0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

Größe: px
Ab Seite anzeigen:

Download "0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel"

Transkript

1 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die Gravitationskonstante Physikalische Grundlagen Nachdem im letzten Versuchsteil die Gravitationskonstante mittels einer Gravitationswage bestimmt wurde, soll nun ein gewöhnliches Pendel zur Bestimmung dieser Naturkonstanten genutzt werden Das mathematische Pendel Die am weitesten vereinfachte Betrachtung eines Pendels stellt das sogenannte mathematische Pendel, auch bekannt als Fadenpendel dar. Es besteht in der idealisierten Annahme aus einer punktförmigen Masse, welche an einem als masselos angenommenen Faden um die Ruhelage schwingt. Für diesen Prozess lassen sich die Bewegungsgleichungen mit geringem Aufwand aus dem 2. Newtonschen Gesetz herleiten. Auf die am Faden hängende, schwingende Masse wirkt im Gravitationsfeld der Erde zum einen die Schwerkraft F = m g und zum andern die Zwangkraft des Fadens welche dafür sorgt, dass der Abstand der Masse zum Aufhängungspunkt konstant bleibt. Da diese Kraft den Anteil der Gravitationskraft, welche parallel zum Faden wirkt kompensiert, muss effektiv nur der Anteil der Schwerkraft senkrecht zum Faden betrachtet werden. ϕ l F F m F G ϕ Abbildung 1: Schematische Darstellung eines Fadenpendels sowie der wirkenden Kräfte Mit dem Auslenkwinkel des Fadens ϕ relativ zur Ruhelage ergibt sich für diesen Anteil der Schwerkraft 1

2 F (t) = m g sin(ϕ(t)) (1) Die Auslenkung der Masse aus der Ruhelage kann Näherungsweise durch die Beziehung x = l ϕ(t) beschrieben werden. Für die beschleunigende Kraft gilt somit Gleichsetzen von Gleichung 1 und 2 liefert schließlich F (t) = m a(t) = m ẍ(t) = m l ϕ(t) (2) ϕ(t) = g l sin(ϕ(t)) (3) Für kleine Winkel ϕ < 5 folgt aus dem Taylorschen Satz sin(ϕ) ϕ und somit gilt ϕ(t) = g l ϕ(t) (4) Dies entspricht gerade der Bewegungsgleichung des harmonischen Oszillators (ẍ(t) = ω 2 x(t)) und hat die Allgemeine Lösung mit der Priodendauer g ϕ(t) = ϕ max cos( t + α) (5) l T = 2π l g (6) Aus dieser Formel ist direkt ersichtlich, dass die Schwingungsdauer nur von der Periodendauer der Schwingung und der Fallbeschleunigung g abhängt. Die Fallbeschleunigung g kann also direkt aus der gemessenen Periodendauer des Pendels bei bekannter Fadenlänge berechnet werden Das physikalische Pendel In der Praxis kann die vereinfachte Darstellung des mathematischen Pendels zur Beschreibung ausgedehnter schwingender Objekte oft nicht oder nur als Näherung herangezogen werden. Das im Praktikum eingesetzte Pendel besteht aus einer ausgedehnten zylinderförmigen Masse welche an einem massiven, ausgedehnten Eisenstab befestigt ist. Die Annahmen einer punktförmigen Masse und eines masselosen Fadens als Aufhängung können hier daher nicht mehr gemacht werden. Ein solches Pendel bezeichnet man als physikalisches Pendel. Für die Bewegungsgleichung folgt durch ähnliche Überlegungen wie beim mathematischen Pendel ϕ(t) = m g d I ϕ(t) (7) Die Unterschiede liegen darin begründet, dass die Masse der beschleunigenden Kraft nun durch das Drehmoment des ausgedehnten Körpers ersetzt wurde und dass die Länge l des 2

3 d A SP A := Aufhängung SP := Schwerpunkt m Ges Abbildung 2: Schematische Darstellung eines physikalischen Pendels Fadens nun durch den Abstand d zwischen Drehachse und Schwerpunkt gegeben ist. Durch den Vergleich mit Gleichung 4 kann die sogenannte effektive Länge L eff eingeführt werden. mit ϕ(t) = g ϕ(t) (8) L eff L eff = I m d Diese beschreibt die Länge, welche ein Fadenpendel haben müsste, um die gleiche Bewegungsgleichung und somit das gleiche Schwingungsverhalten wie ein physikalisches Pendel zu besitzen. Um in der Praxis weiterhin mit den Formeln für das mathematische Pendel arbeiten zu können, muss die Pendellänge durch diese Länge ersetzt werden. (9) Die Schwerebeschleunigung Ein Körper, welcher sich im Gravitationsfeld eines Himmelkörpers wie der Erde befindet, erfährt unabhängig von seiner eigenen Masse stets die Beschleunigung g, welche auch als Fallbeschleunigung bezeichnet wird. Die auf den Körper wirkende Gravitationskraft ergibt sich somit zu F Grav = m g (10) Diese Kraft ist auf der Oberfläche des Planeten gleich der Gravitationskraft des Newtonschen Gravitationsgesetzes F = G m M r r 2 (11) r Durch Gleichsetzen ergibt sich eine Formel für die Gravitationskonstante, welche nur von der Fallbeschleunigung g, der Masse des Himmelkörpers M sowie dem Abstand der Referenzmasse zum Zentrum des Himmelskörpers r abhängt. G = g r2 M Für die Masse der Erde entnimmt man der Literatur den Wert M = 5, kg. Der Abstand von Gießen zum Erdmittelpunkt r ergibt sich aus der Summe des Erdradiuses (R 6356, 78km) und der Höhe von Gießen über dem Meeresspiegel (H 159m). 3 (12)

4 0.1.3 Versuchsaufbau Das verwendete Pendel besteht aus einem 167,5 cm langen Metallstab, an dem eine 1,4 Kg schwere, zylinderförmige Masse befestigt ist. 34 cm unterhalb des oberen Endes des Metallstabes, besitzt dieser einen frei gelagerten Stift, mit dem das Pendel in eine spezielle Halterung eingehängt werden kann. Abbildung 3 zeigt den Aufbau sowie die Abmessungen des Pendels. Der Stab sowie die Masse sind aus Eisen gefertigt. 34 cm Aufhängung 167,5 cm L 1,4 kg 10,2 cm Abbildung 3: Schematische Darstellung der Abmessungen des Pendels (rechts) sowie Bild des realen Aufbaus (links). Der Stab an dem die Masse befestigt ist hat eine Länge von a = 167,5 cm, eine Breite von b = 1,6 cm und eine Dicke von c = 0,6 cm Bestimmung des Trägheitsmoments und der effektiven Länge Um die effektive Länge des Pendels berechnen zu können, muss zunächst das Gesamtträgheitsmoment der Schwingenden teile des Pendels bestimmt werden. Der Literatur entnimmt man für das Trägheitsmoment eines massiven Zylinders mit Radius R, welcher um seine Symmetrieachse schwingt I Masse = 1 2 m Masse R 2 (13) und für das Trägheitsmoment eines Stabes mit den Abmessungen a b c (Länge Breite Dicke) welcher zu einer Achse parallel zur Kante c durch seinen Schwerpunkt schwingt I Stab = 1 12 m Stab (a 2 + b 2 ) (14) Um die Schwingung um den Aufhängepunkt zu realisieren, müssen die Schwingungsachsen jeweils noch zu diesem Punkt hin verschoben werden. Hierzu kann der Steinersche Satz I Schwingachse = I Körper + m x 2 (15) verwendet werden, wobei x der Abstand der Schwingachse zum Aufhängepunkt ist. 4

5 Den Abstand des Mittelpunktes der zylinderförmigen Masse bezeichnen wir im Folgenden als L. Das Trägheitsmoment bezüglich des Aufhängepunktes ergibt sich somit zu I Masse Aufhängung = 1 2 m Masse R 2 + m Masse L 2 (16) Der Schwerpunkt des Stabes ist durch dessen Mittelpunkt gegeben. Das Trägheitsmoment muss also um den Abstand des Stabmittelpunktes zur Aufhängung verschoben werden. Es folgt somit I Stab Aufhängung = 1 12 m Stab (a 2 + b 2 ) + m Stab ( a 2 0, 34)2 (17) Das gesamte Trägheitsmoment ergib sich somit aus der Summe dieser beiden Trägheitsmoment zu I Ges = 1 2 m Masse R 2 + m Masse L m Stab (a 2 + b 2 ) + m Stab ( a 2 0, 34)2 (18) Um die effektive Länge zu bestimmen wird nun nur noch die Position d des Schwerpunktes der schwingenden Masse relativ zu Aufhängepunkt benötigt. Diese ergibt sich zu d = m Stab ( a 2 0, 34) + m Masse L m Ges (19) Durch einsetzen in Gleichung 12 folgt für die effektive Länge L eff = 1 2 m Masse R 2 + m Masse L m Stab (a 2 + b 2 ) + m Stab ( a 2 0, 34)2 m Stab ( a 2 0, 34) + m Masse L (20) Einsetzen der Massen und Abmessungen liefert schließlich die Formel L eff = 0, kg m2 + 1, 4 kg L 2 0, kg m + 1, 4 kg L wobei L der im Experiment bestimmte Abstand zwischen dem Aufhängepunkt und dem Mittelpunkt der beweglichen Masse ist. (21) Versuchsdurchführung Die Schwingungsdauer wird für 5 verschiedene Stellungen der beweglichen Masse (1,4 kg) für einen Abstand zum Aufhängepunkt zwischen 50 cm und 90 cm gemessen (Für kleinere Abstände wird der Fehler auf Grund der idealisierten Berechnung der effektiven Länge zu groß). Es ist darauf zu achten, dass das Pendel nicht zu weit aus der Ruhelage ausgelenkt wird, da sonst die gemachten Kleinwinkelnäherungen ihre Gültigkeit verlieren. Zur Bestimmung der Periodendauer wird jeweils die Schwingungsdauer für 25 Perioden mittels einer Stoppuhr gemessen und anschließend die einzelne Periodendauer errechnet. Um genauere Werte zu erhalten und um eventuelle Fehler beim Abzählen zu erkennen, wird die Messung an jeder Position 2 mal durchgeführt und anschleißend gemittelt (beide Werte sollten im Rahmen des abzuschätzenden Fehlers etwa gleich groß sein). Der Abstand L wird mit dem Maßband bestimmt. Für den Massenmittelpunkt des Gewichtes kann hierbei die Position der Feststellschraube angenommen werden. 5

6 0.1.5 Versuchsauswertung und Fehlerrechnung Aus der abgelesenen Länge L ist zunächst mittels Gleichung 21 die effektive Länge zu bestimmen. Aus dieser und der gemittelten Periodendauer kann schließlich über Gleichung 6 die Fallbeschleunigung errechnet werden. Über die 5 Werte ist zu mitteln, wobei sich der Größtfehler aus der maximalen Abweichung eines Messwertes vom Mittelwert ergibt. Mittels Gleichung 12 kann nun die Gravitationskonstante bestimmt werden. Der Fehler ergibt sich durch Fehlerfortpflanzung. Man überlege sich sinnvolle Werte für den Fehler der Erdmasse und des Abstandes r zum Erdmittelpunkt. Das errechnete Ergebnis ist mit dem Wert, der zuvor mittels der Gravitationswage bestimmt wurde und dem Literaturwert zu vergleichen. Man beachte hierbei auch die ermittelten Fehlergrenzen Literatur Grundlagen Tipler (2. Aufl.) Kapitel 9.3 (Trägheitsmoment), Kapitel 14.1, 14.3 (Pendel) Gerthsen (21. Aufl.) Kapitel Themenkreise für das Vorbereitungskolloquium mathematisches Pendel, physikalisches Pendel, Trägheitsmoment, Steinerscher Satz, Schwerebeschleunigung Fragen, mit denen Sie rechnen müssen 1. Was unterscheidet ein physikalisches Pendel von einem mathematischen Pendel? 2. Wie kann man mit einem Pendel die Fallbeschleunigung bestimmen? 3. Wie hängen Fallbeschleunigung und Gravitationskonstante zusammen? 4. Was versteht man unter einer effektiven Pendellänge? 5. Wo ist die Schwingungsdauer eines Pendels mit fester Fadenlänge größer, auf der Erde oder auf dem Mond? 6

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Physikalisches Anfaengerpraktikum. Trägheitsmoment

Physikalisches Anfaengerpraktikum. Trägheitsmoment Physikalisches Anfaengerpraktikum Trägheitsmoment Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Montag, 1. März 005 email: Marcel.Engelhardt@mytum.de Weisgerber@mytum.de 1 1. Einleitung

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Jens Küchenmeister (153810) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Da die Schwingung sowohl in der Natur als auch in der

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

S1 Bestimmung von Trägheitsmomenten

S1 Bestimmung von Trägheitsmomenten Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Laborversuche zur Physik I. Versuch I-02: Trägheitsmomente

Laborversuche zur Physik I. Versuch I-02: Trägheitsmomente Laborversuche zur Physik I Versuch I-02: Trägheitsmomente Versuchsleiter: Autoren: Podlozhenov Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 28. November 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise

Mehr

M1 - Gravitationsdrehwaage

M1 - Gravitationsdrehwaage Aufgabenstellung: Bestimmen Sie die Gravitationskonstante mit der Gravitationsdrehwaage nach Cavendish. Stichworte zur Vorbereitung: Gravitation, Gravitationsgesetz, Gravitationsgesetze, NEWTONsche Axiome,

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Versuch M1 für Nebenfächler mathematisches Pendel

Versuch M1 für Nebenfächler mathematisches Pendel Versuch M1 für Nebenfächler mathematisches Pendel I. Physikalisches Institut, Raum HS126 Stand: 19. April 2016 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner

Mehr

Versuch 2 Die Gravitationswaage

Versuch 2 Die Gravitationswaage Physikalisches A-Praktikum Versuch 2 Die Gravitationswaage Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 03.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

3. Versuch: Fadenpendel

3. Versuch: Fadenpendel Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 3. Versuch: Fadenpendel In diesem Versuch werden Sie mit den mechanischen Grundlagen vertraut gemacht. Anhand eines Fadenpendels

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

M 7 - Trägheitsmoment

M 7 - Trägheitsmoment 18..8 PHYSIKALISCHES PAKTIKU FÜ ANFÄNGE LGyGe ersuch: 7 - Trägheitsmoment Das Trägheitsmoment regelmäßiger Körper sollen gemessen werden. Literatur Gerthsen-Kneser-ogel: Physik; Kap.: Dynamik des starren

Mehr

Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel

Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel Denis Nordmann http://physik.co-i60.com 9. Mai 2013 dn (physik.co-i60.com) Bestimmung der Erdbeschleunigung 9. Mai 2013 1 /

Mehr

Physikalisches Grundlagenpraktikum Versuch Massenträgheitsmoment

Physikalisches Grundlagenpraktikum Versuch Massenträgheitsmoment Physikalisches Grundlagenpraktikum Versuch Name:... Matrikelnummer:... Gruppe:... Antestat Datum bestanden nicht Unterschrift Prüfer bestanden Termin Nachholtermin 1. Protokollabgabe Datum Unterschrift

Mehr

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuch P1-15 Pendel Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze 3.1.11 1 Inhaltsverzeichnis 1 Reversionspendel 3 1.0 Eichmessung................................... 3 1.1 Reduzierte Pendellänge.............................

Mehr

Inhaltsverzeichnis. 1 Einleitung 2

Inhaltsverzeichnis. 1 Einleitung 2 Inhaltsverzeichnis 1 Einleitung Physikalische Grundlagen.1 Das mathematische Pendel............................ Das physikalische Pendel..............................3 Lösung der Schwingungsgleichung........................

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

12GE1 - Wiederholung - Verbesserung Praktikum 01

12GE1 - Wiederholung - Verbesserung Praktikum 01 12GE1 - Wiederholung - Verbesserung Praktikum 01 Raymond KNEIP, LYCÉE DES ARTS ET MÉTIERS September 2015 1 Die gleichförmige Bewegung Dritte Reihe der Tabelle: s/t (m/s) (F.I.) 0.5 0.5 0.5 0.5 a. Der Quotient

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 2 Anmerkung: Diese Klausur enthält 9 Aufgaben, davon eine Multiple

Mehr

Die Gravitationswaage

Die Gravitationswaage Physikalisches Praktikum für das Hauptfach Physik Versuch 02 Die Gravitationswaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Versuch M1 für Physiker mathematisches Pendel

Versuch M1 für Physiker mathematisches Pendel Versuch M1 für Physiker mathematisches Pendel I. Physikalisches Institut, Raum HS126 Stand: 19. April 2016 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner

Mehr

Trägheitsmoment, Steiner scher Satz. Torsionspendel zum Nachweis des Steiner schen Satzes Version vom 6. September 2012

Trägheitsmoment, Steiner scher Satz. Torsionspendel zum Nachweis des Steiner schen Satzes Version vom 6. September 2012 Trägheitsmoment, Steiner scher Satz Torsionspendel zum Nachweis des Steiner schen Satzes Version vom 6. September 01 Inhaltsverzeichnis 1 Drehscheiben-Torsionspendel 1 1.1 Grundlagen...................................

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen

Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 Generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

LS5. Trägheitsmoment und Steiner scher Satz Version vom 23. Februar 2016

LS5. Trägheitsmoment und Steiner scher Satz Version vom 23. Februar 2016 Trägheitsmoment und Steiner scher Satz Version vom 23. Februar 2016 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Trägheitsmoment............................

Mehr

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Kapitel 1 Mechanik 1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Aufgaben In diesem Experiment werden die Schwingungen eines physikalischen Pendels untersucht. Aus den Messungen der Schwingungsdauern

Mehr

Versuch 3: Das Trägheitsmoment

Versuch 3: Das Trägheitsmoment Versuch 3: Das Trägheitsmoment Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Trägheitsmoment und Satz von Steiner.................... 3 2.2 Kinematik der Rotationsbewegung...................... 3 3

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

Versuch 14 Mathematisches Pendel

Versuch 14 Mathematisches Pendel Versuch 14 Mathematisches Pendel II Literatur W. Walcher, Praktikum der Physik, B.G.Teubner Stuttgart. Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Homepage des Praktikums: http://www.physi.uni-heidelberg.de/einrichtungen/ap/

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen.

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen. c Doris Samm 008 1 Gekoppeltes Pendel 1 Der Versuch im U berblick Wasserwellen bereiten Ihnen Vergnu gen, Erdbebenwellen eher nicht, Schallwellen ko nnen manchmal nur Flederma use ho ren (Abb. 1, Abb.

Mehr

IU2. Modul Universalkonstanten. Gravitationskonstante

IU2. Modul Universalkonstanten. Gravitationskonstante IU2 Modul Universalkonstanten Gravitationskonstante Neben der Formulierung seiner Bewegungsgesetze war ISAAK NEWTON s zweiter und vielleicht grösster Beitrag zur Physik die Entdeckung des allgemeinen Gravitationsgesetzes.

Mehr

Lass dich nicht verschaukeln!

Lass dich nicht verschaukeln! Datum: 23.04.2016 Schüler: Daniel Tetla Schule: Gymnasium Friedrich Ebert Klasse: 9T1 Lass dich nicht verschaukeln! 1. Versuch Untersuchung eines Fadenpendels. Geräte und Material: 3 Gewichte (49 g, 73

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Physikalisches Grundpraktikum V10 - Koppelschwingungen

Physikalisches Grundpraktikum V10 - Koppelschwingungen Aufgabenstellung: 1. Untersuchen Sie den Einfluss des Kopplungsgrades zweier gekoppelter physikalischer Pendel auf die Schwingungsdauern ihrer Fundamentalschwingungen. 2. Charakterisieren Sie die Schwebungsschwingung

Mehr

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar Physikprotokoll: Massenträgheitsmoment Issa Kenaan 739039 Torben Zech 738845 Martin Henning 736150 Abdurrahman Namdar 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Vorbereitung zu Hause 3 2 Versuchsaufbau

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

IM4. Modul Mechanik. Gekoppelte Pendel

IM4. Modul Mechanik. Gekoppelte Pendel IM4 Modul Mechanik Gekoppelte Pendel Zwei Pendel, zwischen denen Energie ausgetauscht werden kann, werden als gekoppelte Pendel bezeichnet. Auf jedes Pendel wirkt ein durch die Schwerkraft verursachtes

Mehr

6. Musterausarbeitung

6. Musterausarbeitung 6. Musterausarbeitung Diese Musterausarbeitung dient als Richtlinie für dieses Praktikum. Sie wurde übernommen von einen Physikalischen Praktikum in Weihenstephan (TU München, Fakultät für Physik, 88350

Mehr

Fachhochschule Flensburg. Torsionsschwingungen

Fachhochschule Flensburg. Torsionsschwingungen Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Gravitationsgesetz, Gravitationswaage, gedämpfte Torsionsschwingung, Torsionsmoment, Drehmoment,

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Versuch M6 für Physiker Trägheitsmoment und Drehschwingungen

Versuch M6 für Physiker Trägheitsmoment und Drehschwingungen Versuch M6 für Physiker Trägheitsmoment und Drehschwingungen I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 Generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

Praktikumsprotokoll: Gekoppelte Pendel

Praktikumsprotokoll: Gekoppelte Pendel Praktikumsprotokoll: Gekoppelte Pendel Robin Marzucca, Andreas Liehl 19. Januar 011 Protokoll zum Versuch Gekoppelte Pendel, durchgeführt am 13.01.011 an der Universität Konstanz im Rahmen des physikalischen

Mehr

3. Versuch M2 - Trägheitsmomente. zum Physikalischen Praktikum

3. Versuch M2 - Trägheitsmomente. zum Physikalischen Praktikum HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR PHYSIK 3. Versuch M2 - Trägheitsmomente zum Physikalischen Praktikum Bearbeitet von: Andreas Prang 504337 Jens Pöthig Abgabe in der Übung am 10.05.2005 Anlagen:

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Versuch M2 für Nebenfächler Gekoppelte Pendel

Versuch M2 für Nebenfächler Gekoppelte Pendel Versuch M2 für Nebenfächler Gekoppelte Pendel I. Physikalisches Institut, Raum HS102 Stand: 9. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (links/mitte/rechts) angeben bitte Versuchspartner

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer:

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond?

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond? Aufgabenblatt 7 Aufgabe 7.2 Erde und ond ) Die Landeeinheit einer ondsonde habe auf der Erde eine Gewichtskraft von 20 000 N. Der Radius der Erde beträgt r E = 6370 km, einen Faktor 3.6 größer als derjenige

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005 PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

Aufgabe 1: (6 Punkte)

Aufgabe 1: (6 Punkte) Aufgabe 1: (6 Punkte) Aus einer Kanone (Masse 5 t) wird eine Kugel abgeschossen. Die Kugel habe eine Masse von 50 kg und eine Geschwindigkeit von 200 m/s direkt nach dem Abschuss. Der Abschusswinkel betrage

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Nachklausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie

Nachklausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie Nachklausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie Othmar Marti, (othmar.marti@physik.uni-ulm.de) 15. April 2002 Prüfungstermin 12. 4. 2002, 9:00 bis 11:00 Name

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel

Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel Norman Wirsik Matrikelnr: 1829994 8. November 2004 Gruppe 5 Dienstag 13-16 Uhr Praktikumspartner: Jan Hendrik Kobarg 1 1. Ziel

Mehr

Protokoll zum Doppelversuch M5/S1: Der freie Fall / Reversionspendel Bestimmung von g. Tobias F

Protokoll zum Doppelversuch M5/S1: Der freie Fall / Reversionspendel Bestimmung von g. Tobias F Protokoll zum Doppelversuch M5/S1: Der freie Fall / Reversionspendel Bestimmung von g Tobias F Abgabedatum: 24. April 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Der freie Fall - Bestimmung von g (Versuch

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

M,dM &,r 2 dm bzw. M &,r 2!dV (3)

M,dM &,r 2 dm bzw. M &,r 2!dV (3) - A8.1 - ersuch A 8: Trägheitsmoment und Steinerscher Satz 1. Literatur: Walcher, Praktikum der Physik Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Gerthsen-Kneser-ogel, Physik Stichworte: 2. Grundlagen

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr