Seminar: Multi-Core Architectures and Programming. Viola-Jones Gesichtsdetektor

Größe: px
Ab Seite anzeigen:

Download "Seminar: Multi-Core Architectures and Programming. Viola-Jones Gesichtsdetektor"

Transkript

1 Seminar: Multi-Core Architectures and Programming Viola-Jones Gesichtsdetektor Hardware-Software-Co-Design Universität Erlangen-Nürnberg 1

2 Übersicht Einleitung Viola-Jones Gesichtsdetektor Aufbau Blockmerkmale Integralbild AdaBoost - Auswahl relevanter Merkmale Kaskadendetektor Ergebnisse 2

3 Einleitung Gesichtsdetektion Gesicht erkennen Hintergrund verwerfen Klassifikationsfehler 3

4 Einleitung Anforderung an Detektor: Klassifikationsfehler möglichst gering Idealerweise Null erkennt jedes Gesicht und verwirft zuverlässig Hintergrund Beide Bedingungen optimieren, denn Erkennung aller Gesichter, aber ansonsten viele Fehler oder Erkennung kaum eines Gesichts sind in der Praxis nicht einsetzbar! zusätzlich: Kurze Laufzeiten während Detektionsphase 4

5 Einleitung Eigenschaften des Viola-Jones Detektors: blockbasiert - Filter berechnet aus dem Suchfenster Merkmalswerte, die an jeder Position beliebig skaliert werden können Graustufenbild - Bild mit unterschiedlicher Intensitätsstärke der Grauwerte Beispiel eines Graustufenbilds: 5

6 Aufbau des Detektors Suchfenster wird über komplettes Bild geschoben Bildausschnitt wird Klassifikator übergeben, der einen Merkmalswert ausrechnet Gesicht oder Hintergrund Jede Kombination eines Klassifikators gibt eine Stimme ab, die gewichtet in einen Mehrheitsentscheid einfließt 6

7 Aufbau des Detektors Graustufenbild berechnen Gesicht erkannt Integralbild berechnen Gesichtsmerkmale erkannt Blockmerkmale anwenden 7

8 Blockmerkmale Blockmerkmale/Klassifikatoren Fünf Basisblockmerkmale: Berechnen Helligkeitsdifferenzen einzelner Regionen Merkmalswert wird berechnet, indem Summe der Pixel in den dunklen Regionen von der Summe der hellen Regionen subtrahiert wird 8

9 Blockmerkmale Lage der Blockmerkmale Ein Blockmerkmal kann im Suchfenster an mehreren Positionen (a) in unterschiedlichen Skalierungen (b) platziert werden: Großflächige Merkmale niederfrequente Anteile (Helligkeitsunterschied) Schmale Merkmale hochfrequente Anteile (Linien und Kanten) 9

10 Integralbild Problem: Auswertung eines Blockmerkmals Helligkeitswerte in einzelnen Regionen aufsummieren Große Filter hohe Berechnungszeiten Viola-Jones verwendet 6060 solcher Merkmale Summe nicht in Laufzeit berechenbar Integralbild (integral image): Dient der schnellen Berechnung von Pixelsummen innerhalb rechteckiger Ausschnitte In jedem Punkt (x,y) steht die Summe I der Pixel innerhalb des Rechtecks mit Punkten (0,0), (x,0), (0,y), (x,y) I ( x, y ) i x j y i 0 j 0 I ( i, j) (0,0) x P(x,y) P(x,y) = I ( x, y ) i x j y i 0 j 0 I ( i, j) y 10

11 Integralbild Berechnung eines Punktes: Durch rekursives Umschreiben der Berechnungsvorschrift lässt sich das Integralbild in nur einem Durchgang effizient berechnen S ( x, y ) I ( x, y ) S ( x, y 1) i( x, I ( x 1, y ) S ( x, y ) y ) mit S(x,y) i(x,y) I(x,y) - kumulierte Spaltensumme - Ausgangsbild (a) - Eintrag in Integralbild (b) 11

12 Integralbild Beispiel zur Berechnung Wert an I(3, 3) I(2, 2) + O(0..2, 0..2)

13 Integralbild Allgemeine Berechnung: Durch diese Darstellung kann die Pixelsumme S innerhalb eines beliebigen Rechtecks an Position (x,y) mit der Breite w und Höhe h durch die entsprechende Pixelsumme aus dem Integralbild A, B, C, und D in konstanter Zeit berechnen lassen S Vier Zugriffe auf das Integralbild: S = D B C + A bei Viola-Jones: Rechtecke unmittelbar nebeneinander einige Zugriffe einsparen! z.b.: Zwei-Blockmerkmal sechs statt acht Zugriffe 13

14 Relevante Merkmale Basis-Blockmerkmale können auf unterschiedliche Weise im Suchfenster positioniert werden: Anzahl der Merkmale: Viola-Jones Suchfenster 24x24 Pixel Merkmal Anzahl, , Summe

15 Relevante Merkmale - AdaBoost Boosting Idee: Ensemble-Lernen Anstatt endgültige Entscheidung aufgrund einer Hypothese zu bilden, trifft man seine Entscheidung durch einen Mehrheitsentscheid Schwacher Klassifikator verwendet nur ein Merkmal Gewichtung und Kombination mehrer schwacher Klassifikatoren zu Mehrheitsentscheid Hier: finden möglichst weniger Klassifikatoren die gemeinsam zur zuverlässigen Gesichtsdetektion führen Gewichtung anhand von Trainingsbeispielen So lange schwache Klassifikatoren hinzufügen bis gewünschter kleiner Fehler erreicht wird 15

16 Relevante Merkmale - AdaBoost Richtig klassifizierte Trainigsmerkmale geringer gewichten, Falsch klassifizierte stärker gewichten Konzentration des Lernalgorithmus auf die schwer zu klassifizierenden Fälle Zunächst Training der einzelnen schwachen Klassifikatoren in Abhängigkeit der Gewichte Wahl des Klassifikators mit dem geringsten Erkennungsfehler Anpassung der Gewichte Starker Klassifikator ergibt sich aus Kombination der besten schwachen Klassifikatoren 16

17 Relevante Merkmale - AdaBoost 17

18 Relevante Merkmale - AdaBoost - Erste Charakteristik zielt darauf ab, dass Augenpartie dunkler als Bereich um Jochbeine ist - Zweite Charakteristik vergleicht Helligkeit der Augen mit der über dem Nasenbein Erkennungsrate von 95% bei Klassifikator aus 200 Charakteristiken Fehlerhafte Erkennung in einem vom Fällen 0.7 Sekunden für ein Bild mit 384x288 Pixel Aber: Erstellen des Klassifikators erhöht die Rechenzeit 18

19 Relevante Merkmale - Kaskadendetektor Kaskadieren der einzelnen Klassifikatoren nach deren Effizienz Einfache Klassifikatoren werden zuerst angewendet Bei negativem Ergebnis eines Klassifikators wird die Kette sofort unterbrochen Schwierige kommen nur zum Einsatz um geringe Fehlerraten zu bewirken 19

20 Relevante Merkmale - Kaskadendetektor Guter Einstiegsklassifikator besteht z.b. aus zwei Charakteristiken und erkennt 100% Gesichter bei falscher Erkennungsrate von 40% Training der Kaskade abhängig von zwei Größen, der Detektionsrate und der Falsch-Positiv-Rate Ziel ist möglichst große Detektionsrate bei möglichst kleiner Falsch-Positiv-Rate und geringem Rechenaufwand Dazu erst Klassifikatoren trainieren, dann Kaskaden trainieren 20

21 Relevante Merkmale - Kaskadendetektor 21

22 Ergebnisse Detektor mit 32 Kaskaden Trainiert mit Sammlung aus 4916 Gesichtern und 9500 ohne Gesicht 4297 Charakteristiken insgesamt im Detektor Erster Klassifikator mit zwei Charakteristiken und 60% Falsch-Erkennung Zweiter mit fünf Charakteristiken und 80% Drei Klassifikatoren mit je 20 Charakteristiken Zwei mit je 50 Charakteristiken Fünf mit je 100 und 20 mit je 200 Charakteristiken Verarbeitung eines 384x288 Pixel Bildes in ca 0.067s Etwa 15x schneller als Rowley-Baluja-Kanade Etwa 600x schneller als Schneiderman-Kanade 22

23 Ergebnisse Schwachstelle ist Training der Klassifikatoren und des Kaskadendetektors Vernachlässigbar da einmaliger Aufwand 23

24 Fragen? 24

Implizite Modellierung zur Objekterkennung in der Fernerkundung

Implizite Modellierung zur Objekterkennung in der Fernerkundung Implizite Modellierung zur Objekterkennung in der Fernerkundung Mitarbeiterseminar 20.01.2011 (IPF) Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften KIT Universität des Landes Baden-Württemberg

Mehr

Object recognition with Boosting

Object recognition with Boosting Object recognition with Boosting Hauptseminar Lernverfahren der Neuroinformatik und Robotik, Universität Ulm, Abteilung Neuroinformatik, SS 2007, Betreuer Friedhelm Schwenker Zusammenfassung Diese Ausarbeitung

Mehr

Viola-Jones Gesichtserkennung mit WebGL

Viola-Jones Gesichtserkennung mit WebGL Viola-Jones Gesichtserkennung mit WebGL Tobias Groß, Björn Meier Hardware/Software Co-Design, University of Erlangen-Nuremberg 18. Juli 2013 Outline Motivation Viola-Jones Funktionsweise Blockbewertung

Mehr

Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Künstliche Intelligenz und Angewandte Informatik.

Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Künstliche Intelligenz und Angewandte Informatik. Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Künstliche Intelligenz und Angewandte Informatik Bachelorarbeit im Studiengang Informatik zur Erlangung des akademischen Grades

Mehr

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading Kapitel V V. Ensemble Methods Einführung Bagging Boosting Cascading V-1 Ensemble Methods c Lettmann 2005 Einführung Bewertung der Generalisierungsfähigkeit von Klassifikatoren R (c) wahre Missklassifikationsrate

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Gesichtsdetektion mit Time-of-Flight-Kameras

Gesichtsdetektion mit Time-of-Flight-Kameras Vom an der Direktor: Prof. Dr. rer. nat. Thomas Martinetz Gesichtsdetektion mit Time-of-Flight-Kameras Diplomarbeit im Rahmen des Informatik-Hauptstudiums vorgelegt von Kolja Riemer ausgegeben von PD Dr.-Ing.

Mehr

Technische Gesichtserkennung

Technische Gesichtserkennung Technische Gesichtserkennung Gliederung Was ist Gesichtserkennung? Anwendungsbereiche der Gesichtserkennung Technische Verfahren Paul-Viola Algorithmus Gesichtsverfolgung via Webcam Hardware Software Demo

Mehr

Objekterkennung am Beispiel des Viola-Jones-Objektdetektors

Objekterkennung am Beispiel des Viola-Jones-Objektdetektors Objekterkennung am Beispiel des Viola-Jones-Objektdetektors Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 2014/15 Andreas Unterweger (FH

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches K-Nearest-Neighbour-Klassifizierer

Mehr

Software zur Erkennung von Körperhaltungen K Bildschirmarbeitsplätzen. tzen. Referent: Markus Kirschmann

Software zur Erkennung von Körperhaltungen K Bildschirmarbeitsplätzen. tzen. Referent: Markus Kirschmann Software zur Erkennung von Körperhaltungen K an Bildschirmarbeitsplätzen tzen Vortrag zur Diplomarbeit Neuronale Mehrklassifikatorsysteme zur Erkennung der Körperhaltung K in Bildschirmarbeitsplatzumgebungen

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Objekterkennung

INTELLIGENTE DATENANALYSE IN MATLAB. Objekterkennung INTELLIGENTE DATENANALYSE IN MATLAB Objekterkennung Objekterkennung Problemstellung Gegeben: Ein Bild. Fragestellungen: Klassifikationsproblem Ist ein bestimmtes Objekt (z.b. Flugzeug) auf dem Bild? Welches

Mehr

EVC Repetitorium Blender

EVC Repetitorium Blender EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen

Mehr

Von schwachen zu starken Lernern

Von schwachen zu starken Lernern Von schwachen zu starken Lernern Wir nehmen an, dass ein schwacher Lernalgorithmus L mit vielen Beispielen, aber großem Fehler ε = 1 2 θ gegeben ist. - Wie lässt sich der Verallgemeinerungsfehler ε von

Mehr

Kapitel ML:IX (Fortsetzung)

Kapitel ML:IX (Fortsetzung) Kapitel ML:IX (Fortsetzung) IX. Combined Models and Meta Learning Motivating Ensemble Classification Bagging Boosting Cascading Ensemble Classifier ML:IX-1 Meta Learning LETTMANN 2007-2015 Motivating Ensemble

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Pipeline Pipelinestufen können sich unterscheiden, beinhalten aber i.d.r. eine Stufe zur Bildvorverarbeitung zur

Mehr

Inhaltsbasierte Bildsuche. Matthias Spiller. 17. Dezember 2004

Inhaltsbasierte Bildsuche. Matthias Spiller. 17. Dezember 2004 Kantenbasierte Merkmale für die Bildsuche Inhaltsbasierte Bildsuche Matthias Spiller 17. Dezember 2004 Übersicht Übersicht Einleitung Was sind Kanten? Kantenrichtungs Histogramm Der Canny-Algorithmus Feature-Erzeugung

Mehr

Berechnung von Formfaktoren

Berechnung von Formfaktoren Berechnung von Formfaktoren Oliver Deussen Formfaktorberechnung 1 Formfaktor ist eine Funktion in Abhängigkeit der Geometrie ist unabhängig von reflektierenden oder emittierenden Eigenschaften (ρ) der

Mehr

2. Schnitterkennung Videoanalyse

2. Schnitterkennung Videoanalyse 2. Schnitterkennung Videoanalyse Stephan Kopf Inhalt Definition: Schnitt Klassifikation eines Schnittes Vorgehensweise bei der automatischen Schnitterkennung Pixelbasierte Verfahren Histogramme Aggregierte

Mehr

Projektionen für f r die Scanregistrierung mit Hilfe von Bildmerkmalen

Projektionen für f r die Scanregistrierung mit Hilfe von Bildmerkmalen Projektionen für f r die Scanregistrierung mit Hilfe von Bildmerkmalen Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen 1 Hintergrund (1) Automatisierung von terrestrischen

Mehr

Kalibrierungsfreie Bildverarbeitungsalgorithmen. echtzeitfähigen Objekterkennung im Roboterfuÿball. Thomas Reinhardt Nao-Team HTWK. 26.

Kalibrierungsfreie Bildverarbeitungsalgorithmen. echtzeitfähigen Objekterkennung im Roboterfuÿball. Thomas Reinhardt Nao-Team HTWK. 26. zur echtzeitfähigen Objekterkennung im Roboterfuÿball Thomas Reinhardt Nao-Team HTWK Hochschule für Technik, Wirtschaft und Kultur Leipzig 26. Februar 2011 Gliederung 1 2 3 4 5 6 7 YCbCr- Helligkeitskomponente

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor

Mehr

CUDA. Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Jürgen Pröll 1

CUDA. Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Jürgen Pröll 1 CUDA Jürgen Pröll Multi-Core Architectures and Programming Jürgen Pröll 1 Image-Resize: sequentiell resize() mit bilinearer Interpolation leicht zu parallelisieren, da einzelne Punkte voneinander unabhängig

Mehr

Einführung in die medizinische Bildverarbeitung SS 2013

Einführung in die medizinische Bildverarbeitung SS 2013 Einführung in die medizinische Bildverarbeitung SS 2013 Stephan Gimbel 1 Kurze Wiederholung Gradienten 1. und 2. Ableitung grad( f ( x, y) ) = f ( x, y) = f ( x, y) x f ( x, y) y 2 f ( x, y) = 2 f ( x,

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Einfluss der Bildverarbeitung - Artefakte und Korrekturmöglichkeiten

Einfluss der Bildverarbeitung - Artefakte und Korrekturmöglichkeiten Einfluss der Bildverarbeitung - Artefakte und Korrekturmöglichkeiten Karl-Friedrich Kamm Norderstedt Karl-Friedrich Kamm 29/07/2013 1 Mögliche Fehler bei digitalen Röntgenaufnahmen flaue Bilder fehlender

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Distributed Algorithms. Image and Video Processing

Distributed Algorithms. Image and Video Processing Chapter 7 High Dynamic Range (HDR) Distributed Algorithms for Quelle: wikipedia.org 2 1 High Dynamic Range bezeichnet ein hohes Kontrastverhältnis in einem Bild Kontrastverhältnis bei digitalem Bild: 1.000:1

Mehr

Bildverarbeitung Herbstsemester

Bildverarbeitung Herbstsemester Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Filter Filter 1 Inhalt Lineare und nichtlineare Filter Glättungsfilter (z.b. Gauss-Filter) Differenzfilter (z.b. Laplace-Filter) Lineare Faltung

Mehr

Verarbeitung von Volumenbildern wichtige Werkzeuge

Verarbeitung von Volumenbildern wichtige Werkzeuge Verarbeitung von Volumenbildern wichtige Werkzeuge Verarbeitung von Volumenbildern Michael Godehardt, Fraunhofer ITWM Überblick:. Problemstellungen. Distanztransformation. Einfache morphologische Transformationen

Mehr

Digital Image Interpolation with CUDA

Digital Image Interpolation with CUDA Digital Image Interpolation with CUDA Matthias Schwarz & Martin Rustler Hardware-Software-Co-Design Universität Erlangen-Nürnberg matthias.schwarz@e-technik.stud.uni-erlangen.de martin.rustler@e-technik.stud.uni-erlangen.de

Mehr

Gesichtsdetektion mittels Detektorkaskaden aus mehreren Kameraperspektiven

Gesichtsdetektion mittels Detektorkaskaden aus mehreren Kameraperspektiven Studienarbeit Gesichtsdetektion mittels Detektorkaskaden aus mehreren Kameraperspektiven Tanya Garneva Juni 2006 Universität Karlsruhe (TH) Fakultät für Informatik Institut für Theoretische Informatik

Mehr

Effizientes Training ansichtsbasierter Gesichtsdetektoren. Viktor Peters

Effizientes Training ansichtsbasierter Gesichtsdetektoren. Viktor Peters Effizientes Training ansichtsbasierter Gesichtsdetektoren Viktor Peters Effizientes Training ansichtsbasierter Gesichtsdetektoren Diplomarbeit im Fach Naturwissenschaftliche Informatik AG Angewandte Informatik

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz 6. Februar 2014 Einleitung Eine (positive) Primzahl ist

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Polynome. Analysis 1 für Informatik

Polynome. Analysis 1 für Informatik Gunter Ochs Analysis 1 für Informatik Polynome sind reelle Funktionen, die sich ausschlieÿlich mit den Rechenoperation Addition, Subtraktion und Multiplikation berechnen lassen. Die allgemeine Funktionsgleichung

Mehr

Bildbearbeitung ganz praktisch

Bildbearbeitung ganz praktisch Bildbearbeitung ganz praktisch Karl-Friedrich Kamm Hamburg - Norderstedt 1 Um welche Kernfrage geht es in der digitalen Bildbearbeitung? Wie kann ich aus der Fülle der aufgenommenen Bildinformationen das

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

Segmentierung. Vorlesung FH-Hagenberg SEM

Segmentierung. Vorlesung FH-Hagenberg SEM Segmentierung Vorlesung FH-Hagenberg SEM Segmentierung: Definition Die Pixel eines Bildes A={a i }, i=1:n, mit N der Anzahl der Pixel, werden in Teilmengen S i unterteilt. Die Teilmengen sind disjunkt

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Algorithmen und Komplexität

Algorithmen und Komplexität Algorithmen und Komplexität Dynamische Programmierung Markus Ullrich Norbert Baum Fachbereich Informatik - IIb07 Hochschule Zittau/Görlitz 28. Mai 2009 1 / 29 Wie sieht es mit langen Ketten aus? A 1 A

Mehr

Bildverarbeitung Herbstsemester. Mustererkennung

Bildverarbeitung Herbstsemester. Mustererkennung Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Mustererkennung 1 Inhalt Einführung Mustererkennung in Grauwertbildern Ähnlichkeitsmasse Normalisierte Korrelation Korrelationskoeffizient Mustererkennung

Mehr

3.3 Nächste-Nachbarn-Klassifikatoren

3.3 Nächste-Nachbarn-Klassifikatoren 3.3 Nächste-Nachbarn-Klassifikatoren Schrauben Nägel Klammern Neues Objekt Instanzbasiertes Lernen (instance based learning) Einfachster Nächste-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz Filter Industrielle Bildverarbeitung, Vorlesung No. 5 1 M. O. Franz 07.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Lineare Filter 2 Formale

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

Rezepte-Software: Kurzanleitung

Rezepte-Software: Kurzanleitung Rezepte-Software: Kurzanleitung Die CD des Medienpakets Der junge Koch/Die junge Köchin enthält u. a. eine Rezepte-Software inkl. vielen Rezepten des Buches. Die Software berechnet Nährwerte auf Grundlage

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

Wissenschaftliches Rechnen

Wissenschaftliches Rechnen Institut für Numerische und Angewandte Mathematik 11.04.2012 FB Mathematik und Informatik der Universität Münster Prof. Dr. Christian Engwer, Dipl. Math. Dipl. Inf. Sebastian Westerheide Übung zur Vorlesung

Mehr

Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I λ Kalkül WS 2012/2013 Berechenbarkeit - inspiriert durch Hilbert's Frage - im Jahr 1900, Paris - Internationaler Mathematikerkongress Gibt es ein System von Axiomen, aus denen alle Gesetze der Mathematik

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

LU Grundlagen der digitalen Bildverarbeitung Abgabe 2. Gruppe 25 peter holzkorn andreas bretschneider martin tintel

LU Grundlagen der digitalen Bildverarbeitung Abgabe 2. Gruppe 25 peter holzkorn andreas bretschneider martin tintel LU Grundlagen der digitalen Bildverarbeitung Abgabe 2 Gruppe 25 peter holzkorn 0426262 andreas bretschneider 0327444 martin tintel 0402913 Beispiel 6 Texturanalyse und Texturklassifikation Texturklassen

Mehr

R.Wagner, Mathematik in der Astronomie

R.Wagner, Mathematik in der Astronomie Mathematik in der Astronomie Roland Wagner Johann Radon Institute for Computational and Applied Mathematics (RICAM) Österreichische Akademie der Wissenschaften (ÖAW) Linz, Austria Linz, 20.Mai 2016 Übersicht

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

MERKMALSAUSWAHL ZUR OPTIMIERUNG VON PROGNOSEPROZESSEN

MERKMALSAUSWAHL ZUR OPTIMIERUNG VON PROGNOSEPROZESSEN Verteidigung der Bachelorarbeit MERKMALSAUSWAHL ZUR OPTIMIERUNG VON PROGNOSEPROZESSEN Von: Tom Fels 23.11.2015 Betreut durch: Prof. Dr.-Ing. Wolfgang Lehner Motivation Motivation PROGNOSEN Schätzung zukünftiger

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Diskrete Signalverarbeitung und diskrete Systeme

Diskrete Signalverarbeitung und diskrete Systeme Diskrete Signalverarbeitung und diskrete Systeme Computer- basierte Verarbeitung von Signalen und Realisierung von Systemverhalten erfordern diskrete Signale und diskrete Systembeschreibungen. Wegen der

Mehr

Filterprogrammierung in Gimp

Filterprogrammierung in Gimp Rüdiger Timpe Alexander Bertschik Filterprogrammierung in Gimp Ein Vortrag im Rahmen des Seminars Manipulation und Verarbeitung digitaler Bilder Inhalt Aufgabenstellung und Motivation...3 Auswahl der Filter...3

Mehr

ORTHOPed Fußdruck-Messung

ORTHOPed Fußdruck-Messung ORTHOPed Fußdruck-Messung Funktionsübersicht Auf den folgenden Seiten finden Sie Übersicht über die Programmfunktionen. Erfahren Sie, wie Sie Füße computergenau vermessen und Ihre Kunden mit professioneller

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Rekonstruktion kontinuierlicher Daten Interpolation multivariater Daten Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester

Mehr

k-nächste-nachbarn-schätzung

k-nächste-nachbarn-schätzung k-nächste-nachbarn-schätzung Mustererkennung und Klassifikation, Vorlesung No. 7 1 M. O. Franz 29.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2011 Einführung in die Informatik I Übungsblatt 5 Prof. Dr. Helmut Seidl, A. Lehmann, A. Herz,

Mehr

1. Technisches Wissen

1. Technisches Wissen Kapitel 1 - Technisches Wissen 1. Technisches Wissen Im ersten Teil Digitale Fotografie für Einsteiger haben Sie die einzelnen Faktoren der Belichtung näher kennen gelernt: Belichtungszeit, Lichtempfindlichkeit

Mehr

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass f O g und auch g O f. Wähle zum Beispiel und G. Zachmann Informatik

Mehr

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Praktikum 1. Bildverarbeitungs - Software ImageJ LUT Manipulationen Bild - Quantisierung

Praktikum 1. Bildverarbeitungs - Software ImageJ LUT Manipulationen Bild - Quantisierung Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_01 ImageJ.doc Praktikum 1 Digitale Bildverarbeitung Bildverarbeitungs - Software ImageJ LUT Manipulationen Bild - Quantisierung

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

6 Vertiefende Themen aus des Mechanik

6 Vertiefende Themen aus des Mechanik 6 Vertiefende Themen aus des Mechanik 6.1 Diagramme 6.1.1 Steigung einer Gerade; Änderungsrate Im ersten Kapitel haben wir gelernt, was uns die Steigung (oft mit k bezeichnet) in einem s-t Diagramm ( k=

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Anwendungen der Hauptkomponentenanalyse. Volker Tresp vertreten durch Florian Steinke

Anwendungen der Hauptkomponentenanalyse. Volker Tresp vertreten durch Florian Steinke Anwendungen der Hauptkomponentenanalyse Volker Tresp vertreten durch Florian Steinke 1 Dimensionsreduktion für Supervised Learning 2 Beispiel: Kaufentscheidung 3 Verbesserte Abstandsmaße durch Hauptkomponentenanalyse

Mehr

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : =

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : = Anhang 5 Eingangstest I 1. Berechnen Sie: 63,568 1000 = 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3. Wie groß ist die Summe von 4 3 und 6 5? 8 4 4. Berechnen Sie: : = 35 15 5. Berechnen Sie:

Mehr

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen

Mehr

M e m o. Beispiele für Eigenschaften von Ressourcen, die mit Hilfe von Merkmalen abgebildet werden können, sind

M e m o. Beispiele für Eigenschaften von Ressourcen, die mit Hilfe von Merkmalen abgebildet werden können, sind Einleitung: Merkmale Merkmale stellen Eigenschaften von Stoffen dar, die als Ressource in ein Herstellverfahren einfliessen, bzw. einen Outputstoff eines Verfahrens darstellen. Beispiele für Eigenschaften

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Ranking Functions im Web: PageRank & HITS

Ranking Functions im Web: PageRank & HITS im Web: PageRank & HITS 28. Januar 2013 Universität Heidelberg Institut für Computerlinguistik Information Retrieval 4 / 30 Idee PageRank Entstehung: Larry Page & Sergey Brin, 1998, genutzt von Google

Mehr

Seminar Bildauswertung und -fusion. Verteilung der Themen :00 Uhr

Seminar Bildauswertung und -fusion. Verteilung der Themen :00 Uhr Seminar Bildauswertung und -fusion Verteilung der Themen 16.04.2015 14:00 Uhr 1 Übersicht der Themen 1. Vitalsensorik und Emotionen (Philipp Woock) 2. Compressive Sensing - Grundlagen und Anwendungen (Johannes

Mehr

Was bisher geschah. Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch

Was bisher geschah. Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch Was bisher geschah Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch Punktoperationen (Farbtransformation) f : col1 col

Mehr

Prozedurale Texturen >>Was nicht passt wird passend gemacht...<<

Prozedurale Texturen >>Was nicht passt wird passend gemacht...<< Prozedurale Texturen >>Was nicht passt wird passend gemacht...

Mehr

Semiüberwachte Paarweise Klassifikation

Semiüberwachte Paarweise Klassifikation Semiüberwachte Paarweise Klassifikation Andriy Nadolskyy Bachelor-Thesis Betreuer: Prof. Dr. Johannes Fürnkranz Dr. Eneldo Loza Mencía 1 Überblick Motivation Grundbegriffe Einleitung Übersicht der Verfahren

Mehr

(Thema) Optimierung von künstlichen neuronalen Netzen zur Ausfallvorhersage mit Sensordaten. Masterarbeit

(Thema) Optimierung von künstlichen neuronalen Netzen zur Ausfallvorhersage mit Sensordaten. Masterarbeit (Thema) Optimierung von künstlichen neuronalen Netzen zur Ausfallvorhersage mit Sensordaten Masterarbeit zur Erlangung des akademischen Grades Master of Science (M.Sc.) im Studiengang Wirtschaftsingenieur

Mehr

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Ein Schwellenwertelement (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mitneingängenx,...,x n und einem

Mehr

Kapitel VII - Konzentration von Merkmalswerten

Kapitel VII - Konzentration von Merkmalswerten Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VII - Konzentration von Merkmalswerten Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Das große Lexikon der Speisen : Die Rezepte-Software

Das große Lexikon der Speisen : Die Rezepte-Software Das große Lexikon der Speisen : Die Rezepte-Software 1 Download und Installation Mit dem Buch Das große Lexikon der Speisen haben Sie das Recht erworben, eine Rezepte-Software mit den Rezepten des Buches

Mehr

Stretching Fitswork und Photoshop. Markus Blauensteiner AAS Gahberg 2014

Stretching Fitswork und Photoshop. Markus Blauensteiner AAS Gahberg 2014 Stretching Fitswork und Photoshop Markus Blauensteiner AAS Gahberg 2014 www.deeplook.astronomie.at 1. Sauberer Import des.fits Summenbildes: - in Photoshop mit dem Plugin Fits Liberator möglich Hier gehen

Mehr

Bildkorrekturen mit JPGIlluminator:

Bildkorrekturen mit JPGIlluminator: Bildkorrekturen mit JPGIlluminator: Mit diesem Programm können Sie gezielt die Lichter und Schatten eines Fotos beeinflussen. Häufig kommt es bei Digitalfotos vor, dass der Kontrastumfang des Bildes einfach

Mehr

Michelson-Interferometer (Anleitung MIFAnalyse mit Matlab)

Michelson-Interferometer (Anleitung MIFAnalyse mit Matlab) Physikalisches Praktikum II Michelson-Interferometer (Anleitung MIFAnalyse mit Matlab) Die Software MIFAnalyse dient zur Auswertung von Interferogrammen im Rahmen des PHB4 Praktikumsversuches Michelson-Interferometer

Mehr

Excel Grundlagen. Peter Wies. 1. Ausgabe, Februar 2013

Excel Grundlagen. Peter Wies. 1. Ausgabe, Februar 2013 Excel 2013 Peter Wies 1. Ausgabe, Februar 2013 Grundlagen EX2013 3 Excel 2013 - Grundlagen Die folgende Tabelle zeigt Beispiele für häufige Fehler bei der Eingabe von Formeln: Fehlerbeschreibung Beispiel

Mehr

Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler

Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler Wenn man sie denn gefunden hat, was kann man mit den interessanten Punkten anfangen? /Anwendungsgebiete Wenn man sie denn gefunden

Mehr

Objekterkennung durch Vergleich von Farben. Videoanalyse Dr. Stephan Kopf HWS2007 Kapitel 5: Objekterkennung

Objekterkennung durch Vergleich von Farben. Videoanalyse Dr. Stephan Kopf HWS2007 Kapitel 5: Objekterkennung Objekterkennung durch Vergleich von Farben 48 Farbräume (I) Definitionen: Farbe: Sinnesempfindung (keine physikalische Eigenschaft), falls Licht einer bestimmten Wellenlänge auf die Netzhaut des Auges

Mehr

Strichcodes - Produkte zuordnen plazieren. Wie erzeuge ich für mein Produkt EAN...?

Strichcodes - Produkte zuordnen plazieren. Wie erzeuge ich für mein Produkt EAN...? Strichcodes - Produkte zuordnen plazieren Strichcodes und EAN Codes optimieren den Lagerbestand, sowie den schnellen Verkauf. Produktdesigner, Handel, Hersteller, Einrichtungshäuser, Verlage, Distributoren

Mehr