Substitution. Unifikation. Komposition der Substitution. Ausführung der Substitution

Größe: px
Ab Seite anzeigen:

Download "Substitution. Unifikation. Komposition der Substitution. Ausführung der Substitution"

Transkript

1 Substitution Unifikation Ziel eines Widerspruchsbeweis: Widerspruch ja/nein Variablenbindung im Falle eines Widerspruchs Eine Substitution θ ist eine endliche Menge der Form {v 1 /t 1 v n /t n }, wobei jedes v i eine Variable ist und jedes t i ein Term, der verschieden ist von v i und die Variablen v 1 v n disjunkt sind. Jedes Element v i /t i stellt eine Bindung von v i dar. θ ist eine Grundsubstitution, wenn alle t i Grundterme sind. θ ist eine Variablenumbenennung, wenn alle t i Variablen sind. Ausführung der Substitution Ein Ausdruck ist entweder ein Term, ein Literal, eine Konjuktion von Literalen oder eine Disjunktion von Literalen. Ein einfacher Ausdruck ist ein Term oder ein Atom. Sei θ={v 1 /t 1 v n /t n } eine Substitution und E ein Ausdruck. Dann ist Eθ der Ausdruck, der gewonnen wird aus E, indem man jedes Vorkommen der Variablen v i in E durch den Term t i ersetzt. Wenn Eθ variablenfrei ist, dann ist Eθ eine Grundinstanz von E. Komposition der Substitution Seien θ={u 1 /s 1 u n /s n } und ρ={v 1 /t 1 v n /t n } Substitutionen. Dann erhält man die Komposition θρ, aus der Menge {u 1 /s 1 ρ u n /s n ρ, v 1 /t 1 v n /t n }, indem man: a. alle Bindungen u i /s i ρ entfernt, für die u i =s i ρ b. alle Bindungen v i /t i enfernt, für die v i {u 1 u n } Notation: Die Identitätssubstitution, gegeben durch {}, wird mit ε notiert.

2 Aussagen zur Substitution Aussagen: Seien θ, ρ, γ Substitutionen, E ein Ausdruck 1. θε=εθ=θ (Identität) 2. (Eθ)ρ = E(θρ) 3. (θρ)γ = θ(ργ) (Assoziativität) Beweis: 1. Durch von ε 2. Zeige Aussage für E=x 3. Zeige E(θρ)γ = Eθ(ργ) für E=x und 2. Varianten Seien E und F Ausdrücke. Wir sagen E und F sind Varianten voneinander, wenn es Substitutionen θ,ρ gibt, so dass gilt: Eθ=F und Fρ=E Unifikator Sei S eine endliche Menge von einfachen Ausdrücken. Eine Substitution θ ist ein Unifikator für S, wenn Sθ eine einelementige Menge ist. Ein Unifikator θ ist ein allgemeinster Unifikator (mgu most general unifier), wenn für jeden Unifikator ρ von S eine Substitution γ existiert so dass ρ=θγ. Notiz: Wenn es zwei MGUs gibt, dann sind diese Umbenennungen voneinander. Unterschiedsmenge Sei S eine endliche Menge von einfachen Ausdrücken. Die Unterschiedsmenge von S ist wie folgt definiert: Bestimme die Position, die sich am weitesten links befindet und an der nicht alle Ausdrücke in S identisch sind. Extrahiere von dieser Position die Menge aller unmittelbar folgenden Teilausdrücke. Sei S={p(f(x),h(y),a), p(f(x),z,a), p(f(x),h(y),b)}, dann ist die Unterschiedsmenge {h(y),z}

3 Unifikationsalgorithmus Unifikationstheorem 1. k:=0 und ρ 0 :=ε 2. If Sρ k eine einelementige Menge ist, Then return(ρ k ) Else bestimme Unterschiedsmenge D k von Sρ k 3. If eine Variable v und ein term t in D k vorkommen, so dass v nicht in t auftritt, // nichtdeterministische Wahl Th t { /t} k t 2 Theorem: Sei S eine endliche Menge von einfachen Ausdrücken. Wenn S unifizierbar ist, dann terminiert der Unifikationsalgorithmus and gibt einen MGU für S zurück. Wenn S nicht unifizierbar ist, dann terminiert der Unifikationsalgorithmus und berichtet die Nicht- Unifizierbarkeit. Beweisidee: Annahme θ sei ein Unifikator für S. Zeige, dass für alle k bis zur Terminierung gilt: θ=ρ k γ k Definite Programme (Wdh.) Definite Programme Eine definite Programmklausel hat die Form: A B 1 B n mit genau einem Atom A als Konklusion im Kopf und B 1 B n als Prämissen im Rumpf. Ein definites Programm besteht aus einer endlichen Menge von Programmklauseln. Eine definites Ziel hat die Form: B 1 B n

4 Model Intersection Property Proposition: Sei P ein definites Programm und {M i } i I sei eine nichtleere Menge von Herbrand-Modellen. Dann ist i I M i ein Herbrand-Modell für P. Wenn {M i } i I alle möglichen Herbrand-Modellle umfasst, dann ist M P := i I M i das kleinste Herbrand-Modell für P. Idee: i I M i ist eine Herbrand-Interpretation. Zeige, dass es ein Modell ist. Jedes definite Programm hat B P als Modell, dann ist I nicht leer und man kann zeigen, dass ein M P Modell ist. Model Intersection Property Proposition: Sei P ein definites Programm und {M i } i I sei eine nichtleere Menge von Herbrand-Modellen. Dann ist i I M i ein Herbrand-Modell für P. Wenn {M i } i I alle möglichen Herbrand-Modelle umfasst, dann ist M P := i I M i das kleinste Herbrand-Modell für P. Idee: M P ist das natürlichste Modell für P. Emden & Kowalski Herbrand-Interpretationen Theorem: Sei P ein definites Programm. Dann gilt M P ={A B P : A ist logische Folgerung aus P}. Beweis: A ist logische Folgerung aus P gdw. P {~A} ist unerfüllbar gdw. P {~A} hat kein Herbrand-Modell gdw. A ist wahr in allen Herbrand-Modellen von P gdw. A M P. I 1 I 2 I 3 Herbrand-Basis Q(a) P(f(b)) Q(a) P(f(b)) ~Q(a) ~P(f(b)) ~P(f(b)) ~Q(a) Die wahren Atome der Herbrand- Basis korrelieren mit der jeweiligen Interpretation

5 Idee (2 B P, ) ist ein Verband aller Herbrand-Interpretation von P mit kleinstem Element und größtem Element B P Die kleinste obere Schranke (lub) einer Menge von Interpretationen ergibt sich durch die Vereinigungsmenge, die größte untere Schranke durch die Schnittmenge B P M P Monoton, Gerichtet, Stetig Sei L ein Verband und T:L L eine Abbildung. T heißt monoton, wenn x y impliziert, dass T(x) T(y). Sei L ein Verband und X L, X heißt gerichtet, wenn jede endliche Teilmenge von X eine obere Grenze in X hat. Sei L ein Verband und T:L L eine Abbildung. T heißt stetig, wenn für jede gerichtete Teilmenge X gilt, dass T(lub(X))=lub(T(X)). Van Emden & Kowalski: The Semantics of Predicate Logic as a Programming Language, J. ACM 23, 4, 1976, pp Sei P ein definites Programm. Die Abbildung T P : 2 B P 2 B P ist definiert wie folgt: Sei I eine Herbrand-Interpretation, dann T P (I)={A B P : A A 1 A n ist eine Grundinstanz einer Klausel in P und {A 1,,A n } I} T P verbindet deklarative und prozedurale Semantik Sei P ein definites Programm. Gerade(f(f(x)) Gerade(x). Gerade(0). Sei I 1 =. Dann I 2 ={Gerade(0)}, I 3 ={Gerade(0), Gerade(f(f(0))}, I 4 ={Gerade(0), Gerade(f(f(0)), Gerade(f(f(f(f(0))))}, T P ist monoton.

6 Stetigkeit Proposition Die Abbildung T P ist stetig für jedes definite Programm P. Beweis Sei X eine gerichtete Teilmenge von 2 B P. Bemerke, dass so ein I X existiert, dass für alle {A 1,,A n } gilt: {A 1,,A n } I gdw. {A 1,,A n } lub(x). Wir müssen zeigen, dass T P (lub(x))=lub(t P (X)) für jede gerichtete Teilmenge X. A T P (lub(x)) gdw. A A 1 A n ist eine Grundinstanz einer Klausel in P und {A 1,,A n } lub(x) gdw. A A 1 A n ist eine Grundinstanz einer Klausel in P und {A 1,,A n } I gdw. für ein I X gdw A T P (I) für ein I X gdw A lub(t P (X)) Fixpunkt-Modell Proposition Sei P ein definites Programm und I eine Herbrand-Interpretation von P. Dann ist I ein Modell für P gdw. T P (I) I. Sei I eine Herbrand-Interpretation, die kein Modell von P ist und T P (I) I. D.h. es existieren Grundinstanzen {~A, A 1,,A n } I und eine Klausel A A 1 A n in P. Dann ist A T P (I) I. Widerspruch. Fixpunkt-Charakterisierung des kleinsten Herbrand-Modells Theorem Sei P ein definites Programm. Dann gilt: M P =lfp(t P )=T P ω, wobei T α=t(t (α-1)), wenn α ein Nachfolgeordinal T α=lub{t β: β<α}, wenn α ein Grenzordinal Beweis M P =glb{i: I ist ein Herbrand-Modell für P} =glb{i: T P (I) I} =lfp(t P ) (nicht gezeigt hier) =T P ω. Antwort Sei P ein definites Programm und G ein definites Ziel. Eine Antwort für P {G} ist eine Substitution für Variablen von G. Sei P ein definites Programm und G ein definites Ziel A 1 A n und θ eine Antwort für P {G}. Wir sagen, dass θ eine korrekte Antwort ist für P {G}, wenn ((A 1 A n )θ) eine logische Folgerung von P ist. Die Antwort nein ist korrekt, wenn P {G} erfüllbar ist.

7 Theorem Sei P ein definites Programm und G ein definites Ziel A 1 A n. Angenommen θ ist eine Antwort für P {G}, so dass (A 1 A n )θ eine Grundinstanz ist. Dann sind die folgenden Aussagen äquivalent. 1. θ ist korrekt 2. (A 1 A n )θ ist wahr in jedem Herbrand-Modell von P 3. (A 1 A n )θ ist wahr im kleinsten Herbrand-Modell von P Beweis Es reicht zu zeigen, dass 3 impliziert 1. (A 1 A n )θ ist wahr im kleinsten Herbrand-Modell impliziert (A 1 A n )θ ist wahr in allen Herbrand-Modellen impliziert ~(A 1 A n )θ ist falsch in allen Herbrand-Modellen impliziert P {~(A 1 A n )θ} hat keine Herbrand- Modelle impliziert P {~(A 1 A n )θ} hat keine Modelle.

Logik-Grundlagen. Syntax der Prädikatenlogik

Logik-Grundlagen. Syntax der Prädikatenlogik Logik-Grundlagen X 1 :...: X k : ( A 1 A 2... A m B 1 B 2... B n ) Logische und funktionale Programmierung - Universität Potsdam - M. Thomas - Prädikatenlogik III.1 Syntax der Prädikatenlogik Prädikat:

Mehr

Unifikation. T eine Menge von Termen. σ(t) einelementig ist. Definition: Unifikator. Eine Substitution σ ist Unifikator von T, falls

Unifikation. T eine Menge von Termen. σ(t) einelementig ist. Definition: Unifikator. Eine Substitution σ ist Unifikator von T, falls Unifikation Definition: Unifikator T eine Menge von Termen Eine Substitution σ ist Unifikator von T, falls σ(t) einelementig ist Logik für Informatiker, SS 06 p.12 Unifikation Definition: Unifikator T

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation Widerspruchsbasiertes Kalkül Ziel: Zeige dass gilt: x 1 x s (B 1 B n ) Mittel: Negiere so dass: B 1 B n Resultate: Widerspruch Variablenbindungen [y/5.6.17.22.nil] für sort(17.22.6.5.nil,y) Präinterpretation

Mehr

Deklarative Semantik

Deklarative Semantik 7. Deklarative Semantik 7-1 Deklarative Semantik Bisher: Prolog als Programmiersprache. Operationale Semantik : Wie wird ein Programm ausgeführt? Welche Antworten werden berechnet? Jetzt: Prolog als logischer

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

3.4 Fixpunkttheorie auf Partialordnungen

3.4 Fixpunkttheorie auf Partialordnungen 3.4 Fixpunkttheorie auf Partialordnungen Definition 3.15 (Partialordnung) Sei L eine Menge und eine binäre Relation auf L. O = L, heißt Partialordnung, falls folgende Bedingungen erfüllt sind: Reflexivität:

Mehr

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik Ralf Möller, TUHH Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem Lernziele: Beweisverfahren für Prädikatenlogik Danksagung Bildmaterial: S. Russell, P. Norvig, Artificial

Mehr

Prädikatenlogische Entscheidbarkeitsprobleme

Prädikatenlogische Entscheidbarkeitsprobleme Prädikatenlogische Entscheidbarkeitsprobleme Erfüllbarkeitsproblem: Gegeben: prädikatenlogischer Ausdruck A über einer Signatur S Frage: Ist A erfüllbar? Gültigkeitsproblem: Gegeben: prädikatenlogischer

Mehr

Kapitel L:III. III. Prädikatenlogik

Kapitel L:III. III. Prädikatenlogik Kapitel L:III III. Prädikatenlogik Syntax der Prädikatenlogik Semantik der Prädikatenlogik Wichtige Äquivalenzen Einfache Normalformen Substitution Skolem-Normalformen Standard-Erfüllbarkeit Prädikatenlogische

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution

Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Ablauf Unendliche

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Prädikatenlogik: Syntax

Prädikatenlogik: Syntax Prädikatenlogik: Syntax Signatur : Welche Zeichen gibt es? Funktionssymbole Prädikatensymbol (Eigenschaften) Terme: Variablen f(t 1,... t n ) wenn t i Terme und f Funktionssymbol Formeln: P (t 1,... t

Mehr

Normalformen der Prädikatenlogik

Normalformen der Prädikatenlogik Normalformen der Prädikatenlogik prädikatenlogische Ausdrücke können in äquivalente Ausdrücke umgeformt werden Beispiel "X (mensch(x) Æ sterblich(x)) "X (ÿ mensch(x) sterblich(x)) "X (ÿ (mensch(x) Ÿ ÿ

Mehr

SLD-Ableitungsbäume. G = B 1... B m. G die Menge aller SLD-Resolventen von G und definiten. G einen Nachfolger, der mit G markiert ist.

SLD-Ableitungsbäume. G = B 1... B m. G die Menge aller SLD-Resolventen von G und definiten. G einen Nachfolger, der mit G markiert ist. SLD-Ableitungsbäume Definition 5.48 Sei P ein definites Programm und G ein definites Ziel. Ein SLD-Ableitungsbaum ist ein Baum, der die folgenden Bedingungen erfüllt: 1. Jeder Knoten des Baums ist mit

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung)

Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung) Resolution in der Prädikatenlogik Wiederholung: Resolution in der Aussagenlo Der Algorithmus von Gilmore funktioniert zwar, ist in der Praxis aber unbrauchbar. Daher ist unser Programm der nächsten Stunden:

Mehr

Semantik und Korrektheit von Prolog-Programmen im Naproche-Projekt

Semantik und Korrektheit von Prolog-Programmen im Naproche-Projekt Diplomarbeit Semantik und Korrektheit von Prolog-Programmen im Naproche-Projekt Angefertigt am Mathematischen Institut Vorgelegt der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität

Mehr

Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel

Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel Ablauf Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Juni 2015 Wir werden heute die Themen aus den Kapitel 2.3, 2.4 und 2.5 aus

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

FGIS SS Datenbanktheorie 1.2. Enthaltensein-Problem

FGIS SS Datenbanktheorie 1.2. Enthaltensein-Problem kanonische Instanz Sei Q eine konjunktive Anfrage der Form ans( U) R 1 ( U 1 ),..., R n ( U n ) über einem Datenbank-Schema R. Die kanonische Instanz I Q zu Q wird wie folgt gebildet. I Q ist eine Instanz

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

Sogar Strukturen mit unendlichem Universum müssen betrachtet werden:

Sogar Strukturen mit unendlichem Universum müssen betrachtet werden: 3.4 Unentscheidbarkeit In der Aussagenlogik gibt es für jede Formel eine endliche Menge von Belegungen. In Prädikatenlogik Beschränkung auf endliche Menge von Strukturen nicht möglich. Sogar Strukturen

Mehr

Herbrand-Universum. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Herbrand-Universum. Herbrand-Universum

Herbrand-Universum. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Herbrand-Universum. Herbrand-Universum Herbrand-Universum Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Motivation: Um die Erfüllbarkeit/Unerfüllbarkeit einer prädikatenlogischen

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 10. Prädikatenlogik Substitutionen und Unifikation Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Substitutionen Definition:

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln Vorlesung Letz WS 2002/2003 TU München: Logikbasierte Entscheidungsverfahren Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln INHALTE Die Bernays-Schönfinkel-Klasse bzw. Datenlogik-Formeln

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Fragen Seite Punkte 1. Was ist die Mathematische Logik? 3 2 2. Was sind die Aussagenlogik und die Prädikatenlogik? 5 4 3. Was sind Formeln,

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Wissensbasierte Systeme 7. Prädikatenlogik

Wissensbasierte Systeme 7. Prädikatenlogik Wissensbasierte Systeme 7. Prädikatenlogik Syntax und Semantik, Normalformen, Herbrandexpansion Michael Beetz Plan-based Robot Control 1 Inhalt 7.1 Motivation 7.2 Syntax und Semantik 7.3 Normalformen 7.4

Mehr

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )}

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )} Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.7 Prädikatenlogik Fundamentale Sätze 171 Fundamentale Sätze versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(R, +, )} gib

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Das Lösen einer Anfrage mit Backtracking

Das Lösen einer Anfrage mit Backtracking Das Lösen einer Anfrage mit Backtracking Beispiel aus Clocksin Mellish S.14/15?- likes(mary,x), likes(john,x). () 1 / 17 Das Lösen einer Anfrage mit Backtracking Beispiel aus Clocksin Mellish S.14/15?-

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Schritt 1 Richtung Resolution: Substituieren

Schritt 1 Richtung Resolution: Substituieren 4. Resolution in der Prädikatenlogik Schritt 1 Richtung Resolution: Substituieren Wegen impliziter Allquantifizierung der Variablen gilt: P(x), P(y) widersprüchlich; P(x) P(f(a)) widersprüchlich; aber

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8.1 Der Kompaktheitssatz Kompaktheitssatz Endlichkeitssatz Der Kompaktheitssatz ist auch unter dem Namen Endlichkeitssatz bekannt. Unter Verwendung

Mehr

2. Beweisen mit Gleichungen: Gleichungslogik und Termersetzung

2. Beweisen mit Gleichungen: Gleichungslogik und Termersetzung 2. Beweisen mit Gleichungen: Gleichungslogik und Termersetzung Gleichungstheorien Gleichungslogik: Syntax und Semantik von Termen und Gleichungen Grundlagen der Termersetzung: Substitution, Unifikation

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Tableaux-Methode für Pl-1

Tableaux-Methode für Pl-1 Aufzählungsverfahren für PL-1 Tableaux-Methode für Pl-1 Definition 5.1 Sprache:,,,,, (zunächst ohne =) Formeln der Sprache in Klassen einteilen: Atomare und negierte atomare Formeln. α-formeln (wie in

Mehr

Logik für Informatiker Logic for Computer Scientists

Logik für Informatiker Logic for Computer Scientists Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 18 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 18 Objekt- und Metatheorie

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

8. Einfache Fixpunkttheorie

8. Einfache Fixpunkttheorie 8. Einfache Fixpunkttheorie Fragestellung: was unter einem (kleinsten) Fixpunkt zu verstehen ist t(x) = x y : D. t(y) = y x y wann ein Fixpunkt existiert monotone Funktionen über CPOs haben einen kleinsten

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Semantik von Programmiersprachen SS 2017

Semantik von Programmiersprachen SS 2017 Lehrstuhl für Programmierparadigmen Denis Lohner Sebastian Ullrich denis.lohner@kit.edu sebastian.ullrich@kit.edu Semantik von Programmiersprachen SS 2017 http://pp.ipd.kit.edu/lehre/ss2017/semantik Lösungen

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Die Lösungshinweise dienen

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

Unendliche Graphen. Daniel Perz 24. Dezember Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind.

Unendliche Graphen. Daniel Perz 24. Dezember Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind. Unendliche Graphen Daniel Perz 24. Dezember 2011 1 Definition Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind. Definition 2. Ein Graph G=(V,E) heißt Strahl, wenn gilt

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

3. Logik-Programmierung

3. Logik-Programmierung 3. Logik-Programmierung 3.1. Vorbemerkungen Idee: Ausführen eines Logik-Programms entspricht Herleitung leerer Klausel. Zusätzliche Verwendung einer Antworterzeugungskomponente (liefert Rechenergebnis).

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Musterlösung zu Blatt 11, Aufgabe 3

Musterlösung zu Blatt 11, Aufgabe 3 Musterlösung zu Blatt 11, Aufgabe 3 I Aufgabenstellung Wir nennen eine Teilmenge A R abgeschlossen, wenn der Grenzwert einer konvergenten Folge in A stets wieder in A liegt. Beweisen Sie: a) Für eine beliebige

Mehr

Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden

Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden 1. März 2005 Neurosymbolische Integration versucht künstliche neuronale Netze und Logikprogrammierung zu vereinen

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Michael Winkler Johannes Lankeit 8.4.2014 Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Präsenzaufgabe 1: Rufe dir die folgenden Definitionen wieder in Erinnerung: C = {(x, y); x R, y R} bildet

Mehr

Prüfungsprotokoll Kurs 1695 Deduktions- und Inferenzsysteme. Datum Beisitzer Steven Kutsch

Prüfungsprotokoll Kurs 1695 Deduktions- und Inferenzsysteme. Datum Beisitzer Steven Kutsch Prüfungsprotokoll Kurs 1695 Deduktions- und Inferenzsysteme Datum 04.05.2016 Prüfer C. Beierle Beisitzer Steven Kutsch Prof. Beierle geht an Hand eines Prüfungsplans die einzelnen Themen durch. Offenbar

Mehr

Probeklausur Mathematische Logik

Probeklausur Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel SS 2015 Probeklausur Mathematische Logik Aufgabe 1 (a) (i) Seien R, zweistellige Relationssymbole. Ist

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Labor Compilerbau. Jan Hladik. Sommersemester DHBW Stuttgart. Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester / 20

Labor Compilerbau. Jan Hladik. Sommersemester DHBW Stuttgart. Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester / 20 Labor Compilerbau Jan Hladik DHBW Stuttgart Sommersemester 2017 Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester 2017 1 / 20 Resolution in der Prädikatenlogik testet Erfüllbarkeit (indirekt

Mehr

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten 2.6 Verfeinerung der Resolution Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten Resolutions-Strategien: heuristische Regeln für die Auswahl der Resolventen Resolutions-Restriktionen:

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr