Teil 4: Rekursion und Listen
|
|
|
- Benedikt Gehrig
- vor 8 Jahren
- Abrufe
Transkript
1 Einführung in das Programmieren Prolog Sommersemester 2006 Teil 4: Rekursion und Listen Version 1.0
2 Gliederung der LV Teil 1: Ein motivierendes Beispiel Teil 2: Einführung und Grundkonzepte Syntax, Regeln, Unifikation, Abarbeitung Teil 3: Arithmetik Teil 4: Rekursion und Listen Teil 5: Programmfluß Negation, Cut Teil 6: Verschiedenes Ein-/Ausgabe, Programmierstil Teil 7: Wissensbasis Löschen und Hinzufügen von Klauseln Teil 8: Fortgeschrittene Techniken Metainterpreter, iterative Deepening, PTTP, Differenzlisten, doppelt verkettete Listen Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 1 c G. Grieser
3 Rekursion Rekursion ist wichtiges Konzept bei der Entwicklung von Programmen in Prolog Rekursion auch wichtiges Konzept generell in der Informatik und auch Mathematik Ähnlich der vollständigen Induktion in der Mathematik Prinzip der Rekursion Um ein komplexes Problem zu lösen, gib an 1. die Lösung für das einfachste Problem dieser Art und 2. eine Regel, um ein komplexes Problem in ein einfacheres Problem zu transformieren Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 2 c G. Grieser
4 Beispiel: Berechnung von n! rekursive Definition von n! In Prolog fakultaet(1,1). fakultaet(n, Result) :- N > 1, N1 is N-1, fakultaet(n1, Result1), Result is N * Result1. 1! = 1 n! = (n 1)! n für n > 1 Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 3 c G. Grieser
5 Listen eine Liste ist eine Aneinanderreihung beliebig vieler Elemente eine Liste ist eingeschlossen in eckigen Klammern Beispiele: [elefant, pferd, esel, hund] [a, X, [], f(x,y), 89, [w,e,r], aunt(x,hilde)] Elemente der Liste sind Terme Reihenfolge der Listenelemente ist wesentlich eine Liste kann selbst wieder Listen enthalten eine Liste ist ein Term Interne Repräsentation von Listen: Listen sind Terme mit dem Funktor. (Punkt) und dem speziellen Atom [ ] als ein Argument auf innerstem Niveau. Die eckigen Klammern sind nur eine schöne Notation. Intern entspricht die Liste [a, b, c] dem Term.(a,.(b,.(c, []))) Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 4 c G. Grieser
6 Head-Tail Notation Der zerlegt eine nicht leere Liste in den Kopf und die Restliste. [Kopf Rest] Vor dem können auch mehrere Elemente stehen [a [b, c]] = [a, b, c] [a, b [c]] = [a, b, c] [a, b, c []] = [a, b, c] Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 5 c G. Grieser
7 Einige Beispiele Stimmen die Gleichheiten? [b, a, d] = [d, a, b]. [a, b, d] = [X]. [a, [b, d]] = [a, b, d]. [a, b, c, d] = [A L]. [a, b, c, d] = [A, L]. [a, b, c, d] = [A, B L]. [[a, b], c, d] = [A L]. [a, b] = [A L]. [a, b] = [A, L]. [a] = [A, L]. [] = [A, L]. Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 6 c G. Grieser
8 Listen und Rekursion Listen sind rekursive Datenstrukturen: sind leer oder bestehen aus Kopf und Rest, der wieder Liste ist. Operationen über Listen werden auch rekursiv sein. Oft zwei Klauseln zu definieren; eine deckt den rekursiven Fall, die andere den Basisfall ab Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 7 c G. Grieser
9 Beispiele element(e,l) Teste of ein Element E schon in einer Liste L vorhanden ist. element(e, [E Rest]). element(e, [Kopf Rest]) :- element(e, Rest). Verwendungsmöglichkeiten 1. als Zugehörigkeitstest 2. zur Erzeugung aller Elemente einer Liste 3. Erzeugung von Listen, die bestimmtes Element enthalten Gibt es auch als Built-in Prädikat: member Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 8 c G. Grieser
10 Verketten von Listen append append(l1, L2, L3) gelingt, falls die Verkettung der Listen L1 und L2 dir Liste L3 ergibt. beispielhaftes Verhalten append([ ], L, L]). append([x L1], L2, [X L3]) :- append(l1, L2, L3). beispielhaftes Verhalten append([1,2], [3], [1,2,3])). Yes append([1,2], [3,4], L)). L = [1,2,3,4] append([1,2], L, [1,2,3,4,5])). L = [3,4,5] append(l, [4,5], [1,2,3,4,5])). L = [1,2,3] Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 9 c G. Grieser
11 Beispiel Ausgabe aller Elemente einer Liste show (Liste) :- element(element, Liste), write(element), nl, fail. Beachte: fail ist ein Standardprädikat, das immer fehlschlägt. Was geschieht bei folgender Eingabe? [elefant, pferd, esel, hund] Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 10 c G. Grieser
12 Beispiel?- show([elefant, pferd, esel, hund]). elefant pferd esel hund No. Das fail veranlaßt Backtracking Teilziel element(element, Liste) ist als einziges backtrackfähig Bei jedem Backtrack-Schritt wird neues Element der Liste mit Variable Element unifiziert. Wenn Liste vollständig abgearbeitet ist: Fehlschlag, No Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 11 c G. Grieser
13 Beispiele nextto(x,y,l) ist erfüllt, falls X und Y in Liste L nebeneinander liegen. nextto(x, Y, [X, Y ]). nextto(x, Y, [ L]) :- nextto(x, Y, L). Prädikat ungerade(l) überprüft, ob Anzahl Elemente in Liste L ungerade ist ungerade([ ]). ungerade(, L) :- ungerade(l). Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 12 c G. Grieser
14 Built-In-Prädikate für Listen is list, proper list last length append member, select, nth sublist reverse sort Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 13 c G. Grieser
15 Effizienzbetrachtungen Listen sind rekursive Datenstrukturen ihr allgemeiner Charakter und damit verbundene universelle Anwendbarkeit führt leicht zu uneffektiven Programmen. Wissen über interne Darstellung von Listen kann helfen, Ineffektivitäten zu vermeiden Zwei wichtige Techniken: Akkumulatoren und Differenzlisten Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 14 c G. Grieser
16 Akkumulatoren Oftmals sind Datenstrukturen zu durchforsten und ein bestimmtes Ergebis zu erzielen, berechnen,.. Akkumulatoren sind zusätzliche Argumente eines Prädikats, um Zwischenergebnisse zu speichern Beispiel Berechnung der Länge einer Liste laenge([ ],0). laenge([ T], N) :- laenge(t, N1), N is N Beim rekursiven Aufruf kein Zwischenergebnis bekannt Andere Möglichkeit: akkumuliere Antwort in jedem rekursiven Aufruf laenge(l,n) :- laenge(l, 0, N). laenge([ ], N, N). laenge([ T], A, N) :- A1 is A + 1, laenge(t,a1,n). Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 15 c G. Grieser
17 Sinnvolleres Beispiel: reverse Realisiere ein Prädikat reverse(liste,umgedrehteliste), das die Reihenfolge der Elemente einer Liste umdreht. Lösungsmöglichkeit 1. Kehrt man die leere Liste um, erhält man wieder die leere Liste 2. eine nichtleere Liste [X L1] kehrt man um, indem man L1 umkehrt und daran einelementige Liste [X] kettet. reverse([ ], [ ]). reverse([x L1], L2) :- reverse(l1, L3), append(l3, [X], L2). Problem: append muß jedes Mal die neue Liste durchlaufen und kopieren, um ein neues Element anzuhängen. Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 16 c G. Grieser
18 Sinnvolleres Beispiel: reverse bessere Lösung: mit Akkumulator: reverse(lin, Lout):- reverse(lin, [ ], Lout). reverse([ ], Bisher, Bisher). reverse([x L1], Bisher, L2) :- reverse(l1, [X Bisher], L2). Zusätzlicher Vorteil: tail recursion der Rekursionsabstieg findet im letzten Prädikat des Rumpfes statt der Compiler kann nun unter bestimmten Bedingungen den Stackframe der aktuellen Prozedur durch den neuen überschreiben Speicher- und Geschwindigkeitsgewinn Prolog Teil 4: Rekursion und Listen (V. 1.0) 4 17 c G. Grieser
Einführung in das Programmieren Prolog Sommersemester 2006. Teil 2: Arithmetik. Version 1.0
Einführung in das Programmieren Prolog Sommersemester 2006 Teil 2: Arithmetik Version 1.0 Gliederung der LV Teil 1: Ein motivierendes Beispiel Teil 2: Einführung und Grundkonzepte Syntax, Regeln, Unifikation,
Rekursive Listenverarbeitung
Rekursive Listenverarbeitung Übersicht Rekursion ist die wichtigste Programmiertechnik in Prolog! Rekursive Datenstrukturen Einfache und rekursiv gebildete Strukturen Rekursive Datenstrukturen und rekursive
Listen. bersicht. Zweck. Listen allgemein Listen in Prolog. Programmiertechniken mit Listen. Erstellen von Prolog-Programmen mit Listen
Listen bersicht Listen allgemein Listen in Prolog Schreibweise Listen als rekursive Datenstruktur Unifikation Programmiertechniken mit Listen Zweck rekursive Suche Abbilden Erstellen von Prolog-Programmen
Reihenfolge von Klauseln
Reihenfolge von Klauseln Bei der Programmierung in Prolog steht grundsätzlich die Repräsentation logischer Zusammenhänge im Vordergrund. Nichtsdestotrotz ist es unvermeidbar, die Mechanismen der Abarbeitung
26 Hierarchisch strukturierte Daten
Algorithmik II Peter Wilke Sommersemester 2005 Teil III Funktionale Programmierung 26 Hierarchisch strukturierte Daten Peter Wilke Algorithmik II Sommersemester 2005 1 Peter Wilke Algorithmik II Sommersemester
Expertensysteme Sprachverarbeitung Symbolische Informationsverarbeitung Graphentheoretische Probleme Planungsprobleme Rapid Prototyping...
Logische Programmierung Programm Menge von Formeln (Klauseln) Berechnung Beweis einer Formel (eines Ziels/Goals) mit Hilfe des Programms 17 Anwendungen Expertensysteme Sprachverarbeitung Symbolische Informationsverarbeitung
Kapitel 12: Induktive
Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter
Fragen zum Nachdenken: Wie könnte man das Fehlen eines Attribut-Wertes interpretieren?
Attribut-Werte-Paare Eine Eigenschaft kann beschrieben werden durch ein Paar [a,w]. Dabei bezeichnet a das Attribut und w den konkreten Wert aus dem Wertebereich W a des Attributs. Die Eigenschaften eines
Logische Programmierung
Logische Programmierung B-82 Deklaratives Programmieren in Prädikatenlogik: Problem beschreiben statt Algorithmus implementieren (idealisiert). Grundlagen: Relationen bzw. Prädikate (statt Funktionen);
Einführung in PROLOG IV Listen
Einführung in PROLOG IV Listen Beispiele für Listen in PROLOG: 1. [mia, vincent, jules, yolanda] 2. [mia, robber(honey_bunny), X, 2, mia] 3. [] 4. [mia, [vincent, jules], [butch, girlfriend(butch)]] 5.
2 Logikprogrammierung am Beispiel Prolog
2 Logikprogrammierung am Beispiel Prolog 2.1 Logikprogrammierung mit einfachen Daten 2.2 Variablenumbenennung 2.3 Syntax 2.4 Komplexe Daten 2.5 Der Cut 2.6 Negation als Fehlschlag 2.7 Literaturhinweise
Prolog 5. Kapitel: Arithmetik
Zusammenfassung Kapitel 4 Prolog 5. Kapitel: Arithmetik Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Wir haben Listen als mächtige Datenstrukturen in Prolog kennengelernt
Gliederung. Programmierparadigmen. Einführung in Prolog: Einführung in Prolog: Programmieren in Prolog. Einführung Syntax Regeln Listen Relationen
Gliederung Programmierparadigmen Programmieren in Prolog D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Sommer 2011, 26. April
LISTEN. Programmierkurs Prolog p.1
LISTEN Programmierkurs Prolog p.1 Liste Listen sind rekursive Datenstrukturen, die dazu dienen geordnete Mengen von Elementen zu beschreiben. Man kann sich Listen in Prolog als Behälter vorstellen, die
Prolog 4. Kapitel: Listen
Prolog 4. Kapitel: Listen Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Petersen Prolog: Kapitel 4 1 Zusammenfassung Kapitel 3 Wir haben gelernt, dass die Rekursion
Künstliche Intelligenz Einführung in Prolog
Künstliche Intelligenz Einführung in Prolog Stephan Schwiebert WS 2009/20010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Wiederholung: Prolog-Syntax Ein einfaches Expertensystem
Übung zu Grundlagen der Logik und Logik-Programmierung
Übung zu Grundlagen der Logik und Logik-Programmierung Übungsblatt 4 (5.Übung) Florian Wittmann Uni Erlangen, Informatik 8 Inhalt 1 Aufgabe 4-1: Tiefensuche 2 Aufgabe 4-2: Listen in Prolog 3 Aufgabe 4-3:
Programmieren in Haskell Programmiermethodik
Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs
Prolog 3. Kapitel: Rekursion
Zusammenfassung: Kapitel 2 Prolog 3. Kapitel: Rekursion Wir haben gelernt wie komplexe Strukturen durch Matching in Prolog aufgebaut werden können und wie die Beweisführung in Prolog funktioniert. Dozentin:
Prolog 3. Kapitel: Rekursion
Prolog 3. Kapitel: Rekursion Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Petersen Prolog: Kapitel 3 1 Zusammenfassung: Kapitel 2 Wir haben gelernt wie komplexe
Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen
Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen
Musterlösung zur 2. Aufgabe der 4. Übung
Musterlösung zur 2. Aufgabe der 4. Übung Da viele von Euch anscheinend noch Probleme mit dem Entfalten haben, gibt es für diese Aufgabe eine Beispiellösung von uns. Als erstes wollen wir uns noch einmal
Auswahl von Klauseln und Atomen in Prolog
5.6 Prolog... ist die bekannteste Implementierung einer LP-Sprache; wurde Anfang der 1970er von Alain Colmerauer (Marseille) und Robert Kowalski (Edinburgh) entwickelt. konkretisiert den vorgestellten
Gliederung. Algorithmen und Datenstrukturen I. Listen in Haskell: Listen in Haskell: Listen in Haskell. Datentyp Liste Strings Listenkomprehension
Gliederung Algorithmen und Datenstrukturen I D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Winter 2009/10, 16. Oktober 2009, c
Methoden zur Interpretation LISPähnlicher. Programmiersprachen. Seminarvortrag / 53 FH AACHEN FACHBEREICH 9 TOBIAS STUMM MATR.-NR.
Methoden zur Interpretation LISPähnlicher Programmiersprachen Seminarvortrag 20.01.2017 FACHBEREICH 9 TOBIAS STUMM MATR.-NR. 4012917 1 Inhalt Motivation Lisp > Definition > Scheme Interpreter > Definition
6. Verkettete Strukturen: Listen
6. Verkettete Strukturen: Listen 5 K. Bothe, Inst. f ür Inf., HU Berlin, PI, WS 004/05, III.6 Verkettete Strukturen: Listen 53 Verkettete Listen : Aufgabe Vergleich: Arrays - verkettete Listen Listenarten
Informatik für Schüler, Foliensatz 18 Rekursion
Prof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 26. März 2009 1/10 Informatik für Schüler, Foliensatz 18 Rekursion Prof. G. Kemnitz Institut für Informatik, Technische Universität
Prolog Tutorial Norbert E. Fuchs Institut für Informatik Universität Zürich
Prolog Tutorial Norbert E. Fuchs Institut für Informatik Universität Zürich Inhalt Vom deklarativen Wissen zum prozeduralen Programm Vom Programm zur Berechnung Elemente eines Prolog-Programms Zugverbindungen
PROLOG. Lernende Systeme WS 10/11 Crashkurs. Martin Sticht Stephan Weller
PROLOG Lernende Systeme WS 10/11 Crashkurs Martin Sticht Stephan Weller SWI Prolog http://www.swi-prolog.org Grundlegendes Grundkonstrukte Fakten Regeln Anfragen Fakten und Regeln kommen in die Programm-Datei
Algorithmen & Datenstrukturen Midterm Test 2
Algorithmen & Datenstrukturen Midterm Test 2 Martin Avanzini Thomas Bauereiß Herbert Jordan René Thiemann
Einführung in die Funktionale Programmierung mit Haskell
Einführung in die Funktionale Programmierung mit Haskell Rekursion LFE Theoretische Informatik, Institut für Informatik, Ludwig-Maximilians Universität, München 25. April 2013 Planung Achtung: Nächste
Einführung in Prolog. Literatur
Einführung in Prolog Literatur Clocksin/Mellish Programming in Prolog Skript aus dem Kurs Max Hadersbeck Skript aus dem Kurs Hans Leiss Bratko Prolog Programming for Artificial Intelligence Prolog Lexikon
Kopf und Rest einer Liste (head and tail): Trennung durch. Listenkopf: kann mehrere Elemente umfassen
Prolog Syntax Liste, Variable [ Term Liste ] Listenelemente: Trennung durch Komma [1, pferd, klaus] Kopf und Rest einer Liste (head and tail): Trennung durch [K R] = [1, pferd, klaus] (K = 1, R = [pferd,
5 Logische Programmierung
5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen
Einführung in die Informatik I
Einführung in die Informatik I Fortgeschrittene Rekursion Prof. Dr. Nikolaus Wulff Problematische Rekursion Mittels Rekursion lassen sich Spezifikationen recht elegant und einfach implementieren. Leider
Terme. Heute: Terme vergleichen. Struktur von Termen. Operatoren. Logik in der Praxis Logikprogrammierung (Prolog) p.1
Terme Heute: Terme vergleichen Struktur von Termen Operatoren Logik in der Praxis Logikprogrammierung (Prolog) p.1 Termgleichheit: ==?- a == a.?- a == b. no?- X == Y. no?- X == X.?- X == a. no Logik in
Übungen zu Programmierung I - Blatt 8
Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail
Einführung in PROLOG. Christian Stocker
Einführung in PROLOG Christian Stocker Inhalt Was ist PROLOG? Der PROLOG- Interpreter Welcher Interpreter? SWI-Prolog Syntax Einführung Fakten, Regeln, Anfragen Operatoren Rekursion Listen Cut Funktionsweise
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum
Name und Syntax Was passiert? Anmerkungen / Erklärungen
LISP Liste Version 1.4 A. = Ausdruck; L. = Liste; Z. = Zahl Überprüfen usw. (member ) Wenn A. in L. vorhanden ist, gibt LISP alles zurück, was nach dem entsprechenden Atom kommt (einschließlich
Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.
ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall
Künstliche Intelligenz Unifikation, Backtracking, Rekursion und Listen in Prolog
Künstliche Intelligenz fikation, Backtracking, Rekursion und Listen in Prolog Stephan Schwiebert WS 2008/2009 Sprachliche Informationsverarbeitung Institut für Linguistik versität zu Köln Aufgabe: Stammbaum
Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):
Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel
Programmieren 1 C Überblick
Programmieren 1 C Überblick 1. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen
Folgen und Funktionen in der Mathematik
Folgen und Funktionen in der Mathematik Anhand von einigen exemplarischen Beispielen soll die Implementierung von mathematischen Algorithmen in C/C++ gezeigt werden: Reelle Funktionen in C/C++ Diese wird
Lösung: InfA - Übungsblatt 07
Lösung: InfA - Übungsblatt 07 Michele Ritschel & Marcel Schilling 23. Dezember 2008 Verwendete Abkürzungen: Beweis, vollständige Induktion, IA: Induktionsanfang/Induktionsanker, IS: Induktionsschritt/Induktionssprung,
5. Übung - Kanalkodierung/Programmierung
5. Übung - Kanalkodierung/Programmierung Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Kanalkodierung a Folgende Kodes stehen Ihnen zur Verfügung: Kode 1: 0000000 Kode
Logische Programmierung Einführende Beispiele
Logische Programmierung Einführende Beispiele Verwandschaftsbeziehungen in Prolog vater(peter,maria). mutter(susanne,maria). vater(peter,monika). mutter(susanne,monika). vater(karl, peter). mutter(elisabeth,
Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr.
ALP I Die Natur rekursiver Funktionen SS 2011 Die Natur rekursiver Funktionen Rekursive Funktionen haben oft folgende allgemeine Form: f :: a -> a f 0 = c f (n+1) = h (f n ) Diese Art der Definitionen
3. Übungsblatt zu Algorithmen I im SoSe 2017
Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 27.10.2011 [email protected] 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:
Fakten, Regeln und Anfragen
Fakten, Regeln und Anfragen Prolog Grundkurs WS 99/00 Christof Rumpf [email protected] 18.10.99 GK Prolog - Fakten, Regeln und Anfragen 1 Programmieren = Problemlösen Prolog ist eine deklarative
Grammatiken in Prolog
12. Grammatiken in Prolog 12-1 Grammatiken in Prolog Allgemeines: Gedacht zur Verarbeitung natürlicher Sprache. Dort braucht man kompliziertere Grammatiken als etwa im Compilerbau, andererseits sind die
Logikprogrammierung und Prolog
3. Logikbasierte Wissensräpresentation und Inferenz Logikprogrammierung Logikprogrammierung und Prolog Das Idealbild der Logikprogrammierung: Algorithmus = Logik + Kontrolle Was? Wie? reine Problemspezifikation
Algorithmen & Programmierung. Rekursive Funktionen (1)
Algorithmen & Programmierung Rekursive Funktionen (1) Berechnung der Fakultät Fakultät Die Fakultät N! einer nichtnegativen ganzen Zahl N kann folgendermaßen definiert werden: d.h. zur Berechnung werden
Fallstudie: Nim Spiel
Fallstudie: Nim Spiel Angeblich chinesischen Ursprungs (Jianshizi) Interessant für Spieltheorie: vollständig analysierbar Frühzeitig computerisiert 1939 Nimatron (Weltausstellung New York) 1951 Nimrod
Vorkurs Informatik WiSe 17/18
Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Nicole Naczk, 10.10.2017 Technische Universität Braunschweig, IPS Überblick Einleitung Türme von Hanoi Rekursion Beispiele 10.10.2017 Dr. Werner Struckmann
Unifikation. T eine Menge von Termen. σ(t) einelementig ist. Definition: Unifikator. Eine Substitution σ ist Unifikator von T, falls
Unifikation Definition: Unifikator T eine Menge von Termen Eine Substitution σ ist Unifikator von T, falls σ(t) einelementig ist Logik für Informatiker, SS 06 p.12 Unifikation Definition: Unifikator T
Listen. M. Jakob. Gymnasium Pegnitz. 20. September Hinführung: Wartenschlangen. Grundprinzip von Listen Rekursion
M. Jakob Gymnasium Pegnitz 20. September 2015 Inhaltsverzeichnis Grundprinzip von Rekursion (10 Std.) Die einfach verkettete Liste als Kompositum (10 Std.) Klasse LISTENELEMENT? Entwurfsmuster Kompositum
Anwendungen der Logik: Deklarative bzw. Logik-Programmierung in PROLOG
Logik für Informatik Technische Universität Darmstadt Sommersemester 2003 Fachbereich Mathematik Mathias Kegelmann 8. Juli 2003 Anwendungen der Logik: Deklarative bzw. Logik-Programmierung in PROLOG Übersicht
Inhalt Kapitel 2: Rekursion
Inhalt Kapitel 2: Rekursion 1 Beispiele und Definition 2 Partialität und Terminierung 3 Formen der Rekursion Endständige Rekursion 4 Einbettung 29 Beispiele und Definition Rekursion 30 Man kann eine Funktion
Listen. M. Jakob. 20. September Gymnasium Pegnitz
Listen M. Jakob Gymnasium Pegnitz 20. September 2015 Inhaltsverzeichnis 1 Hinführung: Wartenschlangen (6 Std.) 2 Grundprinzip von Listen Rekursion (10 Std.) 3 Die einfach verkettete Liste als Kompositum
Prolog 2. Kapitel: Matching und Beweisführung
Zusammenfassung: Kapitel 1 Prolog 2. Kapitel: Matching und Beweisführung Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Wir haben die Grundlagen und Anwendungsgebiete
Rekursion. Sie wissen wie man Programme rekursiv entwickelt. Sie kennen typische Beispiele von rekursiven Algorithmen
Rekursion Sie wissen wie man Programme rekursiv entwickelt Sie kennen typische Beispiele von rekursiven Algorithmen Sie kennen die Vor-/Nachteile von rekursiven Algorithmen Einführung 2 von 40 Rekursiver
Tutorium Prolog für Linguisten 8
Endliche Automaten Tutorium Prolog für Linguisten 8 Sebastian Golly 18. Dezember 2012 Sebastian Golly Tutorium Prolog für Linguisten 8 1 / 13 Endliche Automaten Plan für heute? Sebastian Golly Tutorium
Java: Eine kurze Einführung an Beispielen
Java: Eine kurze Einführung an Beispielen Quellcode, javac und die JVM Der Quellcode eines einfachen Java-Programms besteht aus einer Datei mit dem Suffix.java. In einer solchen Datei wird eine Klasse
Informatik I: Einführung in die Programmierung
Informatik I: Einführung in die Programmierung 7. Albert-Ludwigs-Universität Freiburg Bernhard Nebel 31. Oktober 2014 1 31. Oktober 2014 B. Nebel Info I 3 / 20 Um zu, muss man zuerst einmal. Abb. in Public
Lösung Probeklausur Informatik I
Lösung Probeklausur Informatik I 1 Lösung Aufgabe 1 (5 Punkte) Algorithmen und Programme Was ist der Unterschied zwischen einem Algorithmus und einem Programm? Ein Algorithmus ist eine Vorschrift zur Durchführung
Bestandteile von Prolog-Programmen. Syntax und Datenstrukturen. Legende Syntaxdiagramme. Lesen von Syntaxdiagrammen. Ein Programm besteht aus
Syntax und Datenstrukturen Bestandteile von Prolog-Programmen Übersicht Woraus besteht ein Prolog-Programm? Syntaxdiagramme für Bildungsregeln Programm, Klausel, Anfrage, 3 Sorten von en atomare e, Variablen,
Verarbeitung unendlicher Datenstrukturen Jetzt können wir z.b. die unendliche Liste aller geraden Zahlen oder aller Quadratzahlen berechnen:
Verarbeitung unendlicher Datenstrukturen Jetzt können wir z.b. die unendliche Liste aller geraden Zahlen oder aller Quadratzahlen berechnen: take 1 0 ( f i l t e r ( fn x => x mod 2=0) nat ) ; val it =
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 15 (Linearer Speicher, Listen, Bäume)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 15 (Linearer Speicher, Listen,
7. Syntax: Grammatiken, EBNF
7. Syntax: Grammatiken, EBNF Teil 1 Sehr schönes Beispiel für Notwendigkeit der Theoretischen Informatik für Belange der Praktischen Informatik Vertiefung in: Einführung in die Theoretische Informatik
Grundlagen von Datenbanken
Grundlagen von Datenbanken SS 2010 4. Prolog als Datenbanksprache Prof. Dr. Stefan Böttcher Universität Paderborn Grundlagen von Datenbanken - SS 2010 - Prof. Dr. Stefan Böttcher 4. Prolog als Datenbanksprache
Erwin Grüner 09.02.2006
FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife
Bestandteile von Prolog-Programmen. Syntax und Datenstrukturen. Legende Syntaxdiagramme. Lesen von Syntaxdiagrammen
Syntax und Datenstrukturen Bestandteile von Prolog-Programmen Übersicht Woraus besteht ein Prolog-Programm? Syntaxdiagramme für Bildungsregeln Programm, Klausel, Anfrage, 3 Sorten von en atomare e, Variablen,
ADT: Verkettete Listen
ADT: Verkettete Listen Abstrakter typ - Definition public class Bruch int zaehler, nenner; public Bruch(int zaehler, int nenner) this.zaehler = zaehler; this.nenner = nenner; Konstruktor zum Initialisieren
Advanced Programming in C
Advanced Programming in C Pointer und Listen Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Oktober 2013 Überblick 1 Variablen vs. Pointer - Statischer und dynamischer
Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda
ALP I λ Kalkül WS 2012/2013 Berechenbarkeit - inspiriert durch Hilbert's Frage - im Jahr 1900, Paris - Internationaler Mathematikerkongress Gibt es ein System von Axiomen, aus denen alle Gesetze der Mathematik
