3 Topologische Gruppen

Größe: px
Ab Seite anzeigen:

Download "3 Topologische Gruppen"

Transkript

1 $Id: topgr.tex,v /05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen Mengen genau die algebraischen Teilmengen des C n sind. Wir wollen uns diese einmal speziell für n = 1 anschauen. Da schon ein einzelnes Polynom von Null verschiedenes Polynom nur endlich viele Nullstellen besitzt, ist jede algebraische Teilmenge A C entweder ganz C oder endlich. Umgekehrt ist jede endliche Teilmenge A = {a 1,..., a n } von C die Nullstellenmenge des Polynoms p(z) = (z a 1 )... (z a n ). Die Zariski-Topologie auf C hat als abgeschlossene Mengen also genau die endlichen Mengen und ganz C. Dies kann man jetzt auf beliebige Mengen X ausdehnen. Ist X eine Menge, so erfüllt die Menge A := {A X A ist endlich} {X} alle Axiome der abgeschlossenen Mengen eines topologischen Raums, und die Komplemente τ := {X\A A A} bilden damit eine Topologie auf X, genannt die cofinite Topologie auf X. Nachdem wir allgemeine topologische Räume eingeführt haben, wollen wir jetzt einige der von metrischen Räumen bekannten Grundtatsachen auf topologische Räume verallgemeinern. Definition 3.3: Sei X ein topologischer. (a) Eine Menge U X heißt Umgebung eines Punktes x X wenn es eine offene Menge V X mit x V U gibt. Insbesondere ist eine offene Menge Umgebung jedes ihrer Punkte. (b) Sei A X. Ein Punkt x A heißt ein innerer Punkt von A, wenn A eine Umgebung von x ist, wenn es also eine offene Menge U X mit x U A gibt. Die Menge aller inneren Punkte von A heißt das Innere von A und wird mit A bezeichnet. Offenbar ist A = {U X U X ist offen mit U A} die größte offene Teilmenge von X, die in A enthalten ist. (c) Sei A X. Da Durchschnitte abgeschlossener Mengen wieder abgeschlossen sind, ist A := {B X B X ist abgeschlossen mit A B} die kleinste A umfassende, abgeschlossene Teilmenge von X. Man nennt die Menge A den Abschluss von A oder die abgeschlossene Hülle von A. 10-1

2 (d) Ist A X, so heißt die Menge A := A\A der Rand von A. Wie in den Übungsaufgaben gezeigt wird, kann man auch den Umgebungsbegriff anstelle des Begriffs der offenen Menge als Grundbegriff zur Definition eines topologischen Raums verwenden. Ebenso kann man auch Axiome an die Abschlußoperation aufstellen und diese als Grundbegriff verwenden. Wir wissen schon das das Innere einer Teilmenge von X offen ist und ihr Abschluss abgeschlossen ist. Weiter gilt: Lemma 3.1: Seien X ein topologischer Raum und A X. Dann ist der Rand A X abgeschlossen in X und X ist die disjunkte Vereinigung X = A (X\A) ( A). Beweis: Wegen A A A ist A (X\A) =. Außerdem ist X\(A (X\A)) = (X\A ) (X\(X\A)) = (X\A ) A = A\A = A, d.h. ist die disjunkte Vereinigung von A, X\A und A. Insbesondere ist X\ A = A (X\A) offen in X, d.h. der Rand A ist abgeschlossen in X. Wie bei metrischen Räumen kann man den Abschluß auch mit Hilfe von Umgebungen beschreiben. Lemma 3.2: Seien X ein topologischer Raum, A X und x X. Dann ist genau dann x A wenn U A für jede Umgebung U von x in X gilt. Beweis: = Wir zeigen die Kontraposition, es gebe also eine Umgebung U von x in X mit A U =. Dann existiert eine offene Menge V X mit x V U und dann ist auch A V =. Es folgt A X\V und X\V ist abgeschlossen in X. Da der Abschluss von A die kleinste A umfassende, abgeschlossene Menge ist, ist damit auch A X\V und wegen x V ist x / A. = Sei B X abgeschlossen in X mit A B. Da X\B X offen mit A (X\B) = ist, ist X\B keine Umgebung von x in X, also x / X\B und somit x B. Damit liegt x in jeder A umfassenden, abgeschlossenen Menge und dies zeigt x A. Insbesondere stimmt der hier der definierte Abschluß im Fall eines metrischen Raums X mit dem in der Analysis Vorlesung definierten Abschluß überein. Wir benötigen auch noch einige Grundkonstruktionen um aus gegebenen topologischen Räume neue zu konstruieren. Die einfachste solche Konstruktion ist die Bildung von Teilräumen. Definition 3.4: Seien (X, τ) ein topologischer Raum und A X eine Teilmenge. Dann ist die Menge τ A := {U A U τ} P(A) 10-2

3 offenbar eine Topologie auf A, genannt die von X auf A induzierte Topologie. Einige andere für diese Topologie verwendete Namen sind Teilraumtopologie, Relativtopologie oder Spurtopologie. Normalerweise werden Teilmengen eines topologischen Raums immer automatisch mit dieser Topologie versehen. Eine weitere Konstruktion besteht in der Produktbildung topologischer Räume. Definition 3.5: Seien X, Y zwei topologische Räume. Dann ist die Menge { } τ := U X Y ((x, y) U) (V X offen) (W Y offen) x V, y W und V W U offenbar eine Topologie auf X Y genannt die Produkttopologie der Topologien von X und Y. Der topologische Raum (X Y, τ) wird dann auch der Produktraum von X und Y genannt. In anderen Worten sind die offenen Mengen in X Y genau die Mengen der Form U = i I V i W i wobei (V i ) i I, (W i ) i I Familien offener Mengen in X beziehungsweise Y sind. Sind X und Y metrische Räume, so kann man auf dem Produkt X Y diverse Metriken einführen, zum Beispiel d 1 ((x 1, y 1 ), (x 2, y 2 )) := d(x 1, x 2 ) 2 + d(y 1, y 2 ) 2, d 2 ((x 1, y 1 ), (x 2, y 2 )) := d(x 1, x 2 ) + d(y 1, y 2 ), d 1 ((x 1, y 1 ), (x 2, y 2 )) := max{d(x 1, x 2 ), d(y 1, y 2 )}. Alle diese Metriken definieren dieselbe Topologie auf X Y nämlich die Produkttopologie. Während es also keine kanonische Produktmetrik gibt, gibt es sehr wohl eine kanonische Produkttopologie. Die letzte unserer Grundkonstruktionen ist jetzt die Quotientenbildung. Definition 3.6: Seien X ein topologischer Raum und eine Äquivalenzrelation auf X. Bezeichne X/ die Menge der Äquivalenzklassen von und sei p : X X/ die Projektion, die jedem x X seine Äquivalenzklasse zuordnet. Dann ist die Menge τ := {U X/ p 1 (U) X ist offen} eine Topologie auf X/, genannt die Quotiententopologie von X modulo der Äquivalenzrelation. In einem allgemeinen topologischen Raum müssen endliche Mengen nicht abgeschlossen sein, nicht einmal wenn sie nur ein Element haben. Beispielsweise ist in der indiskreten Topologie (X, {, X}) jede einelementige Menge dicht, d.h. es gilt {x} = X für jedes x X. In gewissen Sinne hat man in solchen Räumen zu wenige offene Mengen. 10-3

4 Man führt nun gewisse Reichhaltigkeitsaxiome, die sogenannten Trennungsaxiome, ein, die die Existenz vieler offener Mengen fordern. Definition 3.7: Sei X ein topologischer Raum. (a) Der Raum X erfüllt das Trennungsaxiom T 1, wenn es für je zwei Punkte x, y X mit x y stets eine offene Menge U X mit x U und y / V gibt. (b) Der Raum X erfüllt das Trennungsaxiom T 2, wenn es für je zwei Punkte x, y X mit x y stets offene Mengen U, V X mit x U, y V und U V = gibt. In diesem Fall nennt man X auch hausdorffsch oder einen Hausdorffraum. Offenbar impliziert das Trennungsaxiom T 2 auch T 1. Das Axiom T 1 ist offenbar dazu gleichwertig das bei gegebenen y X jeder Punkt x X\{y} ein innerer Punkt von X\{y} ist, das also X\{y} offen ist. Damit haben wir T 1 Für jedes x X ist {x} X abgeschlossen. Beispielsweise ist jeder metrische Raum X hausdorffsch, denn sind x, y X mit x y, so sind die Kugeln U = B ɛ (x) und V = B ɛ (y) mit ɛ := d(x, y)/2 disjunkte offene Umgebungen von x und y. Ein Beispiel eines topologischen Raums der T 1 erfüllt aber nicht hausdorffsch ist, ist etwa X = C n in der Zariski-Topologie. Wie gesagt dienen topologische Räume als Rahmenbegriff um stetige Abbildungen einführen zu können. Wie bei metrischen Räumen hat man einmal die globale Stetigkeit und zum anderen die Stetigkeit in einem einzelnen Punkt. Üblicherweise werden diese wie folgt definiert: Definition 3.8: Seien X, Y zwei topologische Räume und f : X Y eine Abbildung. Dann heißt f stetig, wenn für jede offene Menge U Y auch f 1 (U) X offen ist. Weiter heißt f stetig in einem Punkt x X, wenn es für jede Umgebung U von f(x) in Y stets eine Umgebung V von x in X mit f(v ) U gibt. Etwas symmetrischer kann man die Stetigkeit von f : X Y in einem Punkt x X auch so formulieren, das für jede Umgebung U von f(x) in Y auch f 1 (U) X eine Umgebung von x in X ist. Sind X und Y metrische Räume, so können wir für unsere Umgebungen Kugeln verwenden und sehen das die Stetigkeit von f in x gleichwertig zur üblichen ɛ δ Definition der Stetigkeit in metrischen Räumen ist. Lemma 3.3 (Charakterisierungen stetiger Abbildungen) Seien X, Y zwei topologische Räume und f : X Y eine Abbildung. Dann sind die folgenden Aussagen äquivalent: (a) Die Abbildung f ist stetig. (b) Die Abbildung f ist in jedem Punkt x X stetig. (c) Für jede Teilmenge A X gilt f(a) f(a). 10-4

5 (d) Für jede abgeschlossene Teilmenge A Y ist auch f 1 (A) X abgeschlossen. Beweis: (a)= (b). Sei x X. Sei U eine Umgebung von f(x) in Y. Dann existiert eine offene Menge W Y mit f(x) W U. Da f stetig ist, ist auch V := f 1 (W ) X offen und wegen f(x) W ist x V, d.h. V ist eine Umgebung von x in X mit f(v ) = f(f 1 (W )) W U. Damit ist f in x stetig. (b)= (c). Sei A X. Sei x A und wir wollen f(x) f(a) zeigen. Sei U eine Umgebung von f(x) in Y. Da f in x stetig ist, existiert eine Umgebung V von x in X mit f(v ) U. Nach Lemma 2 ist A V. Damit ist auch f(a V ) f(a) f(v ) f(a) U, d.h. wir haben f(a) U. Nach Lemma 2 ist damit f(x) f(a). Dies zeigt f(a) f(a). (c)= (d). Sei A Y abgeschlossen. Wir betrachten die Menge B := f 1 (A) X. Mit der vorausgesetzten Aussage (c) ergibt sich f(b) f(b) = f(f 1 (A)) A = A. Damit ist auch B f 1 (A) = B B, d.h. es ist B = B. Insbesondere ist f 1 (A) = B abgeschlossen in X. (d)= (a). Sei U Y offen. Dann ist Y \U Y abgeschlossen, und nach unserer Voraussetzung ist auch X\f 1 (U) = f 1 (Y \U) X abgeschlossen, d.h. f 1 (U) X ist offen. Damit ist f stetig. Wir wollen einige einfache Beispiele stetiger Abbildungen festhalten. 1. Seien X, Y zwei topologische Räume und a X. Dann ist die Abbildung f : Y X Y ; y (a, y) stetig. Sei nämlich U X Y offen. Dann existieren Familien offener Mengen (V i ) i I in X und (W i ) i I in Y mit U = i I V i W i. Für jedes i I ist { f 1 W i, a V i, (V i W i ) =, a / V i offen in Y, und damit ist auch f 1 (U) = i I f 1 (V i W i ) offen in Y. Dies beweist die Stetigkeit von f. Analog ist auch g : X X Y ; x (x, b) für jedes b Y stetig. 2. Seien X, Y wieder zwei topologische Räume. Dann sind die beiden Projektionen pr 1 : X Y X; (x, y) x und pr 2 : X Y Y ; (x, y) y stetig. Ist nämlich U X offen, so ist pr 1 1 (U) = U Y offen in X Y, d.h. pr 1 ist stetig. Analog ist auch pr 2 stetig. 10-5

6 3. Sind X, Y, Z drei topologische Räume und f : X Y, g : Y Z stetig, so ist auch die Hintereinanderausführung g f : X Z stetig. Ist nämlich U Z offen, so ist auch g 1 (U) Y offen und damit ist auch (g f) 1 (U) = f 1 (g 1 (U)) X offen. Wir werden später noch einige weitere allgemeine Aussagen über Stetigkeit festhalten, aber zunächst reichen uns die hier angegebenen. Als eine kleine Anwendung der Stetigkeit der Projektionen, wollen wir einmal die folgende oft wichtige Formel einsehen: Sind X, Y zwei topologische Räume, A X und B Y zwei Teilmengen, so gilt für den Abschluß von A B im Produktraum X Y Zunächst ist nämlich A B = A B. (X Y )\(A B) = (X\A) Y X (Y \B) offen in X Y, d.h. A B ist abgeschlossen in X Y mit A B A B, und damit ist auch A B A B. Weiter ergibt die Stetigkeit der Projektionen mit Lemma 3 auch pr 1 (A B) pr 1 (A B) A und analog pr 2 (A B) B, also ist A B A B. Damit ist die Formel A B = A B bewiesen. Wir haben jetzt alles beisammen um endlich den Begriff einer topologischen Gruppe einführen zu können. Definition 3.9: Eine topologische Gruppe ist ein Tripel (G,, τ) bestehend aus einer Gruppe (G, ) und einem topologischen Raum (G, τ), das die folgenden beiden Bedingungen erfüllt: (a) Die Multiplikation : G G G ist stetig. (b) Die Inversenbildung 1 : G G ist stetig. Beispiele topologischer Gruppen sind etwa (R n, +) in der üblichen Topologie und GL n K für K {R, C}. Wir wollen auch noch kurz an einem Beispiel zeigen, dass es tatsächlich nötig ist die Stetigkeit des Invertierens zu fordern, diese folgt nicht aus der Stetigkeit der Multiplikation. Betrachte etwa die additive Gruppe von R in der Sorgenfrey-Topologie. Dann ist die Addition stetig. Seien nämlich x, y R gegeben und sei U eine Umgebung von x + y in der Sorgenfrey-Topologie. Dann existiert ein ɛ > 0 mit [x + y, x + y + ɛ) U. Damit sind [x, x + ɛ/2) eine Umgebung von x und [y, y + ɛ/2) eine Umgebung von y mit [ x, x + ɛ ) [ + y, y + ɛ ) = [x + y, x + y + ɛ) U,

7 und es folgt die Stetigkeit der Addition in (x, y). Dagegen ist die Inversenbildung, also σ(x) = x, nicht stetig. Beispielsweise ist [0, 1) offen in der Sorgenfrey-Topologie aber σ 1 ([0, 1)) = ( 1, 0] ist nicht offen in der Sorgenfrey-Topologie. Wir wollen ein erstes kleines allgemeines Lemma beweisen. Lemma 3.4 (Abschluß von Untergruppen und Normalteilern) Sei G eine topologische Gruppe. (a) Ist H G eine Untergruppe, so ist auch H G eine Untergruppe. (b) Ist N G ein Normalteiler, so ist auch N G ein Normalteiler. Beweis: (a) Zunächst ist 1 H H. Weiter folgen mit Lemma 3 auch und H H = (H H) = (H H) (H H) = H H = H H 1 H 1 = H, und damit ist H G eine Untergruppe von G. (b) Nach (a) ist N G zumindest eine Untergruppe von G. Sei a G. Wir behaupten das die Konjugation mit a, also die Abbildung f : G G; x a 1 xa stetig ist. Zunächst haben wir die folgenden Hintereinanderausführungen stetiger Abbildungen f 1 : G G G G x (a 1, x) a 1 x und f 2 : G G G G x (x, a) xa. Wegen f = f 2 f 1 ist damit auch f stetig. Erneut mit Lemma 3 erhalten wir Damit ist N G ein Normalteiler von G. a 1 Na = f(n) f(n) = a 1 Na = N. 10-7

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.4 2010/05/31 08:41:53 hk Exp hk $ 3 Topologische Gruppen Nachdem wir jetzt gezeigt haben das Quotienten G/H topologischer Gruppen wieder topologische Gruppen sind, wollen wir das Ergebnis

Mehr

Elemente der mengentheoretischen Topologie

Elemente der mengentheoretischen Topologie Elemente der mengentheoretischen Topologie Es hat sich herausgestellt, dass das Konzept des topologischen Raumes die geeignete Struktur darstellt für die in der Analysis fundamentalen Begriffe wie konvergente

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $ $Id: masse.tex,v 1.8 2011/10/31 15:48:07 hk Exp $ 2 Maßräume 2.2 Meßbare Abbildungen Der nächste Grundbegriff sind die meßbaren Abbildungen. Erinnern Sie sich daran das wir eigentlich einen Integralbegriff

Mehr

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen.

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen. Ergänzungen zu offenen und abgeschlossenen Mengen Definition Ist L Teilmenge eines topologischen Raums M, so heißt x L innerer Punkt von L, wenn es eine offene Umgebung von x gibt, die ganz in L liegt.

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

8 KAPITEL 1. GRUNDLAGEN

8 KAPITEL 1. GRUNDLAGEN 8 KAPITEL 1. GRUNDLAGEN Beweis. 1. Sei A X abgeschlossen, dann ist X \ A offen und jede offene Überdeckung von A lässt sich durch Hinzunahme von X \ A auf ganz X fortsetzen. Die Kompaktheit von X erlaubt

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Wir betrachten nun das Deformieren einer Abbildung in eine andere.

Wir betrachten nun das Deformieren einer Abbildung in eine andere. Abschnitt 1 Quotienten Homotopie, erste Definitionen Wir betrachten nun das Deformieren einer Abbildung in eine andere. 1.1 Definition. Seien X, Y topologische Räume und f 0, f 1 : X Y stetige Abbildungen.

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

TOPOLOGIE OLIVER C. SCHNÜRER

TOPOLOGIE OLIVER C. SCHNÜRER TOPOLOGIE OLIVER C. SCHNÜRER Zusammenfassung. Skript zu einer Topologievorlesung mit den Themen Mengentheoretische Topologie und Fundamentalgruppen. Inhaltsverzeichnis 1. Metrische Räume 1 2. Topologische

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G.

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G. 5. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 5.1 Sei G eine Gruppe und seien A, B G Untergruppen

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

Topologie. Ernst Albrecht. Vorlesung im Sommersemester 2007 Universität des Saarlandes Saarbrücken Stand: 20. Juli 2007

Topologie. Ernst Albrecht. Vorlesung im Sommersemester 2007 Universität des Saarlandes Saarbrücken Stand: 20. Juli 2007 Topologie Ernst Albrecht e Vorlesung im Sommersemester 2007 Universität des Saarlandes Saarbrücken Stand: 20. Juli 2007 Inhaltsverzeichnis Kapitel 1. Topologische Grundbegriffe in metrischen und topologischen

Mehr

Topologieseminar. Faserbündel. Michael Espendiller. 16. Oktober 2010 Universität Münster - 3 Faserbündel oder lokal triviale Bündel 4

Topologieseminar. Faserbündel. Michael Espendiller. 16. Oktober 2010 Universität Münster - 3 Faserbündel oder lokal triviale Bündel 4 Wintersemester 2010/2011 Topologieseminar Faserbündel Michael Espendiller 16. Oktober 2010 Universität Münster - Inhaltsverzeichnis 1 Allgemeine Bündel 1 2 Morphismen und Schnitte 2 3 Faserbündel oder

Mehr

Finaltopologien und Quotienten

Finaltopologien und Quotienten Abschnitt 7 Finaltopologien und Quotienten Finaltopologien Durch Umkehren der Pfeile erhalten wir dual zur Definition von Initialtopologien die Definition von Finaltopologien. Wir beginnen mit zwei Definitionen.

Mehr

Skript zur Vorlesung Topologie I

Skript zur Vorlesung Topologie I Skript zur Vorlesung Topologie I Carsten Lange, Heike Siebert Richard-Sebastian Kroll Faszikel 1 Fehler und Kommentare bitte an clange@math.fu-berlin.de Stand: 15. Juni 2010 Fachbereich Mathematik und

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

TOPOLOGIE - SOMMERSEMESTER 2012

TOPOLOGIE - SOMMERSEMESTER 2012 TOPOLOGIE - SOMMERSEMESTER 22 STEFAN FRIEDL Inhaltsverzeichnis Literatur 2 1. Grundlegende Definitionen 4 1.1. Metrische Räume 4 1.2. Mengentheoretische Begriffe 5 1.3. Definition eines topologischen Raums

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $ $Id: hilbert.tex,v 1.5 2013/06/21 13:11:01 hk Exp hk $ 7 Hilberträume In der letzten Sitzung hatten wir die Theorie der Hilberträume begonnen, und sind gerade dabei einige vorbereitende elementare Grundtatsachen

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Topologische Räume und stetige Abbildungen

Topologische Räume und stetige Abbildungen TU Dortmund Mathematik Fakultät Proseminar Lineare Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Julia Schmidt Dozent: Prof. Dr. L. Schwachhöfer Datum: 29.11.2013 Inhaltsverzeichnis

Mehr

Aufgabensammlung Grundbegriffe der Topologie

Aufgabensammlung Grundbegriffe der Topologie Aufgabensammlung Grundbegriffe der Topologie Sommersemester 2015 (Version 21. Juni 2015) Die vorliegende Aufgabensammlung dient als Grundlage für die Übungen zu,,grundbegriffe der Topologie, die die gleichnamige

Mehr

2. Übungsblatt zur Differentialgeometrie

2. Übungsblatt zur Differentialgeometrie Institut für Mathematik Prof. Dr. Helge Glöckner Dipl. Math. Rafael Dahmen SoSe 11 15.04.2011 2. Übungsblatt zur Differentialgeometrie (Aufgaben und Lösungen) Gruppenübung Aufgabe G3 (Atlanten) (a) In

Mehr

Funktionentheorie auf Riemannschen Flächen

Funktionentheorie auf Riemannschen Flächen Funktionentheorie auf Riemannschen Flächen Universität Regensburg Sommersemester 2014 Daniel Heiß: 5: Maximale analytische Fortsetzung 20.05.2014 Abstract Zunächst werden Garben und weitere benötigte Begriffe

Mehr

I. Riemann sche Flächen

I. Riemann sche Flächen I. Riemann sche Flächen In den ersten vier Kapiteln befassen wir uns mit der Theorie der Riemann schen Flächen. Der Leser dürfte bereits verschiedenen Riemann schen Flächen begegnet sein, selbst wenn er

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

2 Differenzierbare Mannigfaltigkeiten

2 Differenzierbare Mannigfaltigkeiten $Id: diff.tex,v 1.12 2014/06/09 16:32:35 hk Exp hk $ 2 Differenzierbare Mannigfaltigkeiten 2.3 Berandete und unberandete Mannigfaltigkeiten In der letzten Sitzung haben wir uns mit orientierbaren Mannigfaltigkeiten

Mehr

Topologische Grundbegriffe II. 1 Begriffe auf Mengen

Topologische Grundbegriffe II. 1 Begriffe auf Mengen Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten der Vorlesung Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Serie 2 Lösungsvorschläge

Serie 2 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 2 Lösungsvorschläge 1. Seien folgende Mengen gegeben: und für a, b R R := [, ] := R {, }, (a, ] := (a, ) { }, [, b) := (, b) { }. Wir nennen

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Vorlesung Topologie. Dirk Kussin

Vorlesung Topologie. Dirk Kussin Vorlesung Topologie (Sommersemester 2008) Dirk Kussin Institut für Mathematik, Universität Paderborn, Germany E-mail address: dirk@math.upb.de Hinweis. Für Druckfehler wird keine Haftung übernommen. Inhaltsverzeichnis

Mehr

Analysis 2. Contents. Torsten Wedhorn. June 12, Notation. Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen

Analysis 2. Contents. Torsten Wedhorn. June 12, Notation. Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen Analysis 2 Torsten Wedhorn June 12, 2012 Notation Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen Zahlen. Contents 12 Metrische Räume 2 (A) Definition metrischer Räume........................

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Vorlesungsmanuskript zu. Topologie. Werner Balser Institut für Angewandte Analysis. Wintersemester 2008/09

Vorlesungsmanuskript zu. Topologie. Werner Balser Institut für Angewandte Analysis. Wintersemester 2008/09 Vorlesungsmanuskript zu Topologie Werner Balser Institut für Angewandte Analysis Wintersemester 2008/09 Inhaltsverzeichnis 1 Topologische Räume 5 1.1 Normierte und metrische Räume................................

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x}

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x} $Id: endlich.tex,v 1.4 2009/04/27 13:49:37 hk Exp $ 3 Endliche Körper Wir waren gerade mit dem Beweis von Satz 1 beschäftigt, und hatten die Existenzteile des Satzes bereits eingesehen. Satz 3.1 (Klassifikation

Mehr

Hilfsmittel zur mengentheoretischen Topologie

Hilfsmittel zur mengentheoretischen Topologie Hilfsmittel zur mengentheoretischen Topologie Nicolas Ginoux Universität Regensburg - WS 2008/9 11. Oktober 2012 Das Zeichen *** signalisiert eine Feinheit, die beim ersten Lesen übergangen werden kann.

Mehr

Die Hausdorff-Metrik und Limiten von Mengen

Die Hausdorff-Metrik und Limiten von Mengen Die Hausdorff-Metrik und Limiten von Mengen Jakob Reiffenstein Seminararbeit aus Analysis SS 2017 1 Inhaltsverzeichnis 1 Die Hausdorff-Metrik 3 2 Konvergenz in H(X) 6 3 Kompaktheit in H(X) 8 2 Zusammenfassung

Mehr

Unendliche Gruppen als geometrische Objekte

Unendliche Gruppen als geometrische Objekte Unendliche Gruppen als geometrische Objekte Ralf Meyer Georg-August-Universität Göttingen 12. November 2004 1 Endlich erzeugte Gruppen und die Wortmetrik Wir definieren endlich erzeugte Gruppen und führen

Mehr

Analysis III : Grundbegriffe der Topologie

Analysis III : Grundbegriffe der Topologie Prof. Dr. Christoph Bohle Tübingen WS 2011/12 Analysis III : Grundbegriffe der Topologie Dr. Sebastian Heller 14. Oktober 2011 Im Folgenden sammeln wir einige wichtige topologische Begriffe und Fakten

Mehr

Lösungen zu Aufgaben aus der Topologie

Lösungen zu Aufgaben aus der Topologie Lösungen zu Aufgaben aus der Topologie Übungsaufgabe 2: Idee: Um zu zeigen, dass die verschiedenen Metriken d 1, d 2, d den gleichen Konvergenzbegriff erzeugen, zeigen wir, dass die von ihnen induzierten

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19 Überlagerung I Überlagerung für z z 2 : komplexe Quadratwurzel Christoph Schweigert, Garben p.1/19 Überlagerung II Überlagerung für z z 3 : komplexe dritte Wurzel Christoph Schweigert, Garben p.2/19 Überlagerung

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.9 2011/06/01 15:13:45 hk Exp $ $Id: jordan.tex,v 1.3 2011/06/01 15:30:12 hk Exp hk $ 4 Funktionenfolgen und normierte Räume 4.5 Normierte Räume In der letzten Sitzung hatten wir den Begriff

Mehr

Kapitel 3 Sätze der offenen Abbildung

Kapitel 3 Sätze der offenen Abbildung Kapitel 3 Sätze der offenen Abbildung Wir werden in diesem Abschnitt uns folgender Frage zuwenden: Wann ist ein Morphismus f: G H von topologischen Gruppen offen, d.h. wann gilt für eine offene Menge U

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist.

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist. Prof. Dr. Annette Werner Algebraische Geometrie I (alias Algebra II) SS 05 Übungsaufgaben. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Mengentheoretische Topologie

Mengentheoretische Topologie Lydia Außenhofer SS 2005 Mengentheoretische Topologie 1 Metrische Räume Definition 1.1 Sei X eine Menge. Eine Metrik (metric) ist eine Abbildung d : X X R + 0, die die folgenden Eigenschaften besitzt:

Mehr

Oft gebraucht man einfach nur das Wort Mannigfaltigkeit, und meint eine topologische Banachmannigfaltigkeit. Das kommt auf den Kontext an.

Oft gebraucht man einfach nur das Wort Mannigfaltigkeit, und meint eine topologische Banachmannigfaltigkeit. Das kommt auf den Kontext an. Mannigfaltigkeiten (Version 19.11. 14:30) Eine n-dimensionale topologische Mannigfaltigkeit ist ein topologischer Raum, der lokal homöomorph zum R n ist. Entsprechend könnten wir natürlich auch eine topologische

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Räume und Homöomorphie

Räume und Homöomorphie Abschnitt 1 Räume und Homöomorphie Metrische Räume Eine ebenso richtige wie nichtssagende Antwort auf die Frage, was denn Topologie sei, wäre das Studium stetiger Abbildungen. Stetigkeit kennen wir bisher

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

Kapitel 6. Fixpunkte und semantische Bereiche

Kapitel 6. Fixpunkte und semantische Bereiche Kapitel 6 Fixpunkte und semantische Bereiche Sowohl bei der Definition der operationalen Semantik als auch bei der Definition der mathematischen Semantik haben wir mehr oder weniger explizit Fixpunkte

Mehr

Der Fundamentalsatz der Algebra

Der Fundamentalsatz der Algebra Der Fundamentalsatz der Algebra Vortragsausarbeitung im Rahmen des Proseminars Differentialtopologie Benjamin Lehning 17. Februar 2014 Für den hier dargelegten Beweis des Fundamentalsatzes der Algebra

Mehr

γ(p) = {(P,g) P G P g}. π(g) = {(P,g) P G P g}.

γ(p) = {(P,g) P G P g}. π(g) = {(P,g) P G P g}. Lösungsvorschläge zur Klausur Elementare Geometrie vom 02.08.2017 Aufgabe 1 Es sei P eine nicht kollineare endliche Menge von Punkten in einer affinen Ebene. Weiter sei G die Menge aller Geraden PQ mit

Mehr

Mengentheoretische Topologie

Mengentheoretische Topologie Mengentheoretische Topologie Michael Heusener 1 Uwe Kaiser 2 25. April 2002 1 verwendet im SS 94 und SS 96 2 verwendet im WS 96 Inhaltsverzeichnis Einleitung 1 1 Topologische Räume und Stetige Abbildungen

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

Skript Topologie Universität Basel FS 2015

Skript Topologie Universität Basel FS 2015 Skript Topologie Universität Basel FS 2015 Philipp Habegger 22. April 2015 Inhaltsverzeichnis 0 Einführung 5 0.1 Einleitung................................... 5 0.2 Notation....................................

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Elementare Topologie Astronomisches Sommerlager 2015

Elementare Topologie Astronomisches Sommerlager 2015 Elementare Topologie Astronomisches ommerlager 2015 Wir verwenden folgende Zeichen als Abkürzungen für Ausdrücke der gewöhnlichen pache: heiße»für alle«, heiße»es existiert«, φ ψ heiße»aus φ folgt ψ«,

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

1 Konvergenz im p ten Mittel

1 Konvergenz im p ten Mittel Konvergenz im p ten Mittel 1 1 Konvergenz im p ten Mittel In diesem Paragraphen werden zunächst in Abschnitt 1.1 die L p Räume eingeführt. Diese erweisen sich als vollständige, lineare Räume über R. In

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $ $Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

Kapitel 8 - Kompakte Räume

Kapitel 8 - Kompakte Räume Kapitel 8 - Kompakte Räume Ein Vortrag von Philipp Dittrich nach B.v.Querenburg: Mengentheoretische Topologie Inhalt 8.1 Definition Kompaktheit....................... 2 Beispiel - das Intervall (0,1).....................

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

Grundbegriffe der Topologie

Grundbegriffe der Topologie Grundbegriffe der Topologie Wintersemester 2007/08 Andreas Čap Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A 1090 Wien E-mail address: Andreas.Cap@esi.ac.at Vorwort Inhaltsverzeichnis

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Kompaktheit in topologischen Räumen

Kompaktheit in topologischen Räumen Kompaktheit in topologischen Räumen Joel Gotsch 21. Januar 2011 Inhaltsverzeichnis 1 Notation und Allgemeines 2 2 Definitionen 2 2.1 Allgemeine Definitionen..................... 2 2.2 Globale Kompaktheitseigenschaften...............

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

EINFÜHRUNG IN DIE TOPOLOGIE (SS 2014)

EINFÜHRUNG IN DIE TOPOLOGIE (SS 2014) EINFÜHRUNG IN DIE TOPOLOGIE (SS 2014) BERNHARD HANKE 7.4.14 1. Metrische Räume und topologische Räume Definition 1.1. Ein metrischer Raum ist ein Paar (X, d) bestehend aus einer Menge X und einer Abbildung

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

1.3 Relationen und Funktionen

1.3 Relationen und Funktionen 1.3. RELATIONEN UND FUNKTIONEN 1 1.3 Relationen und Funktionen Es gibt eine Konstruktion (Übungsaufgabe!) einer Klasse (a, b) mit der Eigenschaft (a, b) = (c, d) a = c b = d. Diese Klasse (a, b) heißt

Mehr

2. Stetige Abbildungen

2. Stetige Abbildungen 4 Andreas Gathmann 2. Stetige Abbildungen Nachdem wir im letzten Kapitel topologische Räume eingeführt haben, wollen wir nun Abbildungen zwischen solchen Räumen untersuchen. Wie schon in der Einleitung

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Grundbegriffe der Topologie. Günther Hörmann Fakultät für Mathematik Universität Wien

Grundbegriffe der Topologie. Günther Hörmann Fakultät für Mathematik Universität Wien Grundbegriffe der Topologie Günther Hörmann Fakultät für Mathematik Universität Wien guenther.hoermann@univie.ac.at Sommersemester 2013 Inhaltsverzeichnis 0 Wiederholung: Metrische Räume 1 1 Topologische

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Als Einstieg in die Vorlesung möchte ich zunächst zeigen, dass aus den Grundvorlesungen schon eine ganze Fülle von Beispielen algebraischer Strukturen bekannt sind. Von diesen Beispielen

Mehr

Topologie WS 10/11. Algebraische Topologie SS 11. Sebastian Goette

Topologie WS 10/11. Algebraische Topologie SS 11. Sebastian Goette Topologie WS 10/11 Algebraische Topologie SS 11 Sebastian Goette Einführung Bevor wir mit dem eigentlichen Stoff der Vorlesung beginnen, möchte ich Ihnen ein paar Beispiele geben, zum einen Aussagen,

Mehr