Lösungen der Übungsaufgaben TM III

Größe: px
Ab Seite anzeigen:

Download "Lösungen der Übungsaufgaben TM III"

Transkript

1 L Lösungen der Übungsaufgaben TM III Methoden der Analytischen Mechanik a) z l cos x l sin cos b) W e Gl cos Sl sin cos c) S G cot cos 4 a) W e (mg 4cx)x b) x mg 4c a) x x b) W e (Mg mg sin )x m M sin b) W e mg sin 4 cx x x 4mg c sin c) mẋ. mg sin 4 cx x ẋ. c x g sin 4m Aufgabe 5 a) W e (mg 4cx)x x mg 4c b) (7mẋ. 4cx mg)x ẋ. 4c 7m x 7 g

2 L Diskrete Schwingungssysteme a) T 3 4 mẋ U cx mgx b) 3 mẋ. 4cx mg a) T 7 4 mr. U mgr(sin ) b) 7 mr.. mgr(sin ) a) T m ẋ, U c 8 x mg sin x b) mẋ. c x mg sin 4 c) x 4mg c sin a) T 7 mẋ U cx mgx b) 7mẋ. 4cx mg c) x mg 4c Aufgabe 5 a) T mṡ 6 ml. ml sin ṡ. U mgs l cos cs b) mṡ. ml sin.. ml cos. mg cs ml sin ṡ. 3 ml.. mgl sin c) s mg c Aufgabe 6 {, } d) ms ~.. cs ~ 3 ml ~.. mgl~ a) T m l. l. U mgl cos c (l l ) b) ml.. mll.. mgl sin ml.. ml. mg cos c(l l ) c), l l mg c bzw., l l mg c d) ml mg c ~.. mg ~ ml ~.. cl ~

3 L 3 3 Freie Koppelschwingungen konservativer Systeme a) T I m L m r. I m L. m rl.. cos U m gl m gr cos m gl cos b) J.. J cos.. J sin. C sin.. J cos J.. J sin. C sin mit: J I m L m r J I m L J m rl C m gl m gr C m gl c) C J J C J J d) J J J J ~.. ~.. C C ~ ~ e) f.54hz f.59hz a) m m x.. c ẋ. c c c c x x b) 4 c m c c m c c m m c) f.76hz f.5hz d) a a m i c e) für : gleichphasig; für : gegenphasig a) m m m ẏ. c c c c c c y c b) m c m 3c m Eigenfrequenzen: f, f.59hz, f 3.76Hz c) Eigenvektoren: ~ y, y~, y~ 3 d) y(t) 3 ty~.5 cos t y ~.96 cos 7.3t y ~ 3

4 L 4 a) m m x.. c ẋ. c c 4c x x b) 4 6 c m 4 c m c) f 8.Hz f.5hz Eigenvektoren: d) für : gleichphasig; für : gegenphasig a a m i c

5 L 5 4 Erzwungene Schwingungen konservativer Systeme a) Y b) y^().59.. ; y^ ().6 cos 4t c) y^(t). cos 5t.394 cos 4t, 67 cos 5t d) y(t).786 cos 4t.799 cos 5t e) h^ f) y p (t) a) Y b) h^ f) y p (t) a) m.. m x ẋ. c c c cos t cos t c c x x c u cos t b) y p (t) r cos t, c m c c c c m r r c u c) x () dicke Linie x () dünne Linie

6 L 6 5 Kontinuierliche Schwingungssysteme Einspannung fest fest fest frei Randbedingungen w(, t) w(l, t) w(, t) w(l, t) frei frei w(, t) w(l, t) Lagerung fest fest Randbedingungen u(, t) u(l, t) fest frei u(, t) u(l, t) frei frei u(, t) u(l, t) fest Endmasse m u(, t) u(l, t) m EA u.. (L, t) fest Endsteifigkeit k u(, t) u(l, t) k u(l, t) EA

7 L 7 Lagerung fest fest fest frei frei frei Randbedingungen (, t) (L, t) (, t) (L, t) (, t) (L, t) Lagerung fest fest Randbedingungen w(, t) w(l, t) w(, t) w(l, t) gelenkig gelenkig frei frei fest gelenkig w(, t) w(, t) w(, t) w(, t) w(, t) w(, t) w(l, t) w(l, t) w(l, t) w(l, t) w(l, t) w(l, t) fest frei w(, t) w(, t) w(l, t) w(l, t)

8 L 8 6 Erzwungene Schwingungen konservativer Systeme b) D k L a).. c mit c G b) (, t) (L, t) c) cos c L d) k k c L e) f 775Hz, f 35Hz f) W C cos x L für k,, W C cos 3 x L a) u.. c u mit c E b) u(, t) u(l, t) L c u.. (L, t) c) cot L c L c e) f 7Hz f) : W D sin x L d) f 98Hz : W D sin.86 x L a) u.. c u mit c E b) u(, t) u(l, t) k u(l, t) EA c) tan L c L c d) f 67Hz e) sin c L d.h. Lagerung: fest fest cos c L d.h. Lagerung: fest frei

9 L 9 7 Eigenschwingungen des Balkens a) ẇ. (x, t) EI A wiv (x, t) w(, t) w(, t) w(l, t) w(l, t) b) cos L cosh L c) W i (x) C i cos i x cosh i x cos i L cosh i L x) sin i L sinh i L (sin i x sinh i Torsionsschwingungen, f 775Hz Längsschwingungen, f 98Hz Biegeschwingungen, f 7.3Hz a) Vk H k h b a) f.8hz b) f.43hz c) f.4hz Aufgabe 5 L ( L) cs 3 L.3m

10 L 8 Freie Schwingungen kontinuierlicher Systeme a) k k c L b) w(x, t) sin L k k W k (x) x L y k cos sin L k c) w (x) a L x ẇ (x) d) y k ( 4L )k (k ) a k k x L c L t k e) w(x,) w (x) wx, L c wx, L c w (x) a) y y y b) y() y y mit y c) y k (t) y k cos k t 4a L mit c L y d) w(x, t) 8a sin x cos ct L L sin 3x cos 3ct 9 L L a) y k () 9aL sin k k 3 3c L L 4a 9, ẏ() ẏ() b) y k (t) y k cos k t mit y k y k () k c) w(x, t) 9a d) k sin k k 3 sin kx cos kct L L a w(x,).79 sin x. sin x L L w(x, t) a sin x L cos t kc L

11 L 9 Erzwungene Schwingungen durch verteilte Kräfte a) c S A q(x, t) p(x, t) A b) c G q(x, t) m(x, t) I p ẇ. EI A p(x, t) wiv q(x, t) A a) p(x, t) ga ẇ. S w g w(, t) w(l, t) A b) k k c L, k,, W k (x) sin kx, k,, L L c) y k g L L A k 3 3 S d) w(x, t) 4gL A 3 S a) ẇ. EI A wiv p A b) k k EI AL 4 c) h k (t) ( cos k t) k,3, k ungerade sonst k3 sin kx L ( cos k t) w(, t) w(l, t) w(, t) w(l, t), W k (x) sin kx, k,, L L L p ka k ungerade sonst e) Biegelinie: w B (x) p L4 4EI x L x L 3 x L 4 d) w p (x,) 4 p L 4 5 EI k,3, k5 sin kx L w B (L).3 p L4 EI w p (L, ).3 p L4 EI Aufgabe 5 a) h k (t) F A sin ka L L cos t b) y pk (t) F A L sin ka cos t L k c) w p (x, t) F LA sin ka sin kx L L cos t k k

12 L Erzwungene Schwingungen durch inhomogene Randbedingungen a) ẇ. c w w(, t) F^ w(l, t) sin t S b) F^ w R (x, t) x sin t S c) ẇ. F^ H c w H S x sin t (k )x ) sin L d) w H (x, t) y^ L k cos( k t k k 8F^ L S sin t k e) w(x, t) y^ L k cos( k t k k F^ L S sin t x L 8 ( ) k (k ) (k )x sin L k (k )x ) sin L k a) ẇ. c w w(, t) w(l, t) a cos t b) w R (x, t) a cos t c) ẇ. H c w H a cos t d) w H p 4a cos t k,3, k sin kx k e) w p (x, t) a cos t 4 k,3, ( ) k (k ) (k )x sin L L k k sin kx k L a) ẇ. c w w(, t) w(l, t) L cos t b) w R (x, t) L x cos t c) ẇ. H c w H L x cos t d) w H p L cos t k,4, k sin kx k e) w p (x, t) L cos t x L k,4, L k sin kx k L

13 L 3 Wellenausbreitung in eindimensionalen Kontinua c L ct.6 a) w(x,) a sin x ẇ(x,) L b) w(x, t) a sin x cos ct L L f, (x) a sin x L c) w(x, t) a sin x cos ct L L t t L 4c t L c t 3L 4c t L c

14 L 4 t t L 6c t L 3c t L c t L 3c t 5L 6c t L c

15 L 5 Aufgabe 5 t t L 4c t L c t 3L 4c t L c t 5L 4c t 3L c t 7L 4c t L c

16 L 6 Fluidstatik a) s b) h.9 4 m a) (r) M h r b). dv dr c) dv M h r dr RB: v(r ) v(r ) r d) M hr r r e).8nsm 4 m s a) p 3, hpa b) h w.33m a) h O H b) h M H c) Aufgabe 5 a) p.67 5 Pa b) p.95 5 Pa Aufgabe 6 a) p p g(t h) b) h, (p g t) c) t p g H p g t 4 p g H

17 L 7 3 Kräfte auf Behälterwände a) F W gh b z D 3 h b) G 3 S ga b c) h 3a 3 S 3 W d) S 3 W a) p p p gh p gh b) F gh b z D 3 h F gh b z D 3 h c) h 3 h a) F D gr 3 H R cos 3 b) F D gr 3 H R cos 3 cos3 c) F D gr 3 H R 3 cos sin 3 ( cos ) d) F V.6N a) p * gh b) waagerechter Schenkel: F ghab Druckpunkt: a vom Punkt P schräger Schenkel: F gbh sin Druckpunkt: H 3 sin von P c) H 3 a sin

18 L 8 Aufgabe 5 ghbr a) F gbr ghbr c) F gbr 4 M b) F M 3 gbr3 ghbr gbr 4 M 3 gbr3 Aufgabe 6 a) F x gh b F z 3 gh b F 3 6 gh b b) z D 3 h x D 3 6 h

19 L 9 4 Auftrieb und Schwimmstabilität Rmg Iy a) x L S b) sin L H S F F, wenn H L S ; sonst F a) Wasserspiegel sinkt b) Wasserspiegel bleibt unverändert a) t G ga 6 x L t G ga 5 x L b) G gal x L Aufgabe 5 a) V K r 3 V F r t t K r F b) h M r 4 Aufgabe 6 a) Kippstabilität um y Achse ist geringer b) h M 4R 3

20 L 5 Eindimensionale Strömungen a) instationär b) v(x,) x y c) a(x, t) y ( t) d) r(t) t ( t) a) v 3.3 m s b) h.75m a) h H b) Q A gh c) T H g Aufgabe 5 a) v v v A A A ( )A b) sin F ( )A v

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Arbeitsunterlagen zur Vorlesung Oktober 2009 Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle Prinzip der

Mehr

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik

D. Bestle Technische Mechanik III Schwingungen und Hydromechanik D. Bestle Technische Mechanik III Schwingungen und Hydromechanik Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. Hon. Prof. (NUST) D. Bestle 1 Inhalt

Mehr

9 Erzwungene Schwingungen durch verteilte Kräfte

9 Erzwungene Schwingungen durch verteilte Kräfte 57 9 Erzwungene Schwingungen durch verteilte Kräfte Wirken auf ein kontinuierliches System verteilte zeitveränderliche Kräften bzw. Momente, entstehen erzwungene Schwingungen. In diesem Fall sind die partiellen

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

10 Erzwungene Schwingungen durch inhomogene Randbedingungen

10 Erzwungene Schwingungen durch inhomogene Randbedingungen 63 10 Erzwungene Schwingungen durch inhomogene Randbedingungen Schwingungen eines kontinuierlichen Systems lassen sich nicht nur durch verteilte Kräfte, sondern auch durch zeitveränderliche Bindungen an

Mehr

Lösungen der Übungsaufgaben TM II Dynamik

Lösungen der Übungsaufgaben TM II Dynamik L Lösungen der Übungsaufgaben TM II Dynamik Einleiung und Grundlagen Aufgabe a) ẋ() A cos B sin, ẋ. () A 2 sin B 2 cos 2 x() b) ẋ() C sin, ẋ. () C 2 cos 2 x() c) ẋ Ce cos Ce sin, ẋ. Ce 2 2 cos 2 sin d)

Mehr

8 Freie Schwingungen kontinuierlicher Systeme

8 Freie Schwingungen kontinuierlicher Systeme 51 Freie Schwingungen sind Lösungen der partiellen Differentialgleichung gegebene Anfangs- und Randbedingungen. Das Vorgehen ist die eindimensionale Wellengleichung und die Balkenbiegung einheitlich und

Mehr

5 Kontinuierliche Schwingungssysteme

5 Kontinuierliche Schwingungssysteme 31 Die bisher betrachteten diskreten Schwingungssysteme bestehen aus konentrierten massebehafteten Körpern, die an diskreten Stellen über Bindungen gekoppelt sind und damit über eine endliche Zahl f von

Mehr

4 Erzwungene Schwingungen konservativer Schwingungssysteme

4 Erzwungene Schwingungen konservativer Schwingungssysteme 23 4 Erzwungene Schwingungen konservativer Schwingungssysteme Die allgemeine Lösung einer inhomogenen linearen Schwingungsgleichung findet man durch Überlagerung der homogenen Lösung (freie Schwingungen)

Mehr

Lösungen TM I Statik und Festigkeitslehre

Lösungen TM I Statik und Festigkeitslehre Technische Mechanik I L Lösungen TM I Statik und Festigkeitslehre Modellbildung in der Mechanik N Pa (Pascal). m.4536kg.38slug [a] m, [b] dimensionslos, [c] m, [d] m Dichte: kgm 3.94 3 slugft 3 Geschwindigkeit:

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Technische Mechanik II

Technische Mechanik II INSTITUT FÜR MECHANIK Technische Universität Darmstadt Prüfung Technische Mechanik II Prof. W. Becker Prof. D. Gross Prof. P. Hagedorn Jun. Prof. R. Müller am 5. Juli 005 (Name) (Vorname) (Matr.-Nr.) (Studiengang)

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Lösung zu Übungsblatt 3

Lösung zu Übungsblatt 3 Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik. Ebenes Pendel (*) Lösung zu Übungsblatt 3 Lagrange-Formalismus, Systeme von Schwingungen Man betrachte ein ebenes Doppelpendel

Mehr

15 Knickung. Vorüberlegung L 2. Störung durch Auslenkung. Gleichgewichtsbetrachtung L 2 M A. Auslenkmoment Rückstellmoment. L w.

15 Knickung. Vorüberlegung L 2. Störung durch Auslenkung. Gleichgewichtsbetrachtung L 2 M A. Auslenkmoment Rückstellmoment. L w. 9 5 Knickung Die bisherigen Betrachtungen führten jeweils auf einen proportionalen Zusammenhang zwischen Belastung und Verformung. Dies gilt auch für Stäbe unter Druckspannungen, die dadurch gestaucht

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 16/17, 25.2.217 1. Aufgabe: (TM3) a g y a S v S ϕ x m P A 1111111 1111111 1111 1111 Die abgebildete homogene

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 17. Januar 26 Übungsblatt 9 Lösungsvorschlag 4 Aufgaben,

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

3 Freie Koppelschwingungen konservativer Schwingungssysteme

3 Freie Koppelschwingungen konservativer Schwingungssysteme 17 3 Freie Koppelschwingungen onservativer Schwingungssysteme Das Eigenschwingungsverhalten ungedämpfter Systeme ohne äußere Erregung ann durch trigonometrische Funtionen beschrieben werden, deren Frequenzen

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen Physik Vektoren Bewegung in drei Dimensionen y (px) ~x x (px) Spiele-Copyright: http://www.andreasilliger.com/index.php Richtung a b b ~x = a Einheiten in Richtung x, b Einheiten in Richtung y y (px) ~x

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Allgemeine Mechanik Musterlo sung 5.

Allgemeine Mechanik Musterlo sung 5. Allgemeine Mechanik Musterlo sung 5 U bung HS 203 Prof R Renner Gekoppelte Pendel Wir betrachten ein System aus zwei gleichen mathematischen Pendeln der La nge l = l2 = l mit Massen m = m2 = m im Schwerefeld

Mehr

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X:

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X: Eindimensionale Kontinuumsschwingungen II Kontinuumsmechanik 05. Übungsblatt, WS 2012/13, S. 1 1 Balkenschwingung Wir beginnen mit der Herleitung der Bewegungsdifferentialgleichung / Feldgleichung für

Mehr

4. Einführung in die Baudynamik

4. Einführung in die Baudynamik Baustatik III SS 2017 4. Einführung in die Baudynamik 4.1 Allgemeine Vorbemerkungen 4.1.1 Bedeutungen der Baudynamik 4.1.2 Grundbegriffe und Klassifizierung 4.1.3 Modellierung der Bauwerksschwingungen

Mehr

Benennung. Nennmaß. Nullinie. lstmab. Grenzmaß Höchstmaß. Mindestmaß. PaBmaB. GrenzabmaB Oberes Grenzabmaß Unteres GrenzabmaB Maßtoleranz

Benennung. Nennmaß. Nullinie. lstmab. Grenzmaß Höchstmaß. Mindestmaß. PaBmaB. GrenzabmaB Oberes Grenzabmaß Unteres GrenzabmaB Maßtoleranz Maßtleranzen A=0 A: G-N Au = Gr-N f = G-G, f = A-Äi + Au=0 Ubermaß Passung mit Ubergangstleranzf eld System,, Einheitsbhrung " maß System,, Einheitswelle,, Benennung Nennmaß Nullinie lstmab Grenzmaß Höchstmaß

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 016/17 Übung 4 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) A. Übungen A.1. Schwingung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

1 2 x x. 1 2 x 4

1 2 x x. 1 2 x 4 S. Potenzfunktionen mit rationalen Exponenten und ihre Ableitung Zuordung f(x) = x g(x) = x h(x) = x k(x) = x p(x) = x 0, q(x) = x r(x) = x s(x) = x, 6 7 Wurzelfunktionen a) f(x) = x + D = [ ; [ f '(x)

Mehr

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z (ZUSENFSSUNG) rbeitsblätter. LLGEEINES. Sstem und Belastung Längsansicht: p( x) z, w x, u Biegesteifigkeit EI h Bettung c l Querschnittsdarstellung: p( x) p ( x) ( verschmiert) z h Bettung c b Bemerkung:

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0,

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0, Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 : PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Nachklausur vom 28. Oktober 2009 Aufgabe : Doppelpendel

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Allgemeine Mechanik Musterlösung 5.

Allgemeine Mechanik Musterlösung 5. Allgemeine Mechanik Musterlösung 5. HS 014 Prof. Thomas Gehrmann Übung 1. Rotierende Masse. Eine Punktmasse m rotiere reibungslos auf einem Tisch (siehe Abb. 1). Dabei ist sie durch einen Faden der Länge

Mehr

Chapter 1 : þÿ G r a t i s - W e t t e n b e t a t h o m e c h a p t e r

Chapter 1 : þÿ G r a t i s - W e t t e n b e t a t h o m e c h a p t e r Chapter 1 : þÿ G r a t i s - W e t t e n b e t a t h o m e c h a p t e r þÿ o n s h o w i n t h e i r n e w h o m e a t t h e 6 0, 0 0 0 c a p a c i t y O l y m p i c S t a d i u m i n S t r a t f o r

Mehr

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1)

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1) Einsteinufer 5, 1587 Berlin 3.Übungsblatt - S. 1 Knicken SS 21 Aufgabe 1 Die (homogene) Knickdifferentialgleichung lautet: Ein geeigneter Ansatz zur Lösung lautet: w + α 2 w = mit α 2 := F (1) w = Acos(αx)

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2 Baudynamik Jan Höffgen 8. Februar 204 Inhaltsverzeichnis Koordinatensysteme 2 2 Bewegungsgleichungen 2 2. Allgemeines................................................ 2 2.2 Synthetische Methode nach d Alembert................................

Mehr

2ml2 folgt die Form der Phasenraumtrajektorien zu

2ml2 folgt die Form der Phasenraumtrajektorien zu PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt WS 8/9 3..9. Phasenraumportrait eines Fadenpendels. Eine Masse m sei an einer masselosen Stange der Länge l aufgehängt,

Mehr

1. Einführung. Baudynamik (Master) SS 2017

1. Einführung. Baudynamik (Master) SS 2017 Baudynamik (Master) SS 2017 1. Einführung 1.1 Bedeutungen der Baudynamik 1.2 Grundbegriffe und Klassifizierung 1.3 Modellierung der Bauwerksschwingungen LEHRSTUHL FÜR BAUSTATIK 1 Baudynamik (Master) SS

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Chapter 1 : þÿ b e t a t h o m e I n d i e n c h a p t e r

Chapter 1 : þÿ b e t a t h o m e I n d i e n c h a p t e r Chapter 1 : þÿ b e t a t h o m e I n d i e n c h a p t e r þÿ h o m e C a s i n o H i g h r o l l e r B o n u s C o d e 1. 0 0 0 A u f d e r W e b s e i t e v o n b e t - a t -. h ö c h s t e n B a l l

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisschleuder Ein Stein der Masse m = 0, 2kg wird an einer 0, 5m

Mehr

Anwendungen der Integralrechnung

Anwendungen der Integralrechnung Anwendungen der Integrlrechnung 8. Flächeninhlt und Flächenschwerpunkt............... 4 8. Kurvenlänge............................. 7 8. Rottionskörper........................... 9 8.3 Whrscheinlichkeitsverteilungen

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Chapter 1 : þÿ b e t a t h o m e 5 P l ä t z e c h a p t e r

Chapter 1 : þÿ b e t a t h o m e 5 P l ä t z e c h a p t e r Chapter 1 : þÿ b e t a t h o m e 5 P l ä t z e c h a p t e r þÿ u n d g e h z u m M e n ü & q u o t ; V e r a n t w o r t u n g s b e w u s s t e s S p i e l e n & q u o t ; : S e l b s t a u s s c h l

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester 2005-06 vom 21. Januar 2006 1. Sei (N, v) Peano-Menge

Mehr

Stundenplan 2016/2017 ab Mo Di Mi Do Fr D LEE 105 SP TS SW M HZ 105 A *LRS GI 105 *LRS WI 104 E5 FOL 105

Stundenplan 2016/2017 ab Mo Di Mi Do Fr D LEE 105 SP TS SW M HZ 105 A *LRS GI 105 *LRS WI 104 E5 FOL 105 ischöfliches Pius-Gymnasium achen D-0, Eupener Str. 8 SLZURG Stundenplan 0/0 ab.08.0 Untis 0.9.0 KU GI ZS EK PM 0 D LEE 0 E FOL 0 PK LEE 0 MU GS M *Mes LEE KP M HZ 0 M HZ 0 SP TS SW E FOL 0 D LEE 0 E FOL

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Aufgabe 1 Hook sches Gesetz für ein Federpendel Bei einer Feder, für die das Hook sche Gesetz gilt, ist die rücktreibende Kraft F F proportional

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

ISBN ISBN

ISBN ISBN .» 0 .» 0 6.4.75 9.55 47 : :.. 47 :.. / [.]. :... 0. 4. :. ISBN. -. 05.07.05 -. : 6.4.75 : 9.55 ISBN 978-5-788-064-7 0 -.. - -. 4 6................ 7 7 9 6 9.. -.........................4.4....4.....4.....4.4.4.5...4.6............4....4....4.

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

rüv-getestet DasDo-it-yoursetf-Magazin +q;* &,',, -*# Sonderdruck 9 Werkstatt-Sauger * Mr(nRcHER Testsieger: lillffii TESTSIEGER ..

rüv-getestet DasDo-it-yoursetf-Magazin +q;* &,',, -*# Sonderdruck 9 Werkstatt-Sauger * Mr(nRcHER Testsieger: lillffii TESTSIEGER .. üv- DD--y-Mz +q;* &' "4 -*# S l M 1112007 9 W-S T * M(RHER T: % TESTSEGER TEST & TECHNK Tä;P;'G Sz ü E ü W? 0 vll v -Ml ü w ü E? S l w T w Mä Sä Pxpü p - zw j Dzp v l : A v Spä wä A Ewz K M P 200 E ['ä

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 30. 11. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Eindimensionale Probleme. Teilchen in der Box: Quantisierung für gebundene Teilchen. x L. gesucht: Lösungen der zeitunabhängigen Schrödingergleichung

Eindimensionale Probleme. Teilchen in der Box: Quantisierung für gebundene Teilchen. x L. gesucht: Lösungen der zeitunabhängigen Schrödingergleichung indimensionale Probleme Teilchen in der Box: Quantisierung für gebundene Teilchen x 0 V ( x ) 0 0 x L x L 0 L p d Hxp ( ) Vx ( ) Vx ( ) m m dx gesucht: Lösungen der zeitunabhängigen Schrödingergleichung

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Mathematische Methoden der Physik I

Mathematische Methoden der Physik I Karl-Heinz otze Mathematische Methoden der Physik I Nachschrift des Vorlesungs-Manuskripts und A TEX-Satz von Simon Stützer Jena, November 2009 Inhaltsverzeichnis 9 Gewöhnliche Differentialgleichungen

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr