Harmonische Schwingung

Größe: px
Ab Seite anzeigen:

Download "Harmonische Schwingung"

Transkript

1 Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung 1-1

2 Äquivalente Darstellungen sind oder Re c exp(i(ωt δ)) a cos(ωt) + b sin(ωt) mit a = c cos(δ), b = c sin(δ), d.h. (c, δ) sind die Polarkoordinaten von (a, b). Harmonische Schwingung 1-2

3 Beweis: Umrechnung der Parameter: Harmonische Schwingung 2-1

4 Beweis: Umrechnung der Parameter: Formel von Euler-Moivre, e it = cos t + i sin t = cos(ωt δ) = Re e i(ωt δ) Harmonische Schwingung 2-2

5 Beweis: Umrechnung der Parameter: Formel von Euler-Moivre, e it = cos t + i sin t = Additionstheorem cos(ωt δ) = Re e i(ωt δ) c cos(ωt δ) = c (cos(ωt) cos δ + sin(ωt) sin δ) d.h. a = c cos δ, b = c sin δ Harmonische Schwingung 2-3

6 Beweis: Umrechnung der Parameter: Formel von Euler-Moivre, e it = cos t + i sin t = Additionstheorem cos(ωt δ) = Re e i(ωt δ) c cos(ωt δ) = c (cos(ωt) cos δ + sin(ωt) sin δ) d.h. a = c cos δ, b = c sin δ Berechnung von Amplitude und Phase mit c = a 2 + b 2, δ = arctan(b/a) + ϕ 0, für a > 0 sign(y)π/2, für a = 0 ϕ = π, für a < 0 und b 0 π für a < 0 und b < 0 Harmonische Schwingung 2-4

7 Überlagerung harmonischer Schwingungen gleicher Frequenz Die Überlagerung zweier harmonischer Schwingungen (in der Abbildung fett gezeichnet) x k (t) = c k cos(ωt δ k ), k = 1, 2, ist harmonisch mit Amplitude c = c cos(δ 1 δ 2 )c 1 c 2 + c2 2 und Phase arg ( c 1 e iδ 1 + c 2 e iδ 2). x c1 c2 0 δ2/ω δ1/ω t Harmonische Schwingung 3-1

8 Alternativ erhält man aus der Darstellung x k (t) = a k cos(ωt) + b k sin(ωt) für die Amplitude den Ausdruck (a 1 + a 2 ) 2 + (b 1 + b 2 ) 2. Harmonische Schwingung 3-2

9 Beweis: komplexe Form der Überlagerung Re (c 1 e iωt δ 1 + c 2 e iωt δ 2 ) = Re ([c 1 e iδ 1 + c 2 e iδ 2 ]e iωt ) Harmonische Schwingung 4-1

10 Beweis: komplexe Form der Überlagerung Re (c 1 e iωt δ 1 + c 2 e iωt δ 2 ) = Re ([c 1 e iδ 1 + c 2 e iδ 2 ]e iωt ) [...] = ce iδ = z δ = arg ( c 1 e iδ 1 + c 2 e iδ 2) und c 2 = z z = (c 1 e iδ 1 + c 2 e iδ 2 )(c 1 e iδ 1 + c 2 e iδ 2 ) Harmonische Schwingung 4-2

11 Beweis: komplexe Form der Überlagerung Re (c 1 e iωt δ 1 + c 2 e iωt δ 2 ) = Re ([c 1 e iδ 1 + c 2 e iδ 2 ]e iωt ) [...] = ce iδ = z δ = arg ( c 1 e iδ 1 + c 2 e iδ 2) und c 2 = z z = (c 1 e iδ 1 + c 2 e iδ 2 )(c 1 e iδ 1 + c 2 e iδ 2 ) Ausmultiplizieren c 2 = c c 1 c 2 e i(δ 2 δ 1 ) + c 2 c 1 e i(δ 1 δ 2 ) + c 2 2 Harmonische Schwingung 4-3

12 Beweis: komplexe Form der Überlagerung Re (c 1 e iωt δ 1 + c 2 e iωt δ 2 ) = Re ([c 1 e iδ 1 + c 2 e iδ 2 ]e iωt ) [...] = ce iδ = z δ = arg ( c 1 e iδ 1 + c 2 e iδ 2) und c 2 = z z = (c 1 e iδ 1 + c 2 e iδ 2 )(c 1 e iδ 1 + c 2 e iδ 2 ) Ausmultiplizieren c 2 = c c 1 c 2 e i(δ 2 δ 1 ) + c 2 c 1 e i(δ 1 δ 2 ) + c 2 2 e is + e is = 2 cos s = Formel für die Amplitude Harmonische Schwingung 4-4

13 Beispiel: Überlagerung der harmonischen Schwingungen cos(ωt δ k ), δ k = kδ, k = 0,..., n, Harmonische Schwingung 5-1

14 Beispiel: Überlagerung der harmonischen Schwingungen cos(ωt δ k ), δ k = kδ, k = 0,..., n, komplexe Darstellung Überlagerung als Realteil von n e iωt + e i(ωt δ) e i(ωt nδ) = e iωt k=0 e ikδ Harmonische Schwingung 5-2

15 Beispiel: Überlagerung der harmonischen Schwingungen cos(ωt δ k ), δ k = kδ, k = 0,..., n, komplexe Darstellung Überlagerung als Realteil von n e iωt + e i(ωt δ) e i(ωt nδ) = e iωt geometrische Summe mit q = e iδ iωt 1 qn+1 e 1 q k=0 = e iωt 1 ( e iδ) n+1 1 e iδ e ikδ Harmonische Schwingung 5-3

16 Beispiel: Überlagerung der harmonischen Schwingungen cos(ωt δ k ), δ k = kδ, k = 0,..., n, komplexe Darstellung Überlagerung als Realteil von n e iωt + e i(ωt δ) e i(ωt nδ) = e iωt geometrische Summe mit q = e iδ iωt 1 qn+1 e 1 q k=0 = e iωt 1 ( e iδ) n+1 1 e iδ e iϕ e iϕ = 2i sin ϕ mit ϕ = (n + 1)δ/2 bzw. ϕ = δ/2 n+1 iωt e i 2 δ (2i sin n+1 2 e δ) ( sin n+1 2 e i δ 2 (2i sin δ 2 ) = δ ) sin δ 2 e ikδ e i(ωt n 2 δ) Harmonische Schwingung 5-4

17 Beispiel: Überlagerung der harmonischen Schwingungen cos(ωt δ k ), δ k = kδ, k = 0,..., n, komplexe Darstellung Überlagerung als Realteil von n e iωt + e i(ωt δ) e i(ωt nδ) = e iωt geometrische Summe mit q = e iδ iωt 1 qn+1 e 1 q k=0 = e iωt 1 ( e iδ) n+1 1 e iδ e iϕ e iϕ = 2i sin ϕ mit ϕ = (n + 1)δ/2 bzw. ϕ = δ/2 n+1 iωt e i 2 δ (2i sin n+1 2 e δ) ( sin n+1 2 e i δ 2 (2i sin δ 2 ) = δ ) sin δ 2 e ikδ e i(ωt n 2 δ) harmonische Schwingung mit Amplitude sin((n + 1)δ/2)/ sin(δ/2) und Phase (n/2)δ Harmonische Schwingung 5-5

18 Modulierte Schwingung Die Überlagerung zweier Schwingungen c k e iω kt lässt sich als Produkt c(t)e i ωt, c(t) = c 1 e i ωt + c 2 e i ωt, schreiben mit ω = (ω 1 + ω 2 )/2 und ω = (ω 1 ω 2 )/2. Harmonische Schwingung 6-1

19 Modulierte Schwingung Die Überlagerung zweier Schwingungen c k e iω kt lässt sich als Produkt c(t)e i ωt, c(t) = c 1 e i ωt + c 2 e i ωt, schreiben mit ω = (ω 1 + ω 2 )/2 und ω = (ω 1 ω 2 )/2. Die resultierende sogenannte modulierte Schwingung ist nur dann periodisch, wenn das Frequenzverhältnis ω 1 /ω 2 rational ist. Der Betrag der modulierten komplexen Amplitude schwankt zwischen dem minimalen und maximalen Wert c 1 c 2 bzw. c 1 + c 2. Insbesondere ist für gleiche Amplituden c = c 1 = c 2. c(t) = 2c cos( ωt) Harmonische Schwingung 6-2

20 periodische Überlagerung cos t cos(3t) gleiche Amplituden c k und ω 1 ω cos(10t) + cos(12t) Harmonische Schwingung 6-3

21 aperiodische Überlagerung cos t + 2 cos( 5t + π 4 ) Harmonische Schwingung 6-4

22 Beispiel: Überlagerung ebener Schwingungen mit verschiedenen Schwingungsrichtungen (a 1, a 2 ) und (b 1, b 2 ): ( ) ( ) ( ) x(t) a1 b1 = cos(ω y(t) 1 t δ 1 ) + cos(ω 2 t δ 2 ) a 2 b 2 Harmonische Schwingung 7-1

23 Beispiel: Überlagerung ebener Schwingungen mit verschiedenen Schwingungsrichtungen (a 1, a 2 ) und (b 1, b 2 ): ( ) ( ) ( ) x(t) a1 b1 = cos(ω y(t) 1 t δ 1 ) + cos(ω 2 t δ 2 ) Lissajous-Figuren a 2 y b 2 x Parameter: a = (3, 0), ω 1 = 1, δ 1 = 0, b = (0, 4), ω 2 = 4, δ 2 = π/3 Harmonische Schwingung 7-2

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

Elektromagnetische Wellen in Materie

Elektromagnetische Wellen in Materie Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden

Mehr

4. Schwingungen und Wellen

4. Schwingungen und Wellen Bei manchen Systemen (z.b. Fadenpendel) führt die Krafteinwirkung zu sich wiederholenden Vorgängen. Sind diese periodisch, so spricht man von Schwingungsvorgängen (um ortsfeste Ruhelage). Breiten sich

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

1. Elementare Algebra

1. Elementare Algebra 1. Elementare Algebra Mit Ausnahme des Abschnitts 1.3 wiederholen wir in diesem Kapitel einige wichtige Regeln und Formeln aus der Schulmathematik, die erfahrungsgemäß bei den meisten Studenten nicht in

Mehr

Schwingungen. Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist.

Schwingungen. Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist. Schwingungen Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist. Mit Kraft = Masse Beschleunigung, also F = m a, oder F = m ẍ erhalten wir

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Lösungen zum Aufgabenblatt 4:

Lösungen zum Aufgabenblatt 4: Lösungen zum Aufgabenblatt 4: $XIJDE Berechnen Sie die Kapazität eines Plattenkondensators mit der Fläche A 1cm, einem Abstand zwischen den Platten von d 5mm und einem Isoliermaterial mit der Dielektrizitätszahl

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

4. GV: Wechselstrom. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer.

4. GV: Wechselstrom. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer. Physik Praktikum I: WS 005/06 Protokoll zum Praktikum 4. GV: Wechselstrom Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Marcel Müller Versuchstag Dienstag, 0.1.005 Wechselstrom Einleitung Wechselstrom

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

1. Fourierreihe und Fouriertransformation

1. Fourierreihe und Fouriertransformation . Fourierreihe und Fouriertransformation. Motivation Die Fourieranalyse hat in der Quantenmechanik mehrere wichtige Anwendungen. a Basistransformation: Durch Fouriertransformation kann man zwischen Ortsraum

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

4. Übung für Übungsgruppen Musterlösung

4. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, FB Informatik der Universität Hamburg). Übung für Übungsgruppen Musterlösung (N. Stein, Institut für Angewandte Physik,

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Schwingungen und Wellen

Schwingungen und Wellen IV, 1 117 (2015) c 2015 Schwingungen und Wellen Dr. Jürgen Bolik Technische Hochschule Nürnberg ω 0 2 x 0, a A 10 4 10 3 10 2 δ ω 0 =10 4 10 2 0,1 10 0,2 0,4 0,6 1 1 0 0,5 1,0 ω 0 TH Nürnberg 2 Inhaltsverzeichnis

Mehr

Komplexe Zahlen Rechnen mit komplexen Zahlen Anwendungen der komplexen Rechnung. Komplexe Zahlen. Fakultät Grundlagen. Juli 2015

Komplexe Zahlen Rechnen mit komplexen Zahlen Anwendungen der komplexen Rechnung. Komplexe Zahlen. Fakultät Grundlagen. Juli 2015 Komplexe Zahlen Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Komplexe Zahlen Übersicht Komplexe Zahlen 1 Komplexe Zahlen Erweiterung des Zahlbegriffs Definition Darstellung komplexer Zahlen 2 Grundrechenarten

Mehr

PS1. Schwingungen I Version vom 12. April 2016

PS1. Schwingungen I Version vom 12. April 2016 Schwingungen I Version vom 1. April 016 Inhaltsverzeichnis 1 Allgemeine Grundlagen 1.1 Begrie..................................... 1. Schwingungen.................................. 1.3 Freie gedämpfte

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Schwingungen und komplexe Zahlen

Schwingungen und komplexe Zahlen Schwingungen und komplexe Zahlen Andreas de Vries FH Südwestfalen University of Applied Sciences, Haldener Straße 82, D-5895 Hagen, Germany e-mail: de-vries@fh-swf.de Hagen, im Mai 22 (Erste Version: November

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Ergänzungen zur Physik I: Wellen (Zusammenfassung)

Ergänzungen zur Physik I: Wellen (Zusammenfassung) Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

Komplexe Zahlen. Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge:

Komplexe Zahlen. Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge: Komplexe Zahlen Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge: R = R R = {(a, b) a, b R} heißen komplexe Zahlen wenn für die Verknüpfung

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Elektrische Schwingungen und Wellen. Wechselströme. Elektrischer Schwingkreis i. Wiederholung Schwingung ii. Freie Schwingung iii. Erzwungene Schwingung iv. Tesla Transformator 3. Elektromagnetische Wellen

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Übung 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1. Ein U-förmiger Schlauch ist etwa zur Hälfte mit Wasser gefüllt. Wenn man

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Block-Schema eines einfachen Lock-In s

Block-Schema eines einfachen Lock-In s Block-Schema eines einfachen Lock-In s Mixer Input AC-Amplifier u u 3 Low-Pass Filter Output u Referenz Der Mixer u u = U sin( πf ) u = U sin( πf t + Φ) t = u u = UU sin( πft + Φ)sin(πf t + ) 3 Φ Gemäss

Mehr

zum Thema Lissajous-Figuren

zum Thema Lissajous-Figuren Ratsgymnasium Rotenburg Gerberstraße 14 27356 Rotenburg Wümme Facharbeit im Leistungskurs Physik zum Thema Lissajous-Figuren Verfasser: Christoph Siemsen Fachlehrer: Herr Konrad Abgabetermin: 24.05.04

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Schwingungen und Wellen

Schwingungen und Wellen II, 1 110 (2012) c 2012 Schwingungen und Wellen Dr. Jürgen Bolik Georg-Simon-Ohm-Hochschule Nürnberg f (t) e δ t cos(ω t) e δ t t e δ t Georg-Simon-Ohm-Hochschule Nürnberg 2 Inhaltsverzeichnis 1 Schwingungen

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Der Pohlsche Resonator

Der Pohlsche Resonator Physikalisches Praktikum für das Hauptfach Physik Versuch 01 Der Pohlsche Resonator Sommersemester 005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

Übung 2: Spektrum periodischer Signale

Übung 2: Spektrum periodischer Signale ZHAW, SiSy, Rumc, Übung : Spektrum periodischer Signale Augabe Verschiedene Darstellungen der Fourierreihe. Betrachten Sie das periodische Signal s(t) = + sin(π t). a) Bestimmen Sie die A k - und B k -Koeizienten

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übunen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzi, Dr. Volker Körstens, David Maerl, Markus Schindler, Moritz v. Sivers Vorlesun 0..0, Übunswoche

Mehr

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am Übungen zur Vorleung PN1 Löung Übungblatt 12 Beprechung am 22.1.2013 Aufgabe 1: Gedämpfte Schwingung An einer Feder mit der Federhärte 20 N/m hängt eine Kugel der Mae 100g. Die Kugel wird um 10 cm nach

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen

2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen 2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen 2.1 Darstellung und Eigenschaften harmonischer Schwingungen Wegen der elementaren Bedeutung der harmonischen Funktionen werden sowohl

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten 1. Dezember 2004

Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten  1. Dezember 2004 Fourier-Reihen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. Dezember 4 Dieser Artikel gibt eine elementare Einführung in die Theorie der Fourier-Reihen. Er beginnt mit einer kurzen Analyse des

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

Mathematik. Studiengang WIB, IWB. Dozentenexemplar

Mathematik. Studiengang WIB, IWB. Dozentenexemplar Fachhochschule Reutlingen Prof Dr H Jung Fachhochschule Esslingen Prof Dr R Mohr Mathematik im Studiengang WIB, IWB Dozentenexemplar Skript Komplexe Zahlen INHALTSVERZEICHNIS i Inhaltsverzeichnis Komplexe

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr