformen auf Minimierungsaufgabe: finde Minimum einer skalaren Funktion in mehreren Variablen f(x) 2 min Heißt Nichtlineare unrestringierte Optimierung, unconstrained nonlinear optimization, umfangreiches Gebiet, viele Methoden. In MATLAB fminsearch(@fun,x0) verfügbar. 14

Gleichungssysteme. 3. Vorlesung Numerische Methoden I. Clemens Brand und Erika Hausenblas. 10. März Montanuniversität Leoben

Gleichungssysteme. 3. Vorlesung Numerische Methoden I. Clemens Brand und Erika Hausenblas. 10. März Montanuniversität Leoben Gleichungssysteme 3. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 10. März 2016 Gleichungssysteme 1 Wiederholung: Vektoren, vektorwertige Funktionen

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. Februar 2010 Newton- Gliederung Newton-, ng Newton- , Fragenliste Nichtlineare Gleichungen

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

KAPITEL 5. Nichtlineare Gleichungssysteme

KAPITEL 5. Nichtlineare Gleichungssysteme KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld

Mehr

Kapitel 5. Lösung nichtlinearer Gleichungen

Kapitel 5. Lösung nichtlinearer Gleichungen Kapitel 5. Lösung nichtlinearer Gleichungen 5.1 Nullstellen reeller Funktionen, Newton-Verfahren 5.2 Das Konvergenzverhalten iterativer Verfahren 5.3 Methode der sukzessiven Approximation 5.4 Das Newton-Verfahren

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

C Dritte Übungseinheit

C Dritte Übungseinheit C Dritte Übungseinheit Inhalt der dritten Übungseinheit: Skript- und Funktions-M-Dateien Schleifen und Verzweigungen Fixpunkt-Iteration, ein- und mehrdimensional Aufgaben zum Newton-Verfahren für Systeme

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 20. Februar 2014 Clemens Brand und Erika Hausenblas

Mehr

1 Nichtlineare Gleichungen in einer Unbekannten

1 Nichtlineare Gleichungen in einer Unbekannten 1 Nichtlineare Gleichungen in einer Unbekannten 1.1 Ein kurzer Rundgang im Garten der Gleichungen Als Einstieg in die Numerische Mathematik behandeln wir numerische Lösungsverfahren für Gleichungen in

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 25. Februar 2016 Organisatorisches Die Termine der Übungsgruppen

Mehr

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0. 3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Numerische Mathematik für Ingenieure (SoSe 2013)

Numerische Mathematik für Ingenieure (SoSe 2013) Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files

Mehr

C Dritte Übungseinheit

C Dritte Übungseinheit C Dritte Übungseinheit Inhalt der dritten Übungseinheit: Script- und Funktionsdateien Newton-Verfahren für Systeme Lokale Funktionen Programmdokumentation mit Publish Symbolisch Differenzieren fsolve Debugger

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0.

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. 6.4 Fixpunkt-Iteration Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. Möglichkeiten: Bisektionsverfahren (Intervallhalbierung) Newton-Verfahren, x k+1 = x k f(x k) f (x k ) für k = 0, 1,

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 6. Iterationsverfahren Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 Beispiel: Ausbreitung eines Grippevirus in einem Kindergarten Zeitpunkt t 0 t 1 t 2 t 3 t 4 t 5 Anteil kranker

Mehr

8 Iterationsverfahren zur Lösung von Gleichungssystemen

8 Iterationsverfahren zur Lösung von Gleichungssystemen Numerische Mathematik 378 8 Iterationsverfahren zur Lösung von Gleichungssystemen Nichtlineare Gleichungssysteme (sogar eine nichtlineare Gleichung in einer Unbekannten) müssen fast immer iterativ gelöst

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Trifft uns der Komet?

Trifft uns der Komet? Trifft uns der Komet? Teilnehmer: Paul Barth Hristo Boyadzhiev Batkhaan Erdenetsetseg Roxana Esmaili Bryan Oppong-Boateng Felix Roth Julius Paul Rußmann Jean-Pierre Walter Bela Tim Wiethüchter Herder-Gymnasium

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y(x), welche erfüllt y = f(x,y) y(x 0 ) = y 0 Differentialgleichung Anfangsbedingung Wenn f in x stetig

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

2.10 Lokale Funktionsanalyse

2.10 Lokale Funktionsanalyse 2.1 Lokale Funktionsanalyse Aufgabe Gegeben sei die Abbildung g : R 2 R 2 mit g(x, y) : (x 3 yx, y). Man bestimme alle Mengen M k : {(ξ, η) R 2 g 1 (ξ, η) hat genau k Elemente}. Wie verhält g sich in der

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

6 Nichtlineare Ausgleichsrechnung

6 Nichtlineare Ausgleichsrechnung 6 Nichtlineare Ausgleichsrechnung 6.1 Problemstellung Wie im Abschnitt 4.1 betrachten wir wieder die Aufgabe, aus gegebenen Daten (Messungen) b i, i =1,...,m, m>n, auf eine von gewissen unbekannten Parametern

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

Gleichungen, GS und Nullstellen

Gleichungen, GS und Nullstellen TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG5.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 5 Gleichungen, GS

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

NICHTLINEARE AUSGLEICHSPROBLEME

NICHTLINEARE AUSGLEICHSPROBLEME 1 NICHTLINEARE AUSGLEICHSPROBLEME In Numerik I haben wir uns bereits mit linearen Ausgleichsproblemen befasst. Wir erinnern uns daran, dass diese Probleme von der Form Ax d 2 2 min mit A R m n,d R m,m>n

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Angewandte Mathematik für die Informatik

Angewandte Mathematik für die Informatik Angewandte Mathematik für die Informatik Sommersemester 2017, Teil 2 Louchka Popova-Zeugmann und Wolfgang Kössler Humboldt-Universität zu Berlin, Institut für Informatik 24. Juli 2017 1 / 1 Inhalt (1)

Mehr

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf.

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Lösung 7 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Chlorwasserstoff ist eine starke Säure (pk a = 7),

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Fixpunkt: da läuft nichts mehr

Fixpunkt: da läuft nichts mehr Modul 107 Fixpunkte Fixpunkt: da läuft nichts mehr 2 Fixpunkt: da läuft nichts mehr f ( x)! input = x! output 3 Fixpunkt: da läuft nichts mehr f ( x)! input = x! output gigo: garbage in, garbage out 4

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014 Was ist das Newton-Verfahren? Das Newton-Verfahren ist ein nuerisches Verfahren zur näherungsweisen Bestiung einer Nullstelle einer gegeben Funktion. Analytisch exakt können Nullstellen von Geraden von

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 49 Zu einer reellwertigen Funktion Extrema auf einer offenen Menge G R n interessieren wir uns, wie schon bei einem eindimensionalen

Mehr

Anleitung zu Blatt 1, Analysis II

Anleitung zu Blatt 1, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt, Analysis II SoSe 0 Banachscher Fixpunktsatz Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Dipl.-Math. Robert Offinger Wintersemester 2006/07 Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik

Dipl.-Math. Robert Offinger Wintersemester 2006/07 Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Dipl.-Math. Robert Offinger Wintersemester 6/7 Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Materialien zur Vorlesung Mathematik III für Ingenieure Ergänzungen zur Einführung in Matlab

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr