Kohlebürstenverschleiß

Größe: px
Ab Seite anzeigen:

Download "Kohlebürstenverschleiß"

Transkript

1 Kohlebürstenverschleiß Viele Kunden frgen: Wrum verschleißen die Kohlebürsten uf einer bestimmten Mschine so schnell und nicht gleichmäßig? Häufig werden Schwnkungen im Kohlebürstenwerkstoff dfür verntwortlich gemcht. Wir möchten im Folgenden Argumente ufzeigen, dss sehr viele weitere Fktoren für unterschiedlichen Bürstenverschleiß verntwortlich sein können. 1. Ungleichmäßiger Kommuttor-Rundluf von einer Bürstenbhn zur nderen Keine Kommuttoroberfläche ist exkt rund und sie wird mit der Lufzeit nicht besser. Sie heilt uch nicht von lleine, wenn sie erst einml beschädigt ist. Kommuttoren können für viele Jhre in einem kzeptblen Zustnd bleiben, werden ber mit der Zeit schlechter, wenn mn sie nicht pflegt. Akzeptble Werte für Kommuttorrundluf hängen u.. von der Umfngsgeschwindigkeit b.; ws bei 500Upm noch gut ist, muss bei 3000Upm nicht immer noch gut sein. Kommuttorprofile uf großen Mschinen können durchus große Unterschiede im Rundluf von der inneren zur äußeren Bhn ufweisen. Gründe hierfür können die Stbilität des Kommuttors, Schwingungen der Hlterbolzen etc. sein. Index: 1 Seite: 1 von: 7

2 2. Ungleichmäßiger Bürstendruck Die Tolernz in der Federkrft einer Druckfeder beträgt ±10%. Dies knn direkt uf den Bürstenverschleiß übertrgen werden. Mn muss weiterhin bedenken, dss Federn nicht ewig hlten. Ihr Druck fällt beständig b, d sie während des Betriebes ermüden. Je größer die Kommuttorunrundheit, desto größer die Ermüdung, d die Bürsten sich bei jeder Umdrehung uf und b bewegen. 3. Ungleichmäßige Gesmt-Anpresskrft Ds Gewicht einer Kohlebürste beeinflusst, uch wenn es reltiv gering ist, die Gesmt- Anpresskrft von Kohlebürsten in 12:00 und 6:00 Stellung unterschiedlich. Dieser Aspekt ht ntürlich bei metllhltigen Werkstoffen eine größere Bedeutung. 4. Ungleichförmiger Verluf des Anpressdruckes mit dem Kohlebürstenverschleiß Der Verluf des Bürstendruckes mit dem Weg der Kohlebürste im Hlter hängt vom verwendeten Federtyp b. Während die besonders für Bhnhlter verwendeten Spirlbndfedern eine strk fllende Chrkteristik hben, sind die Federchrkteristiken von Schrubenzugfedern und Rollbndfedern qusi liner. Bei justierbren Federn muss berücksichtigt werden, dss die Drücke durch Hndlingsfehler unterschiedlich sein können. Spirlbndfeder Index: 1 Seite: 2 von: 7

3 Schrubenzugfeder Rollbndfeder 5. Unterschiedlicher Reibwert im Bürstenhlter Bürstenverschleißstub, Öl und ndere Verunreinigungen smmeln sich nicht gleichmäßig in der Mschine n. Verunreinigungen, egl welchen Ursprungs, verschlechtern uf jeden Fll die Betriebsbedingungen. Verschmutzung knn Unterschiede in der Reibung zwischen Kohlebürste und Bürstenhlter, zwischen Feder und Bürste und zwischen den Windungen der Feder selbst, verurschen. Dher ist bei der Wrtung ein Augenmerk uf die Verschmutzungen im Bereich der Bürstenhlter zu legen. Index: 1 Seite: 3 von: 7

4 6. Unterschiede in der Tempertur Kommuttor- / Schleifring- und Bürstentemperturen hängen von den Verhältnissen beim Luftein- und ustritt der Mschine b. Buelemente, welche die Luftzirkultion in der Mschine behindern, Luftleitbleche oder sogr Bürsten direkt vor Lüftungsschlitzen können sich negtiv uswirken. Die Bürstentemperturen sind uf keinen Fll gleichmäßig. Beknnt ist uch der Unterschied in der Tempertur zwischen Bürsten die in der Nähe der Wicklung sitzen und Bürsten uf der Lgerseite. Dher besteht häufig ein ntürliches Gefälle in der Bürstenlänge von der Wicklungsseite hin zur Lgerseite. Aber uch umgekehrte Fälle sind beknnt. 7. Ungleichmäßige Stromverteilung Gewisse Kohlebürstenwerkstoffe sind selektiver ls ndere. Einige Werkstoffe, kunsthrzgebundene Grfitwerkstoffe, müssen in der Anzhl uf vier Bürsten pro Bolzen beschränkt werden, um Selektivität zu vermeiden. Kohlenstoff ht die ungewöhnliche Eigenschft, dss der elektrische Widerstnd mit steigender Tempertur sinkt. Ds knn einen Schneebll-Effekt verurschen, weil die Bürsten mit dem geringsten Widerstnd mehr Strom übertrgen werden und ddurch deutlich wärmer werden, usw. Durch Durchbrennen der Stromseile und Versgen der Stmpfkontkte knn diese Sitution bis zum Ausfll des Motors esklieren. Index: 1 Seite: 4 von: 7

5 8. Ungleichmäßige Kommutierung Unterschiede in den Luftsplten zwischen den Wendepolen und der Wicklung verurschen Asymmetrien im mgnetischen Fluss und dmit Unterschiede in der Stromufteilung. Mn sollte im Übrigen vorsichtig sein, Bürstenfeuer immer mit schlechter Kommutierung gleichzusetzen. Viele weitere Fktoren können Bürstenfeuer verurschen. 9. Stbilität der Bürstenhlter und deren Befestigung In großen Motoren mit 8-10 Bürstenhltern pro Bolzen sind diese entsprechend lng. Oftmls ist der Bolzen nur n einem Ende befestigt. Schwingungen können demzufolge zur Destbilisierung des Bürstenkontktes führen. 10. Unterschiedliche Polrität In Gleichstrommschinen ist die eine Hälfte der Bürsten positiv (Anode), die ndere Hälfte negtiv (Kthode). D Elektronen nur in eine Richtung fließen, fließt der Strom bei den nodischen Bürsten von der Bürste in den Kommuttor und bei den kthodischen Bürsten vom Kommuttor in die Bürste. Die xile Verteilung der Bürsten uf dem Kommuttor ist wichtig, dmit uf dem Stromwender keine unbestrichenen Streifen entstehen. D die Ptinierung von der Polrität der Bürsten bhängt, ist eine möglichst gleich große Anzhl von Plus- und Minusbürsten uf llen Lufbhnen nzustreben. Dies ist in mnchen Fällen (z.b. 6 poligen Mschinen) mit Kompromissen verbunden. Es ist besonders druf zu chten, dss keine Lufspuren mit nur kthodischer Benspruchung entstehen. Die kthodischen Bürsten (Motor (-), Genertor (+)) führen lleine in einer Lufbhn leicht zu Kommuttorngriff. Bei Synchron-Schleifringläufern ist dies der Grund für einen gelegentlichen Wechsel der Polrität, um gleichmäßigen Bürsten- und Ringverschleiß zu erzwingen. Index: 1 Seite: 5 von: 7

6 10. Ungleichmäßige Polteilung = konstnt Die Bürsten müssen gleichmäßig über den Umfng des Kollektors verteilt sein. Die Tolernz des Abstndes der Bolzen zueinnder sollte 1mm nicht überschreiten. Die Ausrichtung der Bürstenhlter wird erleichtert, wenn mn einen Ppierstreifen um den Kommuttor befestigt, uf dem zuvor die exkte Position der Hlter ufgezeichnet wurde. Weiterhin müssen die uf- und die blufende Bürstenknte exkt prllel zu den Lmellen sin. Lnge Bürstenrme können m Befestigungspunkt den gleichen Abstnd hben, sie können jedoch über die Länge verdreht sein 11. Ungleichmäßiges Einschleifen Flsch O.k Ob Bürsten richtig eingeschliffen sind und welches Verfhren hierfür verwendet wird, knn den Bürstenverschleiß beeinflussen. Neue, nicht eingeschliffene Bürsten hben keinen vollkommenen Kontkt zum Kommuttor / Ring. Eine zeitlng wird punktueller oder linienförmiger Kontkt vorliegen. Durch die hohe Stromdichte wird die Luffläche lokl beschädigt. Die Zeit, bis diese Fehler wieder usgeglichen sind ist von Bürste zu Bürste unterschiedlich es kommt zu unterschiedlichem Bürstenverschleiß. Index: 1 Seite: 6 von: 7

7 13. Unterschiedliche elektrische Verbindungen Alle elektrischen Verbindungen von der Stromquelle zur Bürste müssen fehlerfrei sin. Die Verschrubung der Bürste m Hlter, der Stmpfkontkt oder der Nietkontkt n der Kohlebürste müssen einwndfrei sein, um gleichmäßige Stromverteilung und gleichmäßigen Bürstenverschleiß zu grntieren. 12. Ungleichmäßige Ptinierung ist gewöhnlich ein Indiktor dfür, dss einer oder mehrere der oben gennnten Fehler vorliegt. Index: 1 Seite: 7 von: 7

Der optimale Bürstendruck ist ein Kompromiss aus elektrischer und mechanischer Betrachtung.

Der optimale Bürstendruck ist ein Kompromiss aus elektrischer und mechanischer Betrachtung. 1. Der optimale Bürstendruck Prinzipiell gilt, dass der Druck ausreichend hoch sein soll, um einen sicheren und dauerhaften Kontakt der Kohlebürste zum Kollektor oder Schleifring bei allen Betriebsbedingungen

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Elektrischer Widerstand und Strom-Spannungs-Kennlinien

Elektrischer Widerstand und Strom-Spannungs-Kennlinien Versuch 6 Elektrischer Widerstnd und Strom-Spnnungs-Kennlinien Versuchsziel: Durch biochemische ektionen ufgebute Potentildifferenzen (Spnnungen) bewirken elektrische Ströme im Orgnismus, die n einer Vielzhl

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN Professur für VWL II Wolfgng Scherf Die Exmensklusur us der Volkswirtschftslehre Erschienen in: WISU 8-9/2000, S. 1163 1166. Fchbereich Wirtschftswissenschften Prof. Dr.

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Wie wirkt sich eine reiserhöhung für Gut uf die konsumierte Menge n us: Bzw.: d (,, ) h (,, V ) 2 V 0,5 0,5 Für die Unkompensierte Nchfrgefunktion gilt:

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, [email protected] 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Der optimale Bürstendruck ist ein Kompromiss aus elektrischer und mechanischer Betrachtung.

Der optimale Bürstendruck ist ein Kompromiss aus elektrischer und mechanischer Betrachtung. 1. Der optimale Prinzipiell gilt, dass der Druck ausreichend hoch sein soll, um einen sicheren und dauerhaften Kontakt der Kohlebürste zum Kollektor oder Schleifring bei allen Betriebsbedingungen zu gewährleisten.

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,

Mehr

Kohlebürsten und Mathematik

Kohlebürsten und Mathematik Kohlebürsten bzw. ihre Eigenschaften sind im wahrsten Sinne des Wortes unberechenbar. Kalkulierbar sind aber einige Parameter, die mit dem Bürstenlaufverhalten in engem Zusammenhang stehen. Unter der etwas

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Die Zufallsvariable und ihre Verteilung

Die Zufallsvariable und ihre Verteilung Die Zufllsvrible und ihre Verteilung Die Zufllsvrible In der Whrscheinlichkeitstheorie bzw. Sttistik betrchtet mn Zufllsvriblen. Eine Zufllsvrible ist eine Funktion, die Ergebnissen eines Zufllsexperimentes

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz [email protected] Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Wo liegen die Unterschiede?

Wo liegen die Unterschiede? 0 VERGLEICH VON MSA UND VDA BAND 5 Wo liegen die Unterschiede? MSA steht für Mesurement System Anlysis. Dieses Dokument wurde erstmls 1990 von der Automotive Industry Action Group (AIAG) veröffentlicht.

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

FACHHOCHSCHULE Bielefeld 9. Juli 2007 Fachbereich Elektrotechnik

FACHHOCHSCHULE Bielefeld 9. Juli 2007 Fachbereich Elektrotechnik FACHHOCHSCHLE Bielefeld 9. Juli 2007 Fchbereich Elektrotechnik Professor Dr.Ing.hbil. K. Hofer Klusur zu LEISTNGSELEKTRONIK ND ANTRIEBE (LEA) Berbeitungsduer: Hilfsmittel: 3.0 Zeitstunden Vorlesungsskriptum,

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: [email protected] Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT Eponentilgleichungen lösen Reihe 0 S Verluf Mteril LEK Glossr Lösungen In cht Leveln zum Meister! Eponentilgleichungen lösen Kerstin Lnger, Kiel Klsse: Duer: Inhlt: Ihr Plus: 0 (G8) 5 Stunden Eponentilgleichungen

Mehr

Einreihige Schrägkugellager

Einreihige Schrägkugellager Einreihige Schrägkugellger Einreihige Schrägkugellger 232 Definition und Eigenschften 232 Bureihen 233 Ausführungen 233 Tolernzen und Lgerluft 234 Berechnungsgrundlgen 236 Lgerdten 238 Vierpunktlger 244

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Verbrauchswerte. 1. Umgang mit Verbrauchswerten

Verbrauchswerte. 1. Umgang mit Verbrauchswerten Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des

Mehr

Stahlbau Grundlagen. Der Grenzzustand der Stabilität nach Theorie II. Ordnung. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Der Grenzzustand der Stabilität nach Theorie II. Ordnung. Prof. Dr.-Ing. Uwe E. Dorka Sthlbu Grundlgen Der Grenzzustnd der Stbilität nch Theorie II. Ordnung rof. Dr.-Ing. Ue E. Dork eitbuerk lle Geometrisch perfektes System: keine Kräfte in den Digonlen, Gleichgeicht im chbrzustnd führt

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die eigenen vier Wände, der Schritt in die

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Der Koeffizient wird an erster Stelle geschrieben, Potenzen gleicher Variablen werden zusammengefasst, Variablen werden alphabetisch geordnet.

Der Koeffizient wird an erster Stelle geschrieben, Potenzen gleicher Variablen werden zusammengefasst, Variablen werden alphabetisch geordnet. 5 Polynome 5.1 Definitionen Definition 8 Monom Ein Monom ist ein Produkt us einer reellen Zhl dem Koeffizienten) und beliebig vielen ntürlichen Potenzen von Vriblen dem Nmen des Monoms). Ist ds Monom nur

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

Internationale Ökonomie I Vorlesung 3: Das Riccardo-Modell: Komparative Vorteile und Produktivität (Master)

Internationale Ökonomie I Vorlesung 3: Das Riccardo-Modell: Komparative Vorteile und Produktivität (Master) Interntionle Ökonomie I Vorlesung 3: Ds Riccrdo-Modell: Komprtive Vorteile und Produktivität (Mster) Dr. Dominik Mltritz Vorlesungsgliederung 1. Einführung 2. Der Welthndel: Ein Überblick 3. Ds Riccrdo-Modell:

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium 521310620_1001.indd 1 03.12.09 14:50 Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Aufgabe 5 (Lineare Nachfragefunktion): Gegeben sei die (aggregierte) Nachfragefunktion des Gutes x durch:

Aufgabe 5 (Lineare Nachfragefunktion): Gegeben sei die (aggregierte) Nachfragefunktion des Gutes x durch: LÖSUNG AUFGABE 5 ZUR INDUSTRIEÖKONOMIK SEITE VON 5 Aufgbe 5 (Linere Nchfrgefunktion): Gegeben sei die (ggregierte) Nchfrgefunktion des Gutes durch: ( = b, > 0, b > 0. Dbei bezeichnen den Preis des Gutes

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Numerische Integration

Numerische Integration Numerische Integrtion Bei vielen Problemen des nturwissenschftlichen Rechnens treten Integrle uf, die nicht in expliziter Form drgestellt werden können, sei es, dß kein geschlossener Ausdruck für eine

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

Einführung in das Rechnen mit Zahlen. (elementare Algebra)

Einführung in das Rechnen mit Zahlen. (elementare Algebra) Ausgbe 2008-05 Einführung in ds Rechnen mit Zhlen (elementre Algebr) Algebr ist ein Teilgebiet der Mthemtik und beschäftigt sich mit der Verknüpfung von Zhlen durch Rechenopertionen 1. Rechenregeln der

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

-25/1- DIE RÖHRENDIODE

-25/1- DIE RÖHRENDIODE -25/1- DIE RÖHRENDIODE ufgben: Messverfhren: Vorkenntnisse: Lehrinhlt: Litertur: ufnhme der Kennlinie einer Röhrendiode und einiger rbeitskennlinien. Bestimmung des Exponenten der Schottky-Lngmuirschen

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Quadrate 1. Michael Schmitz

Quadrate 1. Michael Schmitz www.mthegmi.de Dezember 2009 Qudrte Michel Schmitz Zusmmenfssung Beim Flten von Ppier wird häufig qudrtisches Ppier ls Ausgngsmteril benutzt. Zu diesem Zweck gibt es eine Vielzhl qudrtischer Fltblätter

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnbrück WS 20/202 Mthemtik für Anwender I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f :[,b] R knn mn f(t)dt b ls die Durchschnittshöhe

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze Rolnd Meissner Bodestrße 7, D-06122 Hlle, E-Mil: [email protected] Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der reltivistischen Krftgesetze Abstrct The reltivistic term of Force

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

5. Übung Algorithmen II

5. Übung Algorithmen II Johnnes Singler, Prof. Snders 1 Johnnes Singler: KIT Universität des Lndes Bden-Württemberg und ntionles Forschungszentrum in der Helmholtz-Gemeinschft Institut für Theoretische www.kit.edu Informtik Orgnistorisches

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr