4. Übung zur Linearen Algebra I -

Größe: px
Ab Seite anzeigen:

Download "4. Übung zur Linearen Algebra I -"

Transkript

1 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a 1, a 2 ) (b 1, b 2 ) := (a 1 +b 1, a 2 +b 2 ) und (a 1, a 2 ) (b 1, b 2 ) := (a 1 b 1, a 2 b 2 ) (i) (Z Z,, ) ist ein Ring mit Eins (ii) R := {(a, b) Z Z b = 0} ist ein Unterring mit Eins (iii) Ist der Ring (Z, +, ) zu R isomorph? Zu (i): (Z 2,, ) ist ein Ring mit 1, wenn (Z 2, ) eine abelsche Gruppe ist und (Z 2, ) eine Halbgruppe mit 1 ist und die Distributivgesetzte für und gelten. Das Z 2 ist klar. Erstmal die Verknüpfungseigenschaften prüfen. Assoziativität: (x 1, x 2 ), (y 1, y 2 ), (z 1, z 2 ) Z 2 ((x 1, x 2 ) (y 1, y 2 )) (z 1, z 2 ) = (x 1 + y 1, x 2 + y 2 ) (z 1, z 2 ) = (x 1 + y 1 + z 1, x 2 + y 2 + z 2 ) = (x 1, x 2 ) (y 1 + z 1, y 2 + z 2 ) = (x 1, x 2 ) ((y 1, y 2 ) (z 1, z 2 )) Dieselbe Rechnung funktioniert für und. und sind auch beides kommutative Verknüpfungen: (x 1, x 2 ), (y 1, y 2 ) Z 2 (x 1, x 2 ) (y 1, y 2 ) = (x 1 y 1, x 2 y 2 ) = (y 1 x 1, y 2 x 2 ) = (y 1, y 2 ) (x 1, x 2 ) Außerdem gelten die Distributivgesetze, denn 1

2 (x 1, x 2 ) ((y 1, y 2 ) (z 1, z 2 )) = (x 1, x 2 ) (y 1 + z 1, y 2 + z 2 ) = (x 1 (y 1 + z 1 ), x 2 (y 2 + z 2 )) = (x 1 y 1 + x 1 z 1, x 2 y 2 + x 2 z 2 ) = (x 1 y 1, x 2 y 2 ) (x 1 z 1, x 2 z 2 ) = ((x 1, x 2 ) (y 1, y 2 )) ((x 1, x 2 ) (z 1, z 2 )) Das andere Distributivgesetz ergibt sich aus der Kommutativität der beiden Verknüpfungen und dem schon gezeigten D-Gesetz. Außerdem gibt es eine 1 und eine 0 und -Inverse: 1 = (1, 1) denn (a, b) Z 2 : (1, 1) (a, b) = (1 a, 1 b) = (a, b) und 0 = (0, 0) denn (a, b) Z 2 : (0, 0) (a, b) = (0 + a, 0 + b) = (a, b) (a, b) = ( a, b) denn (a, b) Z 2 : ( a, b) (a, b) = (0, 0) Damit ist (i) nachgewiesen. Zu (ii): Da Assoziativität, Kommutativität und die Distributivgesetzte für Z 2 gelten, sind sie auch für Teilmengen, insbesondere R, war. (R, ) ist eine Untergruppe, da für R das Untergruppenkriterium gilt: a, b R : a ( b) = (a 1, 0) ( b 1, 0) = (a 1 b 1, 0) R Außerdem ist R -abgeschlossen: a, b R : a b = (a 1, 0) (b 1, 0) = (a 1 b 1, 0) R Es gibt auch eine 1 R = (1, 0) in R, da a R : 1 R a = (1, 0) (a, 0) = (1 a, 0) = a Zu (iii): Betrachte die Abbildung f : Z R mit f(x) = (x, 0). Wir wollen zeigen, daß es sich um einen bijektiven Ringhomomorphismus handelt (einen Isomorphismus). f ist offensichtlich surjektiv und injektiv: Surjektivität: Sei y R. x Z sodaß y = (x, 0). f(x) = y. Injektivität: Seien x, y Z sodaß (x, 0) = f(x) = f(y) = (y, 0). Dann folgt x = y (Gleichheit für Tupel) Damit haben wir erstmal eine Bijektion zwischen den Mengen R und Z. f besitzt aber auch die Homomorphismus Eigenschaften: f(a) f(b) = (a, 0) (b, 0) = (a b, 0) = f(a b) f(a) f(b) = (a, 0) (b, 0) = (a + b, 0) = f(a + b) Deshalb sind die beiden Ringe isomorph. 2

3 Aufgabe 14 Man zeige, daß es bis auf Isomorphie höchstens einen Körper der Ordnung 3 gibt. Bemerkung (ohne Beweis): Die Ordnung eines endlichen Körpers ist stets Primzahlpotenz. Ist umgekehrt p a Primzahlpotenz, so gibt es bis auf Isomorphie genau einen Körper der Ordnung p a. Wir gehen nach dem Sudoku-Prinzip des schrittweisen Ausfüllens und Einhaltens bestimmter Regeln vor. In einem Körper gilt definitionsgemäß 1 0. Bezeichne x das dritte Element, also K = {0, 1, x}. Folgende Regeln ergeben sich für die Verknüpfungstabellen: Symmetrie entlang der Hauptdiagonalen (Kommutativität) + Tabelle: Zeilen und Spalten sind Permutationen von K (Inverse existieren k) Tabelle: Zeilen und Spalten (ausser 0-Zeile und 0-Spalte) sind Permutationen von K\{0} ( Inverse für K\{0}) k K : 1 k = k (Definition von 1) k K : 0 + k = k (Definition von 0) k K : 0 k = 0 (Folgerung aus den Körper-Axiomen) Daraus ergeben sich genau diese beiden Verknüpfungstabellen: x 0 1 x x x x x x 0 1 x 0 x 1 Da es in der Aufgabe heißt höchstens einen Körper der Ordnung 3 verzichte ich auf den Nachweis der Distributivgesetzte und der Assoziativität, die notwendig wären, um zu zeigen, daß es einen Körper der Ordnung 3 gibt. Aufgabe 15 Ein Ring (R, +, ) heißt nullteilerfrei, wenn gilt: a, b R : a b = 0 a = 0 b = 0 Man zeige: Ist (R, +, ) nullteilerfrei, so gilt die Kürzungsregel, d.h.: a, b, c R : (ab = ac a 0) b = c 3

4 Sei also ein Ring R nullteilerfrei und a, b, c R, a 0 sodaß ab = ac. Falls wir Glück haben gibt es ein multiplikativ-inverses zu a (z.b. in R = Q). Die Kürzungregel gilt aber auch in R = Z, wo nur die 1 ein m-inverses besitzt. Das liegt an der Distributivität, der Existenz von additativ-inversen, der Nullteilerfreiheit und daran, daß a 0: ab = ac ab ac = 0 a(b c) = 0 b c = 0 b = c Der Ring aus Aufgabe 13 dagegen ist nicht nullteilerfrei und man darf in ihm nicht die Kürzungsregel verwenden. Zum Beispiel: a = (3, 0) 0, b = (0, 10), c = (0, 4) ab = ac aber b c. Aufgabe 16 Auf F := {f f : R R} werden 2 Verknüpfungen definiert durch (f + g)(a) := f(a) + g(a) und (f g)(a) := f(a) g(a) a R (i) Ist (F, +, ) ein Ring? (ii) Ist A := {f F f(3) = 0} ein Unterring? (iii) Ist B := {f F f(7) = 2 + f(1)} ein Unterring? Der Nachweis, daß (F, +, ) ein Ring ist erfordert viele Einzelnachweise. Wiederholung: Zwei Funktionen f, g : D R sind gleich, genau dann wenn d D : f(d) = g(d). Nachweis Assoziativität. f, g, h F : (f + (g + h))(x) = f(x) + (g + h)(x) = f(x) + g(x) + h(x) f + (g + h) = (f + g) + h = (f + g)(x) + h(x) = ((f + g) + h)(x) Genauso für. Nachweis Kommutativität. f, g F : (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x) f + g = g + f Die besonderen Ringelemente sind: 1 : R R, x 1, denn f F : f 1 = f(x) 1(x) = f(x) 0 : R R, x 0, denn f F : f + 0 = f(x) + 0(x) = f(x) f F : f, x f(x), denn f(x) + f (x) = 0 4

5 Nachweis des ersten Distributivgesetzes: : (f (g + h))(x) = f(x) (g + h)(x) = f(x) (g(x) + h(x)) = f(x) g(x) + f(x) h(x) = (f g)(x) + (f h)(x) = ((f g) + (f h))(x) f (g + h) = (f g) + (f h) Das zweite folgt aus der Kommutativität der Verknüpfungen. Also ist (F, +) eine abelsche Gruppe. Zu (ii): A ist ein Unterring von R. Wie bei Aufgabe 13 müssen nur noch das Untergruppenkriterium und die -Abgeschlossenheit nachgewiesen werden. a, b A : a, b A : (a b)(3) = a(3) b(3) = 0 a b A (a b)(3) = a(3) b(3) = 0 a b A Zu (iii): B ist kein Unterring von R, da diese Menge nicht +-abgeschlossen ist: Seien f, g B beliebig. Untersuche die Funktion (f + g) an der Stelle 7. Es wird gefordert, daß (f + g)(7) = 2 + (f + g)(1). Aber (f + g)(7) = f(7) + g(7) = 4 + f(1) + g(1) = 4 + (f + g)(1). Also: f, g B f + g / B 5

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) 15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle

Mehr

Lineare Algebra I. Lösung 3.1:

Lineare Algebra I. Lösung 3.1: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei

Mehr

1.4 Gruppen, Ringe, Körper

1.4 Gruppen, Ringe, Körper 14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a, b a b Die Verknüpfung heißt assoziativ falls gilt: a (b c = (a b c a, b, c M; kommutativ falls

Mehr

15. Gruppen, Ringe und Körper

15. Gruppen, Ringe und Körper Chr.Nelius: Lineare Algebra II (SS2005) 1 15. Gruppen, Ringe und Körper A) Mengen mit Verknüpfungen (15.1) DEF: Eine Verknüpfung (oder Rechenoperation) auf einer nichtleeren Menge M ordnet je zwei Elementen

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

7. Ringe und Körper. 7. Ringe und Körper 51

7. Ringe und Körper. 7. Ringe und Körper 51 7. Ringe und Körper 51 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

Gruppen, Ringe, Körper

Gruppen, Ringe, Körper Gruppen, Ringe, Körper Martin Gubisch Lineare Algebra I WS 2007/2008 Eine Gruppe G ist eine Menge X mit einer Veknüpfung, so dass gelten: (1) x, y, z X : (x y) z = x (y z). (2) e X : x X : e x = x = x

Mehr

Lineare Algebra und Analytische Geometrie I*

Lineare Algebra und Analytische Geometrie I* Lineare Algebra und Analytische Geometrie I* Prof. Dr. Jürg Kramer Mitschrift von Michael Kreikenbaum Version vom 27. Juni 2007 2 Inhaltsverzeichnis 0 Gruppen, Ringe, Körper 5 0.1 Mengentheoretische Grundlagen........................

Mehr

Lösungen zu Kapitel 8

Lösungen zu Kapitel 8 Lösungen zu Kapitel 8 Lösung zu Aufgabe 1: M offenbar Wir setzen A = M\ A. Für A, B P (M) gilt wegen A, B A B = (A\B) (B\A) = A B + A B, wobei + die disjunkte Vereinigung der beteiligten Mengen bedeutet.

Mehr

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch): Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen

Mehr

Algebraische Strukturen - Aufgabe 4a

Algebraische Strukturen - Aufgabe 4a Algebraische Strukturen - Aufgabe 4a Behauptung M {a, b, c, d Z 4 ad bc } bildet mit * eine kommutative Gruppe z.z.:. M ist unter der Verknüpfung * abgeschlossen, d.h. a, b, c, d, e, f, g, h Z 4 a, b,

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :

Mehr

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Für die Abgabe der Bearbeitungen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Chinesischer Restsatz für Ringe

Chinesischer Restsatz für Ringe Chinesischer Restsatz für Ringe Lena Wehlage 22. Mai 2017 1 1 Einleitung Ziel dieses Vortrags zum allgemeinen chinesischen Restsatz ist es, den im letzten Vortrag kennengelernten chinesischen Restsatz

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine 30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,

Mehr

Mengenlehre: Mächtigkeit (Ordnung) einer Menge

Mengenlehre: Mächtigkeit (Ordnung) einer Menge Mengenlehre: Mächtigkeit (Ordnung) einer Menge Def. Seien A, B Mengen. Wir sagen, dass A höchstens gleichmächtig zu B ist, falls es eine injektive Abbildung f : A B gibt. Schreibweise: A B. Wir sagen,

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Schulstoffbeispiele 1. Lineare Gleichungssysteme. Lösen Sie die folgenden linearen Gleichungssysteme.

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist.

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist. 5.4 Untergruppen Definition 84 Eine Unteralgebra T,, 1 einer Gruppe G = S,, 1 heißt Untergruppe von G, falls T,, 1 eine Gruppe ist. Bemerkung: Nicht jede Unteralgebra einer Gruppe ist eine Untergruppe!

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch 3. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 3.1 Sei I eine Indexmenge und A α für jedes α I eine

Mehr

Ringe und Module Im folgenden sind alle Ringe frei wählbar (nicht notwendigerweise kommutativ)

Ringe und Module Im folgenden sind alle Ringe frei wählbar (nicht notwendigerweise kommutativ) Ringe und Module Im folgenden sind alle Ringe frei wählbar (nicht notwendigerweise kommutativ) DEFINITION (1.1): Seien R, S zwei Ringe. Eine Abbildung Ringhomomorphismus, wenn für alle x, y R gilt (1)

Mehr

Die umgekehrte Richtung

Die umgekehrte Richtung Die umgekehrte Richtung Satz 95 Sei n N, n 2. Dann gilt: b n 1 1 mod n für alle b Z n \ {0} = n ist prim. Beweis: [durch Widerspruch] Annahme: r n für ein r N, r > 1. Dann also r n 1 1 (r mod n) n 1 1

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

3. Übung zur Linearen Algebra I -

3. Übung zur Linearen Algebra I - 3. Übung zur Linearen Algebra I - en H. Klarner FU Berlin. WS 009-0. Aufgabe 9 Man gebe eine Halbgruppe (H, ) an, die keine Gruppe ist, aber die beiden folgenden Eigenschaften besitzt: (i) e H (ii) g H

Mehr

4 Homomorphismen von Halbgruppen und Gruppen

4 Homomorphismen von Halbgruppen und Gruppen 4 Homomorphismen von Halbgruppen und Gruppen Bei der Betrachtung der Gruppe S 3 hatten wir auf die Ähnlichkeit im Verhalten der Permutationen von 1,2,3} mit dem der Symmetrien (Deckbewegungen) eines gleichseitigen

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

Kap. II Ringe und Körper

Kap. II Ringe und Körper Chr.Nelius:Grundzüge der Algebra (WS 2005/06) 1 Kap. II Ringe und Körper Zur Untersuchung von Gruppen haben wir einige Methoden herangezogen, die für die Algebra typisch sind: Bildung von Untergruppen

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Kapitel 11. Dimension und Isomorphie

Kapitel 11. Dimension und Isomorphie Kapitel 11. Dimension und Isomorphie Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008

Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008 Fakultät für Mathematik Institute IAG und IMO Prof. Dr. H. Bräsel/Dr. M. Höding Probeklausur zur Mathematik II (Algebra) Fachrichtungen: IF, CV, CSE und WIF Mai 2008 Bitte in Druckschrift ausfüllen! Name

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Übungsblatt 1: Monoide und Gruppen

Übungsblatt 1: Monoide und Gruppen Übungsblatt 1: Monoide und Gruppen Die schriftlichen Übungsaufgaben sind durch ein S gekennzeichnet und sollen in der Übung der nächsten Woche abgegeben werden. Die Votieraufgaben sind mit einem V gekennzeichnet.

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen 20 3. Ringtheorie 3.1 Definition, Ideale, Kongruenzen Definition 1. a) Eine nicht leere Menge R gemeinsam mit zwei Verknüpfungen + und heißt ein Ring (mit Einselement), wenn folgendes gilt: (R1) (R, +)

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt:

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: 5.6 Satz von Fermat Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: b p b mod p, (falls b 0 mod p : b p 1 1 mod p) (gemeint ist: die Gleichung b p = b gilt modulo p) Diskrete Strukturen 5.6 Satz von

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen

Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen 70 2.5 Ringe und Körper Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen. 2.5.1 Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen +: R R R und : R R R, dann heißt

Mehr

Algebraische Strukturen und Verbände

Algebraische Strukturen und Verbände KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3 D-MATH, D-PHYS, D-CHAB Analsis I HS 016 Prof Manfred Einsiedler Philipp Wirth Lösung 3 Diese Woche werden nur Lösungen zu den Aufgaben 4, 5 und 6 zur Verfügung gestellt 4 a Nach Folgerung (i aus den Axiomen

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert.

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. 3 Moduln Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. Beispiele: (1) (Z n, +, (Z, )), wobei (Z, ) Skalarmultiplikation. k (a 1,...,a n )=(ka 1,...,ka n )inz. (2)

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

3-1 Elementare Zahlentheorie

3-1 Elementare Zahlentheorie 3-1 Elementare Zahlentheorie 3. Der Restklassenring Z/n und seine Einheitengruppe 3.0. Erinnerung: Teilen mit Rest, euklidscher Algorithmus, Bézoutsche Gleichung. Sei n eine feste natürliche Zahl. Sei

Mehr

1.5 Halbgruppen, Monoide und Gruppen

1.5 Halbgruppen, Monoide und Gruppen 24 KAPITEL 1. GRUNDLAGEN Definition Eine Abbildung f : X Y ist eine Relation zwischen X und Y so dass für jedes x X genau ein y Y mit x f y existiert. Bemerkung Aus der Schule kennen Sie den Begriff des

Mehr

3.4 Algebraische Strukturen

3.4 Algebraische Strukturen 3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

Modul Grundbildung Lineare Algebra und analytische Geometrie SoSe 2010

Modul Grundbildung Lineare Algebra und analytische Geometrie SoSe 2010 54 3 GRUPPEN Modul Grundbildung Lineare Algebra und analytische Geometrie SoSe 2010 Hinweis: Dieses Manuskript setzt das Skript aus dem letzten Semester fort. Es ist nur verständlich und von Nutzen für

Mehr

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar). Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 1. Dezember 2010 ZÜ DS ZÜ VI Übersicht: 1.

Mehr

3. Zahlbereiche und algebraische Strukturen

3. Zahlbereiche und algebraische Strukturen technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum Orthogonalität 123 Dienstag, 27. April 04 Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum U von V gilt dann (a) U + U = V, U U = {0}, U, U = 0. (b) (U ) = U. Wir sagen

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Wiederholungsblatt zur Gruppentheorie

Wiederholungsblatt zur Gruppentheorie Wiederholungsblatt zur Gruppentheorie von Christian Elsholtz, TU Clausthal, WS 1999/2000 Um Ihnen zu helfen, die Gruppentheorie zu wiederholen, stelle ich hier einige wichtige Beispiele und einige Lösungen

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 2. Information

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 2. Information Prof. Dr. Bernhard Steffen Dawid Kopetzki Repetitorium zur Vorlesung Mathematik für Informatiker 1 Sommersemester 2015 Probeklausur Nr. 2 Information Diese Aufgaben dienen als Grundlage zur Wiederholung

Mehr

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt Karlsruhe Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Dr. S.Wugalter WS 2017/18 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge

Mehr

Mathematische Grundlagen der Computerlinguistik Algebren

Mathematische Grundlagen der Computerlinguistik Algebren Mathematische Grundlagen der Computerlinguistik Algebren Dozentin: Wiebke Petersen 5. Foliensatz Wiebke Petersen math. Grundlagen 116 Algebren (algebraische Strukturen) Eine Algebra A ist eine Menge A

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen

Mehr

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring 5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

6.1 Präsentationen von Gruppen

6.1 Präsentationen von Gruppen 244 6.1 Präsentationen von Gruppen Es geht jetzt um die Beschreibung von Gruppen durch Erzeugende und Relationen, also z. B. um die genaue Beschreibung dessen, was Zeilen wie die folgende bedeuten: G :=

Mehr

1 Algebraische Grundbegriffe

1 Algebraische Grundbegriffe 1 Algebraische Grundbegriffe Eine Algebra besteht aus einer Trägermenge S sowie eineroder mehreren Operationen. Eine Operation ist dabei eine k-stellige Abbildung, d.h. es gilt für eine Operation f f S

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist.

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist. Prof. Dr. Annette Werner Algebraische Geometrie I (alias Algebra II) SS 05 Übungsaufgaben. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten

Mehr