Sterne - Entwicklung und Ende

Größe: px
Ab Seite anzeigen:

Download "Sterne - Entwicklung und Ende"

Transkript

1 Sterne - Entwicklung und Ende Anja Scharth 23. Januar Einleitung Durch die enorme Anzahl an Sonnen in unserem Universum sind Supernovae kein sehr seltenes Ereignis. Dies macht es besonders interessant sie für physikalische Zwecke zu verwenden. Hierbei unterscheiden wir zwei verschiedene Typen von Supernovae, die Supernovae vom Typ 1 und die Supernovae vom Typ 2. Auf die unterschiedliche Entstehung der beiden Supernovae-Typen werden wir im Verlauf dieses Thesenpapiers noch eingehen. 1.1 Standardkerzen der Astronomie Supernovae des Typs 1 strahlen ungefähr immer dieselbe Helligkeit ab. Dies macht es möglich anhand der auf der Erde beobachteten Helligkeit und der bekannten absoluten Helligkeit einer Supernova dieses Typs die Entfernung der Supernova von der Erde zu bestimmen. Hierfür wird die folgende Formel verwendet: r m M = 2, 5 log 10 ( 32 Lj ) (1) Hierbei ist m die auf der Erde beobachtete Helligkeit, M die absolute Helligkeit der Supernova und r der Abstand der Supernova in Lichtjahren. Die Einheiten für die Helligkeit ist jeweils [m] = 1 mag (Magnitude). Diese Einheit wurde bereits 150 vor Christus von Hipparchos in ihrer Grundform definiert und umfasste sechs Helligkeitsklassen, wobei die hellsten Sterne der ersten Klasse angehörten. In der Moderne wurde dieses Einheitensystem beträchtlich erweitert, sodass nun nicht nur sichtbare Sterne in die Definition einbezogen werden sondern auch Sterne, die nicht mit dem bloßen Auge sichtbar sind. Die Sonne hat zum Beispiel eine scheinbare Helligkeit von -26,8 mag, die Supernova SN2011fn hatte im Maximum ihrer Leuchtstärke eine scheinbare Helligkeit von 10 mag gehabt, unsere Sonne strahlt, da es sich bei mag um eine logarithmische Einheit handelt, also um nahezu 27 Größenordnungen heller als diese Supernova. Die Supernova SN2011fn war bereits mit Feldstechern oder einfachen Teleskopen zu beobachten. Durch die Kenntnis ihrer Helligkeit in ihrem Maximum ist es möglich gewesen zu bestimmen, dass diese Supernova Lichtjahre (Lj) von der Erde entfernt war. Mithilfe der Beobachtungen von Supernovae und der Bestimmung der Entfernung dieser kataklysmischen Ereignisse von der Erde war es Saul Perlmutter, Brian P. Schmidt und Adam Riess möglich zu bestimmen, dass das Universum sich aktuell in einer Phase beschleunigter Expansion befindet. Hierfür haben sie 2011 den Nobelpreis in Physik erhalten. 1.2 Supernovae als astrophysikalisches Labor Im Gegensatz zu Typ 1 Supernovae werden bei Typ 2 Supernovae sehr viele Neutrinos emittiert. Diese Neutrinos können von Neutrinodetektoren, wie zum Beispiel IceCube beobachtet und zur Detektion von Supernovae verwendet werden. Da Neutrinos im Gegensatz zu Photonen nicht von Materie abgebremst werden und die Hülle des sterbenden Sterns schneller für Neutrinos als für Photonen durchsichtig wird, erreichen Neutrinos einer Supernova die Erde durchschnittlich drei Stunden früher als die Photonen. Somit ist es möglich frühzeitig Teleskope auf die Supernova auszurichten und auch die ersten Phasen dieses kosmischen Ereignisses zu beobachten. Ebenso ermöglicht uns die Beobachtung der Neutrinos die Theorien zur Entstehung von Supernovae zu überprüfen und mit entsprechenden Aufbauten Experimente zu Neutrinooszillationen und der Suche nach der Neutrinomasse durchzuführen. 1

2 3 DIE ENTSTEHUNG VON STERNEN 2 2 Überblick über die Entstehung des Universums Das Universum ist vor 13,7 Milliarden Jahren durch den Urknall entstanden. Hierbei bildete sich schon kurz nach dem Urknall durch die CP-Verletzung, die Abweichung aus dem thermischen Gleichgewicht und die Nicht-Erhaltung der Baryonenzahl (Sacharow-Bedingungen) ein Ungleichgewicht zwischen Materie und Antimaterie aus, sodass nicht die gesamte bei dem Urknall entstandene Materie wieder mit ihren Antiteilchen zerstrahlte, sondern ein im Vergleich zu der bei der Zerstrahlung entstandenen Anzahl an Photonen, die durch die kosmische Hintergrundstrahlung beobachtet werden können, geringer Anteil an Materie übrig blieb. Mithilfe des Hertzsprung-Russel Diagramms lässt sich die Entstehung von Sternen und auch die Veränderungen innerhalb eines Sterns, sobald er das Ende seiner Lebenszeit erreicht hat, sehr gut verdeutlichen entdeckten die Astronomen Ejnar Hertzsprung und Henry Russel, dass bei den Sternen ein systematischer Zusammenhang zwischen den Sterntemperaturen und der absoluten Helligkeit besteht. Trägt man die absolute Helligkeit gegen die Temperatur auf, so erhält man das in Abbildung 1 gezeigte Diagramm. Innerhalb dieses Dia- n Baryon n P hoton = 10 9 (2) 4 Minuten nach dem Urknall haben sich bereits Wasserstoff-, Deuterium- und Heliumkerne gebildet, die sich jedoch erst 400 Millionen Jahren zu den ersten Sonnen (Klasse III) formiert haben. Diese Sonnen waren stark wasserstoff-haltig und sehr schwer, wodurch sie nur eine sehr kurze Lebenszeit hatten. Nach den Sonnen der Klasse III folgten die leichteren Sonnen der Klasse II, die immer noch sehr viel Wasserstoff in ihren Kernen enthielten, jedoch leichter waren als die ersten Sonnen und dadurch auch langlebiger. In diesen Sonnen entstanden die ersten schweren Elemente. Die Sonne um die die Erde kreist gehört zu den Sonnen der Klasse I und ist vor ungefähr 5 Milliarden Jahren entstanden. Sonnen der Klasse I werden dadurch ausgezeichnet, dass sie schwere Elemente enthalten, die aus vorhergehenden Sonnen stammen. Die Sonnen der Klasse I sind ebenso leichter als die Sonnen der Klasse II. 2.1 Hertzsprung-Russel Diagramm Abbildung 1: Das Hertzsprung-Russel Diagramm (Quelle: [1]) gramms können wir deutlich erkennen, dass die meisten Sterne auf der so genannten Hauptreihe zu finden sind. Diese Sterne durchlaufen momentan ihre stabile Lebensphase, auf die wir nicht genauer eingehen werden. Sobald sie ihre stabile Lebensphase beendet haben, verlassen sie die Hauptreihe wieder und entwickeln sich ihrer Masse entsprechend weiter. Riesensterne und junge Sterne, die die Hauptreihe noch nicht erreicht haben, befinden sich hierbei oberhalb der Hauptreihe. Zwergsterne, wie zum Beispiel weiße Zwerge sind unterhalb der Hauptreihe zu finden. 3 Die Entstehung von Sternen Sonnen entstehen aus Gaswolken. Ein Beispiel für einen Ort, an dem aktuell sehr viele Sterne entstehen, ist der Orionnebel. Innerhalb der Milchstraße bilden sich die meisten Sterne innerhalb der Spiralarme. Hier können wir 3 bis 5 neue Sterne pro Jahr beobachten. Bei der Entstehung von Sternen

3 4 DAS ENDE VON STERNEN 3 ρ µ m H kondensiert die Gaswolke nicht vollständig, sodass Materie für die Bildung von Planeten zur Verfügung steht. Um die Entstehung eines Sternes zu ermöglichen muss die Gaswolke gravitativ instabil werden, das bedeutet, dass der anziehende Gravitationsdruck (p grav = 3 G M 2 8 πr ) größer sein muss als der ab- 4 stoßende Gasdruck (p gas = kt ) und, falls die Wolke rotieren sollte, ebenfalls größer als der Zentrifugaldruck. Zur Vereinfachung nehmen wir jedoch an, dass die Gaswolke nicht rotiert. Für diesen Fall nimmt das Jeans Kriterium, das beschreibt, ab welcher Masse und Temperatur eine Wolke gravitativ instabil wird, die folgende Form an: M 2kT G µ m H R (3) µ ist hierbei die mittlere atomare Massenzahl, m H ist die Masse von Wasserstoff, k die Boltzmannkonstante, T die Temperatur, G die Gravitationskonstante und R der Radius der Gaswolke. Eine Gaswolke bei einer Temperatur von 100 K und einem Radius von m ist erst ab einer Masse von 2000 M gravitativ instabil. Da viele Wolken jedoch nur eine Masse von 50 bis 300 M haben muss eine Wolke kalt sein um instabil zu werden. Ein weiteres Kriterium dafür, dass eine Gaswolke instabil wird, ist, dass die Wolke Inhomogenitäten aufweisen muss. Diese Inhomogenitäten können durch die Schockwellen von Supernovae verursacht werden. Ist eine Gaswolke gravitativ instabil geworden, so beginnt sie zu kollabieren, wobei Energie frei wird. Solange der Stern noch nicht optisch dicht ist, kann diese Energie in Form von Strahlung abgegeben werden und führt nicht zu einer Erhitzung der Gaswolke. Erst sobald die Sternmaterie dicht genug ist, kann die freiwerdende Energie nicht mehr in Form von Strahlung abgegeben werden. Hierdurch erhitzt sich der junge Stern. Betrachtet man sich die Entstehung eines Sternes in dem Hertzsprung-Russel Diagramm, so kann man erkennen, dass junge, noch nicht stabile Sterne sich rechts oberhalb der Hauptreihe befinden. Junge Sterne, die die Kernfusion noch nicht gezündet haben, geben ihre Energie hauptsächlich durch Konvektion nach außen ab. Ein Stern, der sich in diesem Entwicklungsabschnitt befindet, kontrahiert nur langsam und bewegt sich hierbei die Hayashi- Linie entlang in Richtung geringerer Leuchtkraft (siehe Abbildung 2) Sobald die Temperatur im Abbildung 2: Die Hayashi Linie im Hertzsprung- Russel Diagramm (Quelle: [1]) Kern jedoch hoch genug geworden ist, zündet die Wasserstofffusion und das Wasserstoffbrennen des Kerns beginnt. Nun verlässt der Stern die Hayashi- Linie und bewegt sich in Richtung der Hauptreihe. Einen Großteil seiner Lebenszeit wird der Stern nun auf der Hauptreihe verbringen. Die Lebensdauer eines Sterns kann durch das Verhältnis der ihm zur Verfügung stehenden Energie und seiner Leuchtkraft abgeschätzt werden. Die Leuchtkraft eines Sternes ist proportional zu M 4. t L E L M c2 M 4 (4) M 3 wobei M die Masse des Sterns ist. Anhand dieser Gleichung können wir erkennen, dass die Lebensdauer des Sterns proportional zu M 3 ist. Somit verbleiben schwere Sterne kürzer auf der Hauptreihe als leichte Sterne. 4 Das Ende von Sternen Das Ende eines Sternes ist von seiner Masse abhängig. Leichte Sterne mit weniger als 0,3 Sonnenmassen entwickeln sich nach Abschluss ihrer Hauptreihenphase zum schwarzen Zwerg. Sterne, die eine Masse zwischen 0,3 und 2,3 Sonnenmassen haben, sind schwer genug um nach dem Wasserstoffbrennen das Heliumbrennen zu zünden. Hierauf werden wir in Abschnitt 4.1 genauer eingehen. Schwere

4 4 DAS ENDE VON STERNEN 4 Sterne mit mehr als 3 Sonnenmassen haben genügend Masse um auf das Heliumbrennen folgende Brennzyklen zu zünden und können sich anschließend ihrer Masse entsprechend zu Neutronensternen oder schwarzen Löchern entwickeln. Dies werden wir uns in Abschnitt 4.2 betrachten. 4.1 Das Ende von leichten Sternen Sobald ein Stern einen Großteil des Wasserstoffs in seinem Kern zu Helium verbrannt hat, erlischt das Wasserstoffbrennen und durch den geringer werdenden Druck beginnt der Kern unter der Wirkung der Gravitation zu kontrahieren. Hierbei heizt sich die Hülle des Sternes auf, bis die Hülle die Zündtemperatur für Wasserstoff erreicht. Dadurch wird in der äußeren Schale weiter Wasserstoff verbrannt und die Hülle dehnt sich aus, während der Kern solange kontrahiert, bis er die Zündtemperatur für Helium erreicht. Bei diesem Prozess wird sich unsere Sonne, wenn sie in 5 Milliarden Jahren das Ende ihrer Hauptreihenphase erreicht, bis zu der Erde ausdehnen und das Leben auf der Erde vernichten. Sobald das Heliumbrennen im Kern abgeschlossen ist, kontrahiert der Kern erneut. Aufgrund der geringen Masse erreicht der Kern jedoch nicht genügend hohe Temperaturen um das Kohlenstoffbrennen zu zünden. Die innere Hülle erhitzt sich jedoch so sehr, dass dort das Heliumbrennen zündet. Hierdurch expandiert die Hülle und wird zum größten Teil abgestoßen. Zurück bleibt ein weißer Zwerg, der seine durch die Kontraktion gewonnene Energie langsam abgibt, zum braunen Zwerg wird und erlischt. Supernovae sind bei leichten Sternen nur in Doppelsternsystemen möglich, die aus einem weißen Zwerg (Stern 1) und einem Stern bestehen, der das Ende seiner Lebenszeit erreicht hat (Stern 2). Wird der zweite Stern zu einem roten Riesen, so ist es möglich, dass Materie des roten Riesen den Langrangepunkt überquert, an dem sich die Gravitationskraft zwischen dem weißen Zwerg und dem zweiten Stern aufhebt, und in den weißen Zwerg hinein spiralt. Hierdurch erhöht sich die Masse des weißen Zwergs, bis sie die Chandrasekhar-Grenze überschreitet, die angibt, bis zu welcher Masse weiße Zwerge stabil sind. Der weiße Zwerg beginnt zu kollabieren und durch die Temperaturerhöhung wird explosionsartig das Kohlenstoffbrennen gezündet. Hierdurch wird der weiße Zwerg vernichtet und eine Supernove vom Typ 1 entsteht. 4.2 Das Ende von schweren Sternen Auch bei schweren Sternen wird zuerst das Heliumbrennen gezündet und ein Großteil der Materie im Kern zu Kohlenstoff fusioniert. Nachdem das Heliumbrennen im Kern erloschen ist, kontrahiert der Kern erneut, die Temperaturen in der innersten Schale der Hülle steigen, sodass dort das Heliumbrennen beginnen kann, während im Inneren des Sterns das Neon- und das Sauerstoffbrennen zündet. Nachdem auch diese beiden Brennphasen erloschen sind, kann nach erneuter Kontraktion des Kerns noch das Siliziumbrennen zünden, bei dem Eisen und Helium entsteht. Da Eisen die höchste Bindungsenergie pro Nukleon hat, sind nun keine Fusionsprozesse mit Energiegewinn mehr möglich. Das Brennen im Kern endet, während in der Zwiebelschalenstruktur, die bei der Zündung der verschiedenen Fusionsprozesse entstanden ist, das Brennen noch andauert. Diese Zwiebelschalenstruktur ist in Abbildung 3 zu sehen. Nach dem Abbildung 3: Die Zwiebelschalenstruktur eines schweren Sterns nach dem Ende der Fusion innerhalb des Kerns (Quelle: [1]) Siliziumbrennen beginnt der Kern erneut zu komprimieren. Durch seine große Masse kann die Kompression nicht durch die Fermidruck der Elektronen gestoppt werden und die Energie, die bei der Kontraktion freigesetzt wurde, führt dazu, dass der inverse Beta-Zerfall innerhalb des Kerns stattfindet, wodurch Elektronen und Protonen unter Aussendung eines Elektronneutrinos und unter Energieaufnahme zu einem Neutron fusionieren. Der Kern

5 5 QUELLEN 5 des Sterns wird solange dichter, bis der Gravitationsdruck durch den Fermidruck der Neutronen kompensiert wird. Die ebenfalls kontrahierenden Hüllen des Sternes stürzen auf den nicht mehr komprimierbaren Kern und werden nach außen gestoßen, wodurch eine Supernova des Typs 2 entsteht. Zurück bleibt ein Neutronenstern, der von einem planetaren Nebel umgeben wird. (Bsp. SN1987a) besitzt und somit deutlich größer ist als ein schwarzes Loch mit der Sonnenmasse. Ob ein schwarzes Loch Energie in Form von Strahlung abgibt, wodurch laut der Theorie von Stephen Hawking ein schweres schwarzes Loch länger leben würde als ein leichtes, ist genauso wie die Frage nach den genauen physikalischen Abläufen innerhalb einer Supernova immer noch nicht genau geklärt und daher Gegenstand aktueller Forschungen. 5 Quellen Literatur [1] Wolfgang Demtröder: Experimentalphysik 4, 2. Auflage, Springer Verlag, Berlin 1998 [2] Paul A. Tipler: Physik, 2. Auflage, Springer Verlag, Berlin 1998 [3] Young Type Ia Supernova in M101: (abgerufen am ) Abbildung 4: Die Überreste der Supernova SN1987a. (Quelle: [6]) Ist die Masse des Sterns so hoch, dass der Gravitationsdruck sogar den Fermidruck der Neutronen überwiegt, so kontrahiert der Kern solange weiter, bis im Rahmen der allgemeinen Relativitätstheorie eine Singularität entsteht. Da die Relativitätstheorie jedoch nicht die Quantentheorie enthält, ist es ungewiss, ob tatsächlich sämtliche Masse an einem Ort konzentriert ist oder ob Effekte der Quantentheorie dafür sorgen, dass ein schwarzes Loch eine gewisse Ausdehnung besitzt. Da die Fluchtgeschwindigkeit in einem schwarzen Loch höher ist als die Lichtgeschwindigkeit kann nichts das schwarze Loch verlassen. Der Radius um ein schwarzes Loch, in dem die Fluchtgeschwindigkeit höher ist als die Lichtgeschwindigkeit, wird als Schwarzschildradius bezeichnet. R = 2MG c 2 (5) Ein schwarzes Loch mit der Masse der Sonne hätte einen Schwarzschildradius von 3 km, während das schwarze Loch, das sich im Zentrum der Milchstraße befindet (M = 4,3 Millionen M ), einen Schwarzschildradius von (12, km = 0,001 Lj) [4] Astronomie.de: (abgerufen am ) [5] Einführung in die Astrophysik: EASTRO_WS04/Einf_Kap_6b.pdf (abgerufen am ) (abge- [6] Supernova-1987a.jpg: File:Supernova-1987a.jpg?uselang=de rufen am )

Entwicklung und Ende von Sternen

Entwicklung und Ende von Sternen Entwicklung und Ende von Sternen Seminarvortrag von Klaus Raab 1.) Nebel und deren Verdichtung zu Protosternen 2.) Kernfusion: Energieerzeugung der Sterne 3.) Massenabhängige Entwicklung und Ende von Sternen

Mehr

Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern

Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Was uns die Endstadien der Sterne über die Naturgesetze sagen Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at

Mehr

Wann sind Sterne stabil? Virialsatz

Wann sind Sterne stabil? Virialsatz Exkurs: Fermisterne Wann sind Sterne stabil? Jede Masse ist bestrebt aufgrund der Eigengravitation zu kontrahieren. Sie kann davon nur durch Kräfte gehindert werden, die entgegengesetzt gerichtet sind...

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt Ziele der Vorlesung: 1.) Die Entwicklung des Universums seit dem Urknall, unsere Heimatgalaxie 2.) Entwicklungszyklen von Sternen mit unterschiedlichen Anfangsmassen, unsere Sonne 3.) Unser Planetensystem

Mehr

Die Macht der Gravitation vom Leben und Sterben der Sterne

Die Macht der Gravitation vom Leben und Sterben der Sterne Die Macht der Gravitation vom Leben und Sterben der Sterne Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien Vortrag am GRG17

Mehr

Sternenentwicklung. Martin Hierholzer. Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster

Sternenentwicklung. Martin Hierholzer. Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster Sternenentwicklung Martin Hierholzer Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster sternenentwicklung.tex Sternenentwicklung Martin Hierholzer 25/5/2004

Mehr

Neues aus Kosmologie und Astrophysik 1.0

Neues aus Kosmologie und Astrophysik 1.0 Neues aus Kosmologie und Astrophysik 1.0 Unser Universum Sterne und Galaxien Hintergrundstrahlung Elemententstehung Das Big-Bang-Modell Prozesse im frühen Universum Fragen und Antworten (?) Dunkle Materie

Mehr

Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben

Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien

Mehr

Supernova. Katastrophe am Ende eines Sternenlebens W. Stegmüller Folie 2

Supernova. Katastrophe am Ende eines Sternenlebens W. Stegmüller Folie 2 Supernova Katastrophe am Ende eines Sternenlebens 15.01.2008 W. Stegmüller Folie 1 Supernovae Eine Supernova ist das schnell eintretende, helle Aufleuchten eines Sterns am Ende seiner Lebenszeit durch

Mehr

Sternentwicklung. Sternentwicklung

Sternentwicklung. Sternentwicklung Übersicht Nebel Vor- n Stadium Endstadium n Stadium Nach- n Stadium Nebel & Vor-n Stadium Entstehung Eigentlich ist die Entstehung eines Sternes unwahrscheinlich, da Dichte der Atome zu gering Temperaturen

Mehr

Vom Urknall zur Dunklen Energie

Vom Urknall zur Dunklen Energie Wie ist unser Universum entstanden und wie wird es enden? Wie werden Sterne geboren, leben und sterben dann? Woher kommen die Elemente im Universum? Einleitung Entstehung des Universums vor ungefähr 14

Mehr

Spektren von Himmelskörpern

Spektren von Himmelskörpern Spektren von Himmelskörpern Inkohärente Lichtquellen Tobias Schulte 25.05.2016 1 Gliederung Schwarzkörperstrahlung Spektrum der Sonne Spektralklassen Hertzsprung Russell Diagramm Scheinbare und absolute

Mehr

Urknall und Entwicklung des Universums

Urknall und Entwicklung des Universums Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen University Dies Academicus 11.06.2008 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.0 Blick ins Universum:

Mehr

Black Holes. Schwarze Löcher Verlieren die USA ihre Führung in der Hochenergieforschung? Black Holes

Black Holes. Schwarze Löcher Verlieren die USA ihre Führung in der Hochenergieforschung? Black Holes Schwarze Löcher Verlieren die USA ihre Führung in der Hochenergieforschung? Black Holes Will the US lose their leadership in high-energy research? Simuliertes Schwarzes Loch von 10 Sonnenmassen aus 600

Mehr

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen Dies Academicus 08.06.2005 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Blick ins Universum: Sterne

Mehr

Wie lange leben Sterne? und Wie entstehen sie?

Wie lange leben Sterne? und Wie entstehen sie? Wie lange leben Sterne? und Wie entstehen sie? Neue Sterne Neue Sterne Was ist ein Stern? Unsere Sonne ist ein Stern Die Sonne ist ein heißer Gasball sie erzeugt ihre Energie aus Kernfusion Planeten sind

Mehr

Gigantische Explosionen

Gigantische Explosionen Gigantische Explosionen Gammaastronomie - das Universum bei höchsten Energien Gernot Maier Credit: Stephane Vetter (Nuits sacrees) Kollidierende Galaxien Licht = Elektromagnetische Strahlung Welle Teilchen

Mehr

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Ulrich Husemann Humboldt-Universität zu Berlin Sommersemester 2008 Klausur Termine Prüfungsordnung sieht zweistündige Klausur vor

Mehr

Über die Vergangenheit und Zukunft des Universums

Über die Vergangenheit und Zukunft des Universums Über die Vergangenheit und Zukunft des Universums Jutta Kunz CvO Universität Oldenburg CvO Universität Oldenburg Physics in the City, 10. Dezember 2009 Jutta Kunz (Universität Oldenburg) Vergangenheit

Mehr

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011 Die Entwicklung des Universums vom Urknall bis heute Gisela Anton Erlangen, 23. Februar, 2011 Inhalt des Vortrags Beschreibung des heutigen Universums Die Vergangenheit des Universums Ausblick: die Zukunft

Mehr

Die Entstehung der Elemente

Die Entstehung der Elemente Die Entstehung der Elemente In der Antike besteht alles Sein aus: Heute: Materie (lat: Stoff) sind Beobachtungsgegenstände die Masse besitzen. Raumbereiche, die keine Materie enthalten bezeichnet man als

Mehr

Die Entwicklung der Urknalltheorie. Manuel Erdin Gymnasium Liestal, 2012

Die Entwicklung der Urknalltheorie. Manuel Erdin Gymnasium Liestal, 2012 Die Entwicklung der Urknalltheorie Manuel Erdin Gymnasium Liestal, 2012 William Herschel (1738 1822) Das statische Universum mit einer Galaxie Das Weltbild Herschels Die Position unseres Sonnensystems

Mehr

Dunkle Materie und dunkle Energie

Dunkle Materie und dunkle Energie Dunkle Materie und dunkle Energie Franz Embacher Fakultät für Physik der Universität Wien Vortrag am Vereinsabend von ANTARES NÖ Astronomen St. Pölten, 9. 9. 2011 Die Bestandteile Woraus besteht das Universum?

Mehr

6.3. STABILITÄTSGRENZEN VON STERNEN 149

6.3. STABILITÄTSGRENZEN VON STERNEN 149 6.3. STABILITÄTSGRENZEN VON STERNEN 149 relativistisch: P R n 4/3 nicht-relativistisch: P NR n 5/3 Gravitationsdruck: P grav n 4/3 Im nicht-relativistischen Fall steigt der Entartungsdruck bei Kompression

Mehr

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Krise in in der der Physik Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Energie-Erhaltung im im Beta-Zerfall verletzt?? Alpha-Zerfall Beta-Zerfall

Mehr

RELATIVITÄTSTHEORIE. (Albert Einstein ) spezielle Relativitätstheorie - allgemeine Relativitätstheorie. Spezielle Relativitätstheorie

RELATIVITÄTSTHEORIE. (Albert Einstein ) spezielle Relativitätstheorie - allgemeine Relativitätstheorie. Spezielle Relativitätstheorie RELATIVITÄTSTHEORIE (Albert Einstein 1879-1955) spezielle Relativitätstheorie - allgemeine Relativitätstheorie Spezielle Relativitätstheorie (Albert Einstein 1905) Zeitdilatation - Längenkontraktion =

Mehr

Weiße Zwerge und Neutronensterne

Weiße Zwerge und Neutronensterne Weiße Zwerge und Neutronensterne und wie es die Physik schafft, sie zu beschreiben 1 Franz Embacher Fakultät für Physik der Universität Wien WWW: http://homepage.univie.ac.at/franz.embacher/ E-mail: franz.embacher@univie.ac.at

Mehr

Neutrinos in Kosmologie und Teilchenphysik

Neutrinos in Kosmologie und Teilchenphysik Neutrinos in Kosmologie und Teilchenphysik Thomas Schwetz-Mangold Bremer Olbers-Gesellschaft, 12. Nov. 2013 1 Ein Streifzug durch die Welt der Neutrinos Was ist ein Neutrino? Wie hat man Neutrinos entdeckt?

Mehr

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente Geochemie 1 1. Entstehung und Häufigkeit der Nuklide/ Elemente Atome (Elementare Bausteine der Materie) Masse eines Atoms ist im Kern konzentriert (Neutonen + Protonen) Elektronenhülle dominiert das Eigenvolumen

Mehr

Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007

Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007 Kernkollapssuper novae SN Ib, Ic und II Moritz Fuchs 11.12.2007 Gliederung Einleitung Leben eines Sterns bis zur Supernova Vorgänge während der Supernova SN 1987 A r-prozesse Was ist interessant an Supernovae?

Mehr

XI. Sternentwicklung

XI. Sternentwicklung XI. Sternentwicklung Entwicklungszeitskalen Änderungen eines Sterns kann sich auf drei Zeitskalen abspielen: 1) nukleare Zeitskala t n = Zeit, in der der Stern seine Leuchtkraft durch Kernfusion decken

Mehr

Der Lebensweg der Sterne

Der Lebensweg der Sterne Der Lebensweg der Sterne Wahrscheinlich durch die Überreste einer nahen Supernova konnte sich die Sonne samt Planeten bilden. Nach einem Milliarden Jahre langen Leben bläht sie sich nachdem der Wasserstoff

Mehr

Die Milchstraße. Sternentstehung. ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1

Die Milchstraße. Sternentstehung. ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1 Die Milchstraße ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1 Die Galaxie M74 (NGC 628) Sternbild: Fische Abstand: 35 Mio. LJ. Rot: sichtbares Licht - ältere

Mehr

- Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts

- Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts Astroteilchenphysik, SS 2006, Vorlesung # 5 - Endstadien von Sterne- - Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts Crab-Pulsar Chandrasekhar G. Drexlin, EKP Hertzsprung

Mehr

Sternentstehung. Von der Molekülwolke zum T-Tauri-Stern. Von Benedict Höger

Sternentstehung. Von der Molekülwolke zum T-Tauri-Stern. Von Benedict Höger Sternentstehung Von der Molekülwolke zum T-Tauri-Stern Von Benedict Höger Inhaltsverzeichnis 1. Unterschied zwischen Stern und Planet 2. Sternentstehung 2.1 Wo entsteht ein Stern? 2.2 Unterschied HI und

Mehr

Der Pistolenstern. der schwerste Stern der Galaxis?

Der Pistolenstern. der schwerste Stern der Galaxis? Der Pistolenstern der schwerste Stern der Galaxis? Der Name! Der Pistolenstern liegt in einer dichten Staub- und Gaswolke eingebettet nahe des galaktischen Zentrums. Die Form dieser Staub- und Gaswolke

Mehr

v = z c (1) m M = 5 log

v = z c (1) m M = 5 log Hubble-Gesetz Das Hubble-Gesetz ist eines der wichtigsten Gesetze der Kosmologie. Gefunden wurde es 1929 von dem amerikanischen Astronom Edwin Hubble. Hubble maß zunächst die Rotverschiebung z naher Galaxien

Mehr

Medienbegleitheft zur DVD 14054 DUNKLE MATERIE UND DUNKLE ENERGIE

Medienbegleitheft zur DVD 14054 DUNKLE MATERIE UND DUNKLE ENERGIE Medienbegleitheft zur DVD 14054 DUNKLE MATERIE UND DUNKLE ENERGIE Medienbegleitheft zur DVD 35 Minuten, Produktionsjahr 2012 Unterrichtsvorschlag Einleitung Den SchülerInnen wird eröffnet, dass der kommende

Mehr

Jenseits unseres Sonnensystems. Von Geried Kinast

Jenseits unseres Sonnensystems. Von Geried Kinast Jenseits unseres Sonnensystems Von Geried Kinast Inhalt 1. Einleitung 1.1 Kuipergürtel 1.2 Lichtjahr 2. Die Milchstraße 2.1 Sterne 2.2 Aufbau der Milchstraße 2.3 Der Galaktiche Halo 2.4 Das Zentrum der

Mehr

Endstadien der Sternentwicklung. Max Camenzind ZAH /LSW SS 2011

Endstadien der Sternentwicklung. Max Camenzind ZAH /LSW SS 2011 Endstadien der Sternentwicklung Max Camenzind ZAH /LSW TUDA @ SS 2011 Übersicht M in < 8 Sonnenmassen Weiße Zwerge (>1 Mrd. in Galaxis, 10.000 in Kugelsternhaufen) 8 < M in < 25 Sonnenmassen Neutronensterne

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N

Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N Elemente, welche den Aufbau und die Chemie lebender Systeme bestimmen Vier Elemente dominieren die belebte Natur: H, O, C, N (zusammen 96 Masse-%)

Mehr

Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Kapitel 2: Sterne, Galaxien und Strukturen aus Galaxien

Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Kapitel 2: Sterne, Galaxien und Strukturen aus Galaxien Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Objekte des Sonnensystems Sonne Innere Gesteinsplaneten und deren Monde Asteroidengürtel Äußere Gas- und Eisplaneten und deren Monde Zentauren

Mehr

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden 4.12.2010 Das Leben des Albert E. - Relativitätstheorie Das Leben der Sterne Schwarze Löcher Wurmlöcher

Mehr

Unsere weitere kosmische Umgebung

Unsere weitere kosmische Umgebung Sachinformationen 3 Unsere weitere kosmische Umgebung Nachbarsterne, Nebel und Sternhaufen in der Milchstraße Galaxien Autor: Dieter Seiwald Wie viele Sterne gibt es? 6000 sind mit freiem Auge sichtbar,

Mehr

NEUTRONENSTERNE. Eine Reise in die Vergangenheit. Jochen Wambach Institut für Kernphysik TU Darmstadt

NEUTRONENSTERNE. Eine Reise in die Vergangenheit. Jochen Wambach Institut für Kernphysik TU Darmstadt NEUTRONENSTERNE Eine Reise in die Vergangenheit Jochen Wambach Institut für Kernphysik TU Darmstadt NEUTRONENSTERNE Eine Reise in die Vergangenheit Jochen Wambach Institut für Kernphysik TU Darmstadt Was

Mehr

Medienbegleitheft zur DVD KOSMOS BASICS

Medienbegleitheft zur DVD KOSMOS BASICS Medienbegleitheft zur DVD 14145 KOSMOS BASICS Medienbegleitheft zur DVD 14145 39 Minuten, Produktionsjahr 2014 Inhaltsverzeichnis Aufgaben zum Lehrfilm Wie misst man Entfernungen im All?... 7 Lösungen

Mehr

Planetarische Nebel Wolfgang Stegmüller Seite 2

Planetarische Nebel Wolfgang Stegmüller Seite 2 Planetarische Nebel Planetarische Nebel! Ein planetarischer Nebel ist ein astronomisches Objekt und besteht aus einer Hülle aus Gas und Plasma, das von einem alten Stern am Ende seiner Entwicklung abgestoßen

Mehr

8.1 Einleitung Die interstellare Materie Sternentstehung... 3

8.1 Einleitung Die interstellare Materie Sternentstehung... 3 Astronomie Lernheft 8 Sternkunde I: Sternentstehung Inhaltsverzeichnis: 8.1 Einleitung... 2 8.2 Die interstellare Materie... 2 8.3 Sternentstehung... 3 8.4 Fusionsmechanismen... 3 8.4.1 Die Proton-Proton-Reaktion...

Mehr

Kerne und Sterne. (Was verbindet Mikro- und Makrokosmos?) Andreas Wagner. Institut für Kern- und Hadronenphysik. Andreas Wagner

Kerne und Sterne. (Was verbindet Mikro- und Makrokosmos?) Andreas Wagner. Institut für Kern- und Hadronenphysik. Andreas Wagner Kerne und Sterne (Was verbindet Mikro- und Makrokosmos?) PLOPP SUPERNOVA He H Li SONNE SONNENSYSTEME GALAXIEN C Fe O N U Moderne Astronomie: Infrarot-, Radio-, Optische, Röntgen-, Gamma-, Neutrino- Klassische

Mehr

Spätstadien der Sternentwicklung. Wiederholung: Entwicklung nach dem H-Brennen Altersbestimmung Supernovae Neutronensterne Pulsare Schwarze Löcher

Spätstadien der Sternentwicklung. Wiederholung: Entwicklung nach dem H-Brennen Altersbestimmung Supernovae Neutronensterne Pulsare Schwarze Löcher Spätstadien der Sternentwicklung Wiederholung: Entwicklung nach dem H-Brennen Altersbestimmung Supernovae Neutronensterne Pulsare Schwarze Löcher Wiederholung: Das Brennen nach der Hauptreihe Roter Riese:

Mehr

Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter

Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter Kosmische Elementehäufigkeit Harkinsche Regel: Elemente mit geradzahliger Ordnungszahl sind häufiger als Elemente

Mehr

Die Entwicklung des Universums vom Urknall bis heute

Die Entwicklung des Universums vom Urknall bis heute Die Entwicklung des Universums vom Urknall bis heute Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institut fu r Theoretische Physik, Universita t Bern 100 Jahre Kirche Biberist-Gerlafingen

Mehr

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Historische Einführung Das Alter des Universums Warum eine dunkle Seite? Was ist die dunkle Seite? Wie kann man sie nachweisen? Inka-Kultur Navajo-Indianer

Mehr

Standardmodell der Materie und Wechselwirkungen:

Standardmodell der Materie und Wechselwirkungen: Standardmodell der Materie und en: (Quelle: Wikipedia) 1.1. im Standardmodell: sind die kleinsten bekannten Bausteine der Materie. Die meisten Autoren bezeichnen die Teilchen des Standardmodells der Teilchenphysik

Mehr

KOSMISCHE HINTERGRUNDSTRAHLUNG (CMB) Philipp Zilske Universität Bielefeld Physikalisches Proseminar

KOSMISCHE HINTERGRUNDSTRAHLUNG (CMB) Philipp Zilske Universität Bielefeld Physikalisches Proseminar KOSMISCHE HINTERGRUNDSTRAHLUNG (CMB) Philipp Zilske Universität Bielefeld Physikalisches Proseminar 26.06.2013 26.06.2013 Philipp Zilske - Kosmische Hintergrundstrahlung 2/23 Übersicht 1. Motivation 2.

Mehr

Einführung in die Physik der Neutronensterne. I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main

Einführung in die Physik der Neutronensterne. I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main Einführung in die Physik der Neutronensterne I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main Leben und Sterben von Sternen Supernova Geburt eines Neutronensterns

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Kapitel 5: Kernfusion

Kapitel 5: Kernfusion Kapitel 5: Kernfusion 330 5 Die Kernfusion und ihre Anwendung Der Unterschied der Bindungsenergie zwischen Deuterium D und Helium He ist pro Nukleon wesentlich größer als bei der Kernspaltung. Kernfusion

Mehr

Das Sonnensystem. Teil 2. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 2. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 2 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 48 Übersicht Teil 2 Entstehung des Sonnensystems Exoplaneten 2

Mehr

Endstadium massiver Sterne. Supernova Typ II

Endstadium massiver Sterne. Supernova Typ II Hauptseminar Astro- und Elementarteilchenphysik SS2009 Endstadium massiver Sterne Supernova Typ II Alexander Jansen Universität Karlsruhe (TH) 1 Inhaltsverzeichnis Eine kleine Einleitung...3 Die Rolle

Mehr

Astronomie für Nicht Physiker SS 2013

Astronomie für Nicht Physiker SS 2013 Astronomie für Nicht Physiker SS 2013 18.4. Astronomie heute (Just, Fendt) 25.4. Sonne, Erde, Mond (Fohlmeister) 2.5. Das Planetensystem (Fohlmeister) 16.5. Teleskope, Instrumente, Daten (Fendt) 23.5.

Mehr

Gravitation und Physik kompakter Objekte

Gravitation und Physik kompakter Objekte Gravitation und Physik kompakter Objekte Max Camenzind Gravitation und Physik kompakter Objekte Eine Einführung in die Welt der Weißen Zwerge, Neutronensterne und Schwarzen Löcher Max Camenzind Heidelberg,

Mehr

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Historische Einführung Das Alter des Universums Warum eine dunkle Seite? Was ist die dunkle Seite? Wie kann man sie nachweisen? Inka-Kultur Navajo-Indianer

Mehr

Sternentstehung - Sternentwicklung - Endstadien der Sterne

Sternentstehung - Sternentwicklung - Endstadien der Sterne Sternentstehung - Sternentwicklung - Endstadien der Sterne Aus der stark verdünnten interstellaren Materie werden durch gravitationsbedingte Kontraktion innerhalb von 10 000 bis 100 Millionen Jahren Sterne

Mehr

DasVermächtnisdesUrknalls Die Hintergrundstrahlung

DasVermächtnisdesUrknalls Die Hintergrundstrahlung DasVermächtnisdesUrknalls Die Hintergrundstrahlung Elementare Kräfte Der Urknall und die Expansion des Universums Wie mißt man die Temperatur von Sternen? Hintergrundstrahlung und Isotropie des Universums

Mehr

Die Nach-Hauptreihen-Entwicklung

Die Nach-Hauptreihen-Entwicklung 1 Die Nach-Hauptreihen-Entwicklung Die Nach-Hauptreihen-Phase beschreibt die Entwicklungen der Sterne ab dem Ende des zentralen Wasserstoffbrennens bis hin zum allgemeinen Aussetzen der Kernfusionen als

Mehr

Kosmologie. Eine kurze Einführung. Sarah Aretz CERN

Kosmologie. Eine kurze Einführung. Sarah Aretz CERN Kosmologie Eine kurze Einführung Sarah Aretz CERN Worum geht es in der Kosmologie? Κοσμολογία = Lehre von der Welt Physikalische Kosmologie Beschreibung des Universums durch physikalische Gesetze Kosmologische

Mehr

Universität Regensburg, Naturwissenschaftliche Fakultät II - Physik. Big Bang. Die Nukleosynthese der leichten Elemente am 05.12.

Universität Regensburg, Naturwissenschaftliche Fakultät II - Physik. Big Bang. Die Nukleosynthese der leichten Elemente am 05.12. Universität Regensburg, Naturwissenschaftliche Fakultät II - Physik Big Bang Die Nukleosynthese der leichten Elemente am 05.12.2013 von Matthias Rosenauer 1 2 Abbildung 1: George Gamow (links) und Ralph

Mehr

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung Rotverschiebung In der Astronomie wird die Rotverschiebung mit dem Buchstaben z bezeichnet. Mit ihrer Hilfe lassen sich z.b. Fluchtgeschwindigkeiten, Entfernungen und Daten aus früheren Epochen des Universum

Mehr

Moderne Kosmologie. Michael H Soffel. Lohrmann Observatorium TU Dresden

Moderne Kosmologie. Michael H Soffel. Lohrmann Observatorium TU Dresden Moderne Kosmologie Michael H Soffel Lohrmann Observatorium TU Dresden Die Expansion des Weltalls NGC 1300 1 Nanometer = 1 Millionstel mm ; 10 Å = 1 nm Fraunhofer Spektrum Klar erkennbare Absorptionslinien

Mehr

Der Jojo-Effekt bei Neutronensternen

Der Jojo-Effekt bei Neutronensternen Der Jojo-Effekt bei Neutronensternen und wie er die Astrophysiker in Aufregung versetzt Irina Sagert Astronomie am Freitag, 25.03.2011 Physikalischer Verein, Frankfurt 8-20 Sonnenmassen Kollaps eines

Mehr

Neutronensterne, Quarksterne und Schwarze Löcher

Neutronensterne, Quarksterne und Schwarze Löcher Neutronensterne, Quarksterne und Schwarze Löcher Schülervorlesung Physikalischer Verein, Frankfurt am Main 29. November 2005 Jürgen Schaffner Bielich Institut für Theoretische Physik/Astrophysik p.1 2005:

Mehr

Licht aus dem Universum

Licht aus dem Universum Licht aus dem Universum Licht und Astronomie Sichtbares Licht: Geschichte/Methoden/... Neue Ergebnisse Radiowellen, Mikrowellen... (Andere) Teilchenstrahlung Thomas Hebbeker RWTH Aachen 28. Januar 2008

Mehr

Kosmologie. der Allgemeinen Relativitätstheorie. Das Standard-Modell der. Kosmologie

Kosmologie. der Allgemeinen Relativitätstheorie. Das Standard-Modell der. Kosmologie Kosmologie der Allgemeinen Relativitätstheorie Das Standard-Modell der Kosmologie Unbeantwortete Fragen der Kosmologie (Stand 1980) Warum beobachtet man keine magnetischen Monopole? Flachheitsproblem:

Mehr

Kosmische Evolution: der Ursprung unseres Universums

Kosmische Evolution: der Ursprung unseres Universums Marsilius Vorlesung Heidelberg 2012 Kosmische Evolution: der Ursprung unseres Universums Simon White Max Planck Institute for Astrophysics Sternkarte des ganzen Himmels bis 10,000 Lichtjahre IR-karte

Mehr

Mittwochsakademie WS 15/16 Claus Grupen

Mittwochsakademie WS 15/16 Claus Grupen Hatte Gott bei der Erschaffung der Welt eine Wahl? Mittwochsakademie WS 15/16 Claus Grupen Am Anfang schuf Gott Himmel Am Anfang schuf Gott und Erde Himmel und Erde. und die Erde war wüst und leer, Und

Mehr

Extradimensionen und mikroskopische schwarze Löcher am LHC. Anja Vest

Extradimensionen und mikroskopische schwarze Löcher am LHC. Anja Vest Extradimensionen und mikroskopische schwarze Löcher am LHC Anja Vest Fundamentale Naturkräfte Theorie von Allem? Standardmodell elektromagnetische Kraft schwache Kraft starke Kraft Urknall Gravitation

Mehr

Der Übergang vom Hauptreihen-Stern zum Roten Riesen

Der Übergang vom Hauptreihen-Stern zum Roten Riesen Der Übergang vom Hauptreihen-Stern zum Roten Riesen H. Hauptmann, F. Herrmann, K. Schmidt Abteilung für Didaktik der Physik, Universität, 7628 Karlsruhe Einleitung Im Laufe seiner Entwicklungsgeschichte

Mehr

Hypothesen des Universums: Labyrinth oder Irrgarten?

Hypothesen des Universums: Labyrinth oder Irrgarten? Hypothesen des Universums: Labyrinth oder Irrgarten? Heinz Oberhummer Atominstitut der Österreichischen Universitäten Technische Universität Wien Die Grenzen unseres Wissens sind besonders deutlich ausgeprägt

Mehr

1) Fluss und Zusammensetzung kosmischer Strahlung

1) Fluss und Zusammensetzung kosmischer Strahlung 1) Fluss und Zusammensetzung kosmischer Strahlung Der Fluss ist eine Größe, die beschreibt, wie viele Teilchen in einem Energieintervall auf einer Fläche in einem Raumwinkelintervall und einem Zeitintervall

Mehr

Unter welchen Bedingungen bilden sich Strukturen? Unter welchen Bedingungen kommt es zum katastrophalen Kollaps eines ausgebrannten

Unter welchen Bedingungen bilden sich Strukturen? Unter welchen Bedingungen kommt es zum katastrophalen Kollaps eines ausgebrannten Kapitel 6 Sternentwicklung Wir wollen uns in diesem Kapitel einen kurzen Überblick über die Bildung, die Entwicklung und das Vergehen von Sternen verschaffen. Vor allem in der letzten Phase, dem Sterben

Mehr

Das Leben der Sterne, ihre Arten und Vorkommen. Daniela Dahm

Das Leben der Sterne, ihre Arten und Vorkommen. Daniela Dahm Das Leben der Sterne, ihre Arten und Vorkommen Daniela Dahm Inhalt 1.0 -Allgemeines über Sterne 2.0 -Sternentstehung und Entwicklung 3.0 -Verschiedene Endpunkte 4.0 -Doppelsterne eines Sternenlebens 3.1

Mehr

Susanne Neueder: Kernkollaps Supernovae

Susanne Neueder: Kernkollaps Supernovae Universität Regensburg Naturwissenschaftliche Fakultät II Ausbildungsseminar: Kerne und Sterne Susanne Neueder: Kernkollaps Supernovae 22. 5. 2007 1 Gliederung 1. Einführung 1.1. Zwei unterschiedliche

Mehr

Die Expansion des Kosmos

Die Expansion des Kosmos Die Expansion des Kosmos Mythos und Wirklichkeit Dr. Wolfgang Steinicke MNU-Tagung Freiburg 2012 Eine Auswahl populärer Mythen und Probleme der Kosmologie Der Urknall vor 13,7 Mrd. Jahren war eine Explosion

Mehr

D A S U N I V E R S U M

D A S U N I V E R S U M D A S U N I V E R S U M Die meisten Astronomen sind der Auffassung, daß das Universum vor etwa 10 bis 20 Milliarden Jahren bei einem Ereignis entstand, das häufig als Urknall oder Urblitz bezeichnet wird.

Mehr

Albert Einstein s Relativitätstheorie für Laien

Albert Einstein s Relativitätstheorie für Laien Albert Einstein s Relativitätstheorie für Laien Ein Versuch der Veranschaulichung von Prof. Dr. Gerd Ganteför Fachbereich Physik Universität Konstanz 1879-1955 Albert Einstein mit 21 Diplom ETH mit 23

Mehr

Seminar Dunkle Materie - Neue Experimente zur Teilchen- und Astroteilchenphysik

Seminar Dunkle Materie - Neue Experimente zur Teilchen- und Astroteilchenphysik Seminar Dunkle Materie - Neue Experimente zur Teilchen- und Astroteilchenphysik im SS 2007 RWTH Aachen Betreuer: Prof. Dr. Stefan Schael Vortrag: Ruth Paas 1 Dunkle Materie Gravitationslinsen und andere

Mehr

A1: Die Sonne ist ein Stern in der Mitte unseres Sonnensystems. Notiert noch weitere Sterne, die Ihr kennt!

A1: Die Sonne ist ein Stern in der Mitte unseres Sonnensystems. Notiert noch weitere Sterne, die Ihr kennt! Ihr braucht: Tablet oder Smartphone das Infoheft zur Arbeitsmappe A1: Die Sonne ist ein Stern in der Mitte unseres Sonnensystems. Notiert noch weitere Sterne, die Ihr kennt! Sucht ggf. im Internet, z.b.

Mehr

Mittel- und Oberstufe - MITTEL:

Mittel- und Oberstufe - MITTEL: Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder

Mehr

Kosmologische Evolution

Kosmologische Evolution Günther Hasinger Kosmologische Evolution Ich möchte Ihnen ganz kurz die Elemente aufzeigen aus dem Vortrag, den ich bereits im Salon Sophie Charlotte gehalten habe, nämlich wie die Evolution in einen kosmologischen

Mehr

Wie ist die Welt entstanden? Öffentlicher Vortrag zur Ausstellung Weltmaschine Goethe Universität, Frankfurt am Main, 17.

Wie ist die Welt entstanden? Öffentlicher Vortrag zur Ausstellung Weltmaschine Goethe Universität, Frankfurt am Main, 17. p.1 Wie ist die Welt entstanden? Jürgen Schaffner-Bielich Institut für Theoretische Physik Öffentlicher Vortrag zur Ausstellung Weltmaschine Goethe Universität, Frankfurt am Main, 17. Januar 2010 Vom Weltraum,

Mehr

UNTERSCHEIDUNG ASTRONOMIE - ASTROLOGIE

UNTERSCHEIDUNG ASTRONOMIE - ASTROLOGIE ASTRONOMIE UNTERSCHEIDUNG ASTRONOMIE - ASTROLOGIE ASTRONOMIE ASTROLOGIE ASTRONOMIE Sternenkunde ASTROLOGIE Sternendeutung EKLIPTIK - 1 Ekliptik ist ein astronomischer Begriff. Diese Ekliptik zeigt uns

Mehr

VERGLEICH AMATEURAUFNAHMEN VERSUS PROFESSIONELLE ASTROFOTOS. von Rudolf Dobesberger

VERGLEICH AMATEURAUFNAHMEN VERSUS PROFESSIONELLE ASTROFOTOS. von Rudolf Dobesberger VERGLEICH AMATEURAUFNAHMEN VERSUS PROFESSIONELLE ASTROFOTOS von Rudolf Dobesberger DIE KONTRAHENTEN Das Profiteleskop Internationale Amateur Sternwarte - Der Herausforder 0,5m Spiegel Keller Astrograph

Mehr

Semestereinführung WS 2016/2017

Semestereinführung WS 2016/2017 Semestereinführung WS 2016/2017 Grundlagen der Astronomie und Astrophysik Dieter Breitschwerdt http://www-astro.physik.tu-berlin.de/~breitschwerdt Astrophysik: Physik der Extreme! höchste Dichten, Temperaturen,

Mehr

Sternentwicklung. Ziele

Sternentwicklung. Ziele Ziele DAS HERTZSPRUNG-RUSSELL DIAGRAMM Eigenschaften von Sternen. Übersicht über Sterntypen: Hauptreihe, Riesen, Zwerge, Neutronensterne. STERNSTRUKTUR UND STERNENTWICKLUNG Modelle als Schlüssel zur Kenntnis

Mehr

Quasare Hendrik Gross

Quasare Hendrik Gross Quasare Hendrik Gross Gliederungspunkte 1. Entdeckung und Herkunft 2. Charakteristik eines Quasars 3. Spektroskopie und Rotverschiebung 4. Wie wird ein Quasar erfasst? 5. Funktionsweise eines Radioteleskopes

Mehr

Woher kommen Gold, Silber und andere Elemente? Aus Sternen?

Woher kommen Gold, Silber und andere Elemente? Aus Sternen? Departement Physik Wie entstehen Gold und Silber im Universum? Woher kommen Gold, Silber und andere Elemente? Aus Sternen? Friedrich-Karl Thielemann Was sind (chemische) Elemente? Beispiele: Wasserstoff

Mehr

Historie der Astronomie

Historie der Astronomie Kurzvortrag: Historie der Astronomie Astronomievereinigung Rottweil 27. Februar 2010, Zimmern o.r. Herbert Haupt Lehrerfortbildung, 2007 Oberjoch, 5-7 October 2006 Andrea Santangelo, IAAT, KC-Tü Historie

Mehr

Sternparameter - Sternentwicklung

Sternparameter - Sternentwicklung Sternparameter - Sternentwicklung Der Sternhimmel Die Sternbilder Sternparameter Sternspektren Das Hertzsprung-RusselDiagramm Lebensdauer Rote Riesen-weiße Zwerge Altersbestimmung Orientierung am Sternenhimmel

Mehr