Enzyme: Grundlegende Konzepte und Kinetik

Größe: px
Ab Seite anzeigen:

Download "Enzyme: Grundlegende Konzepte und Kinetik"

Transkript

1 Enzyme: Grundlegende Konzepte und Kinetik Enzyme sind Katalysatoren biologischer Systeme Wichtigste Eigenschaften: katalytische Stärke und Spezifität Nahezu alle bekannten Enzyme sind Proteine, es gibt aber auch RNA-Moleküle die katalytische Aktivität haben Im Prinzip katalysieren Enzyme Reaktionen durch Stabilisierung des jeweiligen Übergangszustands, dem energiereichsten Spezies im Reaktionsmechanismus 1

2 Enzyme sind leistungsstarke und (hoch)spezifische Katalysatoren 2

3 Carboanhydrasereaktion Selbst eine so einfache Reaktion wie die Hydratisierung von CO 2 wird durch ein Enzym katalysiert. Tatsächlich ist die Carboanhydrase eines der schnellsten aller bekannten Enzyme; jedes Enzymmolekül kann pro Sekunde 10 6 Moleküle CO 2 hydratisieren; d.h. die katalysierte Reaktion ist ca mal schneller als die unkatalysierte 3

4 Beispiel: proteolytische Enzyme Subtilisin (aus Bakterien) unterscheidet fast gar nicht zwischen den Seitenketten (R 1, R 2 ) 4

5 Beispiel: proteolytische Enzyme Trypsin (Verdauungsenzym) spaltet nur Peptidbindungen auf der Carboxylseite von Lysin- oder Argininresten Thrombin (Blutgerinnung) katalysiert nur die Hydrolyse von Arg-Gly- Bindungen in ganz spezifischen Peptidsequenzen 5

6 Viele Enzyme benötigen Cofaktoren Apoenzym + Cofaktor Holoenzym Zwei Gruppen: kleine organische Moleküle und Metalle Cofaktoren, die kleine organische Moleküle sind, werden als Coenzyme bezeichnet. Sie leiten sich oft von Vitaminen ab und können entweder fest oder lose an das Enzym gebunden sein Sind sie fest gebunden, nennt man sie prosthetische Gruppe Lose gebundene Cofaktoren verhalten sich eher wie Cosubstrate, da sie sich genauso wie Substrate und Produkte an das Enzym binden und freigesetzt werden 6

7 Wozu Cofaktoren? Enzyme sind meist Proteine Proteine enthalten: Saure Gruppen (COOH) Basische Gruppen (NH 2 ) Hydroxylgruppen (OH) Redoxvorgänge können von Proteinen praktisch nicht katalysiert werden. 7

8 Wozu Cofaktoren? Redoxvorgänge Redoxcofaktoren Fixieren von Hxdroxyl- und Carboxylgruppen Metallkationen 8

9 Cofaktoren R R R R R (R) R R 9

10 Vitamine und Cofaktoren 10

11 Strukturen einiger wasserlöslicher Vitamine 11

12 Klassifizierung von Enzymen Viele Enzyme haben allgemeine Namen, die keine Information über die Reaktion liefern, die sie katalysieren (z.b. Trypsin) Die meisten Enzyme werden nach den Substraten und Reaktionen genannt, die sie katalysieren 1964 wurde die Enzyme Commission gegründet, um eine einheitliche Nomenklatur zu entwickeln Sie unterteilten die Reaktionen in 6 Hauptklassen, die von 1 bis 6 durchnummeriert sind. Diese Gruppen untergliederten sie immer weiter, so dass eine vierstellige Zahl, der die Buchstaben EC vorangestellt sind, alle Enzyme genau identifiziert 12

13 Klassifizierung von Enzymen Siehe auch: 13

14 Thermodynamik der Katalyse Die Gibbs-Energie (G) (ab und zu noch freie Enthalpie genannt) ist eine wichtige thermodynamische Funktion zum Verständnis von Enzymreaktionen. Zu beachten: K K K r J J J J J f J G ( T) G ( T) G ( T) J=A J=A J=A Voraussetzung: K JA B 0 J J 14

15 Kinetik der Katalyse Die Aktivierungs-Gibbsenergie r G (oft als G bezeichnet) ist meist nicht direkt zugänglich. Messbar sind die Arrhenius-Aktivierungsenergien (E a ) via Temperaturabhängigkeit der Geschwindigkeitskonstante. 15

16 Thermodynamik der Katalyse REP r G liefert Informationen über die Spontaneität einer Reaktion. Eine Reaktion ist spontan, falls r G < 0 (exergonisch). Ein System ist im Gleichgewicht, wenn r G = 0. Eine Reaktion mit r G > 0 nennt man endergonisch. Damit eine solche Reaktion vollständig abläuft, muss Energie zugeführt werden. 16

17 Thermodynamik der Katalyse REP Die G-Funktion ist eine Zustandsfunktion. Der numerische Wert von r G hängt nicht vom Reaktionsweg ab (d.h. ist vom molekularen Reaktionsmechanismus unabhängig!). r G sagt nichts über die Geschwindigkeit einer Reaktion aus! Die Reaktionsgeschwindigkeit ist von r G (bzw. E a ) abhängig. Es gibt keine Korrelationen zwischen r G und r G (ausser in gewissen Modellen!). 17

18 Thermodynamik der Katalyse REP aa bb cc nn oo pp ln r r G G RT Q Q n o p a a a N O P a b c a a a A B C 18

19 Thermodynamik der Katalyse Bei gelösten Stoffen: Q a n o p a a a N O P a b c a a a A B C c J J J J c c J Q n o p n o p c c c c c c A B C n o p c c c N O P a b c c c c A B C N O P N O P a b c a b c A B C (alle J = 1) 19

20 Thermodynamik der Katalyse ' Konvention: G : G (ph 7) r r d.h. c 7 10 M H alle übrigen c sind 1 M 20

21 Beispiel 2 H e = H 2 E o := 0 V E o :=? V R T V E E ln Q E log Q z F z Q a H H a a c 1 H e H p R T z F V V 2 ' E E ln10logq 21

22 Thermodynamik der Katalyse ' rg RT ln K ' RT log K ' (ph = 7) K r G RT ' e 10 ' rg ' RTln10 Bei Raumtemperatur ( K) gilt: K ' 10 rg kjmol 5.71 kj mol '

23 Thermodynamik der Katalyse Eine Änderung von K um einen Faktor 10 entspricht einer Änderung von r G um 5.71 kj mol -1 23

24 Enzyme können nur die Reaktionsgeschwindigkeit, aber nicht das Reaktionsgleichgewicht verschieben Ein Enzym kann die Gesetze der Thermodynamik nicht verändern und folglich auch nicht das Gleichgewicht einer Reaktion verschieben. Das heisst, ein Enzym beschleunigt die Hin- und die Rückreaktion um genau denselben Faktor. Enzyme beschleunigen die Einstellung des Gleichgewichts, verschieben es jedoch nicht nach irgendeiner Seite. 24

25 Übergangszustand Eine chemische Umwandlung des Substrats S in das Produkt P verläuft über den Übergangszustand S, der eine höhere Gibbs-Energie besitzt als das Substrat. G 25

26 Übergangszustand Es besteht ein Gleichgewicht zwischen Grundzustand und Übergangszustand. Alle Übergangszustände zerfallen bei gleicher Temperatur gleich schnell. K S S P k x K c c S S 26

27 Übergangszustand x S S P k K r S S G RT c K e c r P d d G RT x S c v k c e t B x k T k h Bei 25 C: k x = s -1 27

28 Übergangszustand Annahmen: c S r G kJmol 1M, T 298K c S 5 10 c S v = Ms -1 K c c S S e G r RT 28

29 Übergangszustand Enzyme beschleunigen Reaktionen durch Erniedrigung von r G, der Aktivierungs-Gibbsenergie. Die Verbindung von Substrat und Enzym schafft einen neuen Reaktionsweg, dessen Übergangszustand eine niedrigere Energie aufweist als der ohne Enzym ablaufenden Reaktion Die Erniedrigung der Aktivierungsenergie hat zur Folge, dass mehr Moleküle die erforderliche Energie besitzen, um den Übergangszustand zu erreichen Das Wesen der Katalyse besteht in der spezifischen Bindung und Stabilisierung des Übergangszustands 29

30 Enzym Substratkomplexe Die Substrate werden in günstiger räumlicher Ausrichtung zu Enzym-Substrat- Komplexen zusammengeführt. Dabei werden die Substrate an eine spezifische Region des Enzyms gebunden, die man als aktives Zentrum bezeichnet Indirekter Beweis durch Sättigungskinetik: Bei genügend hohen Substratkonzentrationen sind alle katalytischen Zentren besetzt 30

31 Struktur eines Enzym-Substrat- Komplexes Cytochrom-P 450 -Oxidase ist mit seinem gebundenen Substrat Campher dargestellt 31

32 Aktive Zentren haben gemeinsame Eigenschaften 1. Das aktive Zentrum ist eine dreidimensionale Spalte, die von vielen Gruppen aus verschiedenen Abschnitten der Aminosäuresequenz gebildet wird 2. Das aktive Zentrum stellt nur einen relativ kleinen Teil des Gesamtenzyms dar 3. Aktive Zentren sind höhlen- oder spaltenförmig 4. Substrate werden durch viele schwache Kräfte an das Enzym gebunden 5. Die Bindungsaffinität ist von der definierten Anordnung der Atome im aktiven Zentrum abhängig 32

33 Aktive Zentren können weit voneinander entfernte Reste enthalten 33

34 Wasserstoffbrücken zwischen einem Enzym und einem Substrat 34

35 Schloss-Schlüssel-Modell der Enzym-Substrat-Bindung 35

36 Modell des induced fit der Enzym- Substrat-Bindung 36

37 Übergangszustand 37

38 Michaelis-Menten-Kinetik 38

39 Bestimmung der Anfangsgeschwindigkeit 39

40 Steady state Bedingungen k k 1 2 E S ES E P k 1 dc dt ES Annahme: 0 c ES konstant 40

41 Steady state Bedingungen 41

42 V 0 k 2 Michaelis-Menten-Gleichung k 1 k 2 E S ES E P K M k 1 k 2 k 1 E T S S K M Die Maximalgeschwindigkeit V max wird erreicht, wenn alle Bindungsstellen am Enzym mit Substrat gesättigt sind wenn also [ES] = [E] T ist V max k 2 E T k 1 V 0 V max S S K M 42

43 K M -Werte 43

44 Übung Enzyme A) In zwei verschiedenen Zellextrakten, Extrakt A und Extrakt B, wird die Aktivität des Enzyms Aldolase mit gleichen Enzymassays gemessen. Die Aktivität der Aldolase (ausgedrückt als Mol umgesetztes Substrat pro Gramm Extrakt) ist unter verschiedenen Bedingungen im Extrakt A immer 5 mal höher als im Extrakt B. Was ist die einfachste Erklärung für diese Beobachtung? B) Sie messen nun in einem der Extrakte die Aktivität der Aldolase in Abhängigkeite der Substratkonzentration. Bei einer Substratkonzentration von 0.04 mm messen Sie eine Aktivität, die 80% von V max entspricht. Wie gross ist K M für diese Aldolase? 44

45 K M -Werte V V 0 max K M S S 0.8 V V max max K M KM 0.01mM 45

46 Wechselzahl, turnover number Aus V max ergibt sich die Wechselzahl eines Enzyms, d.h. die Anzahl Substratmoleküle, die bei vollständige Sättigung des Enzyms mit Substrat pro Zeiteinheit in das Produkt umgewandelt werden Die Wechselzahl entspricht der kinetischen Konstante k 2, die auch als k kat bezeichnet wird V max k 2 E T k 2 V max E T 46

47 Das kinetische Optimum der enzymatischen Katalyse: das k kat /K M -Kriterium Unter physiologischen Bedingungen liegt das Verhältnis [S]/K M meistens zwischen 0.01 und 1, d.h die enzymatische Geschwindigkeit liegt weit unter k kat, weil die meisten aktiven Zentren bei [S] << K M unbesetzt sind Geeigneter Parameter zur Charakterisierung der Enzymkinetik unter diesen Bedingungen: V 0 k kat K M S E (folgt aus steady state Annahme) V 0 k kat K M S E T Für [S] << K M 47

48 d k 1 k 2 E S ES E P ES dt k 1 Steady state: d E S ( ) ES k k k ES dt d ES dt 0 k E S ( k k ) ES k 1 k k K 1 ES ES ES 1 2 M d P dt k V0 k2 K ES 2 E S M 48

49 Substratpräferenzen von Chymotrypsin 49

50 Wie effizient kann ein Enzym sein? Gibt es physikalische Grenzen für den Wert von k kat /K M? k kat K M k kat k 1 k kat k 1 k kat k 1 k kat k 1 k 1 Der Wert von k kat /K M wird letztlich von k 1 begrenzt, der Bildungsgeschwindigkeit des Enzym-Substrat-Komplexes. Diese Geschwindigkeit kann nicht grösser werden als die Geschwindigkeit der diffusionsbedingten Begegnung von Enzym und Substrat Die Diffusion beschränkt den Wert so dass er 10 8 bis 10 9 s -1 M -1 nicht übersteigen kann 50

51 Kinetische Perfektion Die Katalysegeschwindigkeit von kinetisch perfekten Enzymen wird nur durch die Geschwindigkeit begrenzt, mit der sie in Lösung ihrem Substrat 51 begegnen.

52 V 0 k 2 Michaelis-Menten-Gleichung k 1 k 2 E S ES E P K M k 1 k 2 k 1 E T S S K M k 1 REP Die Maximalgeschwindigkeit V max wird erreicht, wenn alle Bindungsstellen am Enzym mit Substrat gesättigt sind wenn also [ES] = [E] T ist V max k 2 E T V 0 V max S S K M 52

53 Lineweaver-Burk-Diagramm 1 K 1 1 M V V V S 0 max max 53

54 Reversible Enzym-Hemmung 54

55 Kompetitive Hemmung Ein kompetitiver Inhibitor vermindert die Katalysegeschwindigkeit, indem er den Anteil der Enzymmoleküle mit gebundenem Substrat verringert. Das Kennzeichen der kompetitiven Hemmung besteht darin, dass sie durch eine ausreichend hohe Substratkonzentration überwunden werden kann. In Gegenwart eines kompetitiven Inhibitors ist V max unverändert, dafür K app M K M (1 I ) K i 55

56 Kompetitive Hemmung I V V V K 1 1 K 1 M 1 S 0 max max i 1/ K M 1/V max 56

57 Nichtkompetitive Hemmung Bei nichtkompetitiver Hemmung kann das Substrat immer noch an den Enzym-Inhibitor-Komplex binden, aus dem Enzym- Substrat-Inhibitor-Komplex kann aber kein Produkt gebildet werden. V max nimmt ab, K M bleibt unverändert, weil sich das verbleibende Enzym wie eine verdünnte Lösung verhält. Lässt sich nicht durch eine Erhöhung der Substratkonzentration ausschalten 57

58 Nichtkompetitive Hemmung V app max V 1 max I K i 58

59 Nichtkompetitive Hemmung K 1 M V I 0 Vmax S 1 Ki 1/ K M 1/V max 59

60 Analoga des Übergangszustandes sind starke Enzyminhibitoren Isomerisierung von L- zu D-Prolin verläuft über einen planaren Übergangszustand 60

Katalyse. höhere Reaktionsgeschwindigkeit bei derselben Temperatur! Achtung: Gleichgewicht der chemischen Reaktion wird nicht verschoben

Katalyse. höhere Reaktionsgeschwindigkeit bei derselben Temperatur! Achtung: Gleichgewicht der chemischen Reaktion wird nicht verschoben Katalyse Ein Katalysator setzt Aktivierungsenergie einer Reaktion herab, indem er einen anderen Reaktionsweg ermöglicht, so dass der geschwindigkeitsbestimmende Schritt der nicht-katalysierten Reaktion

Mehr

Bioorganische Chemie Enzymatische Katalyse 2011

Bioorganische Chemie Enzymatische Katalyse 2011 Ringvorlesung Chemie B - Studiengang Molekulare Biotechnologie Bioorganische Chemie Enzymatische Katalyse 2011 Prof. Dr. A. Jäschke INF 364, Zi. 308, Tel. 54 48 51 jaeschke@uni-hd.de Lehrziele I Kenntnis

Mehr

Versuch: Enzyme (LDH)

Versuch: Enzyme (LDH) Versuch: Enzyme (LDH) 25.11.02 Seiten im Campell, Tierphysbuch (Penzlin) und Eckert Zusammenfassung Campbell S. 105-113 Zusammenfassung Eckert S. 77 89 Zusammenfassung Penzlin S. 50 ff. Allgemein: Temperatur

Mehr

ENZYME. Teil 1: Grundlagen und Substratbestimmungen

ENZYME. Teil 1: Grundlagen und Substratbestimmungen ENZYME Teil 1: Grundlagen und Substratbestimmungen Metastabiler Zustand Beispiel: Glucose-6-Phosphat + H 2 O [Glc6P] [H 2 0] K = = 1.135 x 10 [Glc] [Pi] -3 Gleichgewicht stark auf Seite von Glc + Pi Glucose

Mehr

4.1. Eigenschaften von Enzymen

4.1. Eigenschaften von Enzymen 4. Enzyme 106 107 4.1. Eigenschaften von Enzymen Enzyme sind Proteine, die chemische Reaktionen beschleunigen (Biokatalysatoren) Herausragende Merkmale verglichen mit anderen Katalysatoren: drastische

Mehr

Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail. Mag. Gerald Trutschl

Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail. Mag. Gerald Trutschl Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail Mag. Gerald Trutschl 1 Inhalt 1. Enzym Reaktion im Detail 2. Thermodynamische Reaktion 3. Katalysemechanismen 4. Michaelis-Menten-Konstante

Mehr

Enzyme. Prof. Dr. Albert Duschl

Enzyme. Prof. Dr. Albert Duschl Enzyme Prof. Dr. Albert Duschl Katalyse Reaktionen laufen normalerweise nicht spontan ab, auch wenn insgesamt dabei Energie gewonnen werden sollte. Es muß zunächst eine Aktivierungsenergie aufgebracht

Mehr

Praktikum. Enzymkinetik am Beispiel der Protease Trypsin

Praktikum. Enzymkinetik am Beispiel der Protease Trypsin Praktikum Methoden der molekularen Biowissenschaften Teil 1: Biochemie Enzymkinetik am Beispiel der Protease Trypsin Prof. Walter Nickel Biochemie-Zentrum der Universität Heidelberg Thermodynamische Eigenschaften

Mehr

Einführung in die Biochemie Wirkungsweise von Enzymen

Einführung in die Biochemie Wirkungsweise von Enzymen Wirkungsweise von en Am Aktiven Zentrum kann ein nur in einer ganz bestimmten Orientierung anlegen, wie ein Schlüssel zum Schloss. Dieses Prinzip ist die Ursache der spezifität von en. Dies resultiert

Mehr

Biochemische UE Alkaline Phosphatase.

Biochemische UE Alkaline Phosphatase. Biochemische UE Alkaline Phosphatase peter.hammerl@sbg.ac.at Alkaline Phosphatase: Katalysiert die Hydrolyse von Phosphorsäure-Estern: O - O - Ser-102 R O P==O O - H 2 O R OH + HO P==O O - ph-optimum im

Mehr

Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie

Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie H S G= H-T S Prozeß 1. (-) (+) (-) immer exergonisch, erfolgt spontan bei allen Temperaturen

Mehr

Enzym-Kinetik (Abb. 1) Das Thema der heutigen Vorlesung ist die Kinetik isolierter und gereinigter Enzyme zum Verständnis ihrer Reaktionsmechanismen.

Enzym-Kinetik (Abb. 1) Das Thema der heutigen Vorlesung ist die Kinetik isolierter und gereinigter Enzyme zum Verständnis ihrer Reaktionsmechanismen. 1 Enzym-Kinetik (Abb. 1) Das Thema der heutigen Vorlesung ist die Kinetik isolierter und gereinigter Enzyme zum Verständnis ihrer Reaktionsmechanismen. Wie ich schon erwähnte, ist die Geschwindigkeit (V)

Mehr

Enzymatische Reaktionen

Enzymatische Reaktionen Enzymatische Reaktionen 1. Chemische Kinetik 2. Enzymatische Kinetik 3. Inhibition 4. ph Effekte Voet Biochemistry 3e 5. Bisubstrat Reaktionen 1. Chemische Kinetik Kinetik ist das Studium der Raten bei

Mehr

Enzyme. Fermente = chemische Substanzen En - zym = in Hefe/Sauerteig ; Trypsin Buchner (1897) zellfreier Hefeextrakt produziert Alkohol

Enzyme. Fermente = chemische Substanzen En - zym = in Hefe/Sauerteig ; Trypsin Buchner (1897) zellfreier Hefeextrakt produziert Alkohol Enzyme Pasteur (1850) force vitale Liebig (1850) Fermente = chemische Substanzen Kühne (1878) En - zym = in efe/sauerteig ; Trypsin Buchner (1897) zellfreier efeextrakt produziert Alkohol Fischer (1894)

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator - Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Ein- Einstellung des Gleichgewichts,

Mehr

Mechanismus der Enzymkatalyse

Mechanismus der Enzymkatalyse Mechanismus der Enzymkatalyse Allgemeine Prinzipien Annäherung des Substrats an das aktive Zentrum des Enzyms Enzym und Substrat treten in Wechselwirkung: Bildung des [ES]-Komplexes. Konformationsänderung

Mehr

Metabolismus Umwandlung von Stoffen und Energie nach den Gesetzen der Thermodynamik

Metabolismus Umwandlung von Stoffen und Energie nach den Gesetzen der Thermodynamik Metabolismus Umwandlung von Stoffen und Energie nach den Gesetzen der Thermodynamik Der Metabolismus oder Stoffwechsel ist die Gesamtheit der in einem Organismus ablaufenden (bio)chemischen Prozesse Der

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Gegenstand der letzten Vorlesung Reaktionsgeschwindigkeit Reaktionsordnung Molekularität Reaktion 0., 1.,. Ordnung Reaktion pseudo-erster Ordnung Aktivierungsenergie Temperaturabhängigkeit der Geschwindigkeitskonstanten

Mehr

Enzyme als Biokatalysatoren

Enzyme als Biokatalysatoren 1 Enzymwirkung Enzyme als Biokatalysatoren Versuch: Wasserstoffperoxid wird bei RT mit a) Mn(IV)-oxid und b) Katalase versetzt. Beobachtung: a) Gasentwicklung Glimmspanprobe positiv b) Gasentwicklung Glimmspanprobe

Mehr

Richtung chemischer Reaktionen, Chemisches Gleichgewicht. Massenwirkungsgesetz

Richtung chemischer Reaktionen, Chemisches Gleichgewicht. Massenwirkungsgesetz Richtung chemischer Reaktionen, Chemisches Gleichgewicht a A + b B K = [C] [A] c a [D] [B] c C + d D d b Massenwirkungsgesetz K = Gleichgewichtskonstante [ ] = in Lösung: Konzentration (in mol L -1 ),

Mehr

Grundlagen der Zellulären Biochemie

Grundlagen der Zellulären Biochemie Grundlagen der Zellulären Biochemie Enzyme Vorlesung zum Modul BCB P07 im Bachelor-Studiengang Biochemie Hannover Prof. J. Alves, Institut für Biophysikalische Chemie, MHH Enzyme Der Name Enzym wurde 1878

Mehr

Enzyme SPF BCH am

Enzyme SPF BCH am Enzyme Inhaltsverzeichnis Ihr kennt den Aufbau von Proteinen (mit vier Strukturelementen) und kennt die Kräfte, welche den Aufbau und die Funktion von Enzymen bestimmen... 3 Ihr versteht die Einteilung

Mehr

Richtung chemischer Reaktionen, chemisches Gleichgewicht. Massenwirkungsgesetz

Richtung chemischer Reaktionen, chemisches Gleichgewicht. Massenwirkungsgesetz Richtung chemischer Reaktionen, chemisches Gleichgewicht a A + b B K [C] [A] c a [D] [B] c C + d D d b K = Gleichgewichtskonstante Massenwirkungsgesetz [ ] = in Lösung: Konzentration (in mol L -1 ), für

Mehr

Nutzung von Origin in der Enzym-Kinetik

Nutzung von Origin in der Enzym-Kinetik Nutzung von Origin in der Enzym-Kinetik Ausgangssituation Die Geschwindigkeit einer enzymatischen Reaktionen bei vorgegebener Enzymkonzentration aber verschiedener Substratkonzentration berechnen und grafisch

Mehr

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen

Mehr

Michaelis-Menten-Gleichung

Michaelis-Menten-Gleichung Physikalisch-Chemische Praktika Michaelis-Menten-Gleichung Versuch K4 1 Aufgabe Experimentelle Bestimmung der Kinetik der Zersetzung von Harnsto durch Urease. 2 Grundlagen Im Bereich der Biochemie spielen

Mehr

Praktikum Biochemie Einführung in die Molekularbiologie. Bettina Siebers

Praktikum Biochemie Einführung in die Molekularbiologie. Bettina Siebers Praktikum Biochemie Einführung in die Molekularbiologie Bettina Siebers Protein Expression Genomische DNA PCR Vektormolekül (Plasmid) Escherichia coli Reinigung Protein Aktivitätstest Platte in 9 Teile

Mehr

Thermodynamik & Kinetik

Thermodynamik & Kinetik Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters

Mehr

Versuch 4. Enzymkinetik

Versuch 4. Enzymkinetik Versuch 4 Enzymkinetik Protokollant: E-mail: Studiengang: Gruppen-Nr: Semester: Betreuer: Max Mustermann max@mustermann.de X X X Dr. Postina Wird benotet?: Aufgabenstellung Ermittlung der maximalen Reaktionsgeschwindigkeit

Mehr

1.1. Grundlage aller enzymkinetischen Untersuchungen ist die Michaelis-Menten- Gleichung: V 0 = V max x [S] K m + [S]

1.1. Grundlage aller enzymkinetischen Untersuchungen ist die Michaelis-Menten- Gleichung: V 0 = V max x [S] K m + [S] 1.1 ABSHNITT 1: ENZYME Einführung Enzyme sind informationelle Makromoleküle und als solche Instrumente gezielter Prozeßsteuerung. Sie haben eine katalytische und eine kognitive Funktion. Die katalytische

Mehr

Enzyme. 1. Stonewashed Jeans, Waschmittel, Gallseife. 2. Enzyme in Waschmitteln

Enzyme. 1. Stonewashed Jeans, Waschmittel, Gallseife. 2. Enzyme in Waschmitteln Enzyme 1. Stonewashed Jeans, Waschmittel, Gallseife Obwohl die«produkte den meisten Menschen bekannt sind, wissen die wenigsten. dass bei deren Herstellung Enzyme eine wichtige Rolle spielen. Enzyme sind

Mehr

Enzyme (Teil 1) Aminosäuren, Aufbau, Eigenschaften & Funktion. Mag. Gerald Trutschl

Enzyme (Teil 1) Aminosäuren, Aufbau, Eigenschaften & Funktion. Mag. Gerald Trutschl Enzyme (Teil 1) Aminosäuren, Aufbau, Eigenschaften & Funktion Mag. Gerald Trutschl 1 Inhalt 1. Einführung 2. Aufbau: - Aminosäuren - Peptidbindung - Primärstruktur - Sekundärstruktur - Tertiär- und Quatärstrukturen

Mehr

Hemmung der Enzym-Aktivität

Hemmung der Enzym-Aktivität Enzym - Inhibitoren Wie wirkt Penicillin? Wie wirkt Aspirin? Welche Rolle spielt Methotrexat in der Chemotherapie? Welche Wirkstoffe werden gegen HIV entwickelt? Hemmung der Enzym-Aktivität Substrat Kompetitiver

Mehr

Modul 1 Dynamik multidsziplinär

Modul 1 Dynamik multidsziplinär Dynamik multidisziplinär Diese Lerneinheit befasst sich mit den Grundlagen der Kinetik am Beispiel des enzymatischen Abbaus von Alkohol Zum Verständnis für die Abbaukinetik pseudo-nullter Ordnung! Zur

Mehr

Entropie ist ein Maß für den Ordnungszustand eines thermodynamischen Systems (chem. Reaktion in einem geschlossenen System); kann auch als Maß für

Entropie ist ein Maß für den Ordnungszustand eines thermodynamischen Systems (chem. Reaktion in einem geschlossenen System); kann auch als Maß für Entropie ist ein Maß für den Ordnungszustand eines thermodynamischen Systems (chem. Reaktion in einem geschlossenen System); kann auch als Maß für die Nichtumkehrbarkeit (Irreversibilität) eines Vorganges

Mehr

Vorlesung Organische Chemie II Reaktionsmechanismen (3. Sem.)

Vorlesung Organische Chemie II Reaktionsmechanismen (3. Sem.) Vorlesung Organische Chemie II Reaktionsmechanismen (3. Sem.) Gliederung Grundlagen der physikalisch-organischen Chemie Radikalreaktionen Nukleophile und elektrophile Substitution am gesättigten C-Atom

Mehr

Lösungen 10 (Kinetik)

Lösungen 10 (Kinetik) Chemie I WS 2003/2004 Lösungen 10 (Kinetik) Aufgabe 1 Verschiedenes 1.1 Als Reaktionsgeschwindigkeit v c wird die Ableitung der Konzentration eines Reaktanden A nach der Zeit t, dividiert durch dessen

Mehr

Enzympraktikum Theorie Entstanden: Nutzung: Entdeckung: Taufe: Aktivierungsenergie Geschichte der Enzyme

Enzympraktikum Theorie Entstanden: Nutzung: Entdeckung: Taufe: Aktivierungsenergie Geschichte der Enzyme Enzympraktikum Theorie In diesem Praktikum werden Sie die Bekanntschaft mit einer der ungewöhnlichsten Stoffklasse der Natur machen. Ein kurzer Steckbrief dieser Stoffklasse lautet: Entstanden: vor ungefähr

Mehr

ENZYMREAKTIONEN. Die Geschwindigkeit einer enzymatischen Reaktion hängt von folgenden Reaktionsbedingungen ab.

ENZYMREAKTIONEN. Die Geschwindigkeit einer enzymatischen Reaktion hängt von folgenden Reaktionsbedingungen ab. 34 3. Probe in den Lichtweg bringen und E ablesen. Wird die Wellenlänge verändert, so muss das Photometer wieder neu geeicht werden, weil die Intensität der Lichtquelle und die Empfindlichkeit der Photozelle

Mehr

Der Stoffwechsel: Konzepte und Grundmuster

Der Stoffwechsel: Konzepte und Grundmuster Der Stoffwechsel: Konzepte und Grundmuster 1 Lebende Organismen Was unterscheidet lebende Organismen von toter Materie? Lebende Organismen haben einen hohen Gehalt an chemischer Komplexität und Organisation

Mehr

Reaktionskinetik. Geschwindigkeitsgesetze

Reaktionskinetik. Geschwindigkeitsgesetze Reaktionskinetik Geschwindigkeitsgesetze Lernziele: Thermodynamische Beschreibung chemischer Reaktionen Berechnen und Beschreiben von Reaktionsordnungen Kinetische Beschreibung von Reaktionsmechanismen

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de innere Energie U Energieumsatz bei

Mehr

endotherme Reaktionen

endotherme Reaktionen Exotherme/endotherme endotherme Reaktionen Edukte - H Produkte Exotherme Reaktion Edukte Produkte + H Endotherme Reaktion 101 Das Massenwirkungsgesetz Das Massenwirkungsgesetz Gleichgewicht chemischer

Mehr

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion:

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen

Mehr

EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg.

EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg. Studienvorbereitung Chemie EinFaCh 2 Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik tu-freiberg.de tu-freiberg.de/fakultaet2/einfach Was bedeutet Chemische Reaktionskinetik?

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludwigs-Uniersität Freiburg Lösungen zum 11. Übungsblatt zur Vorlesung Physikalische Chemie I SS 214 Prof. Dr. Bartsch 11.1 L a) Die Bildungsgeschwindigkeit on

Mehr

3.4 Energieumsatz bei Reaktionen

3.4 Energieumsatz bei Reaktionen 3.4 Energieumsatz bei Reaktionen Versuch: Verbrennen eines Stückes Holz Beobachtung: Energie wird freigesetzt in Form von Wärme. Jede Reaktion ist mit einem Energieumsatz gekoppelt. Reaktionen, bei denen

Mehr

Stoffwechselphysiologie

Stoffwechselphysiologie Stoffwechselphysiologie 9 m 3 m 3 m Nahrung- und Flüssigkeitsaufnahme in 40 Jahren: 36000 l Wasser 6000 kg Nahrungsmittel Aufgaben des Stoffwechsels Gewinnung von chemischer Energie aus anorganischen und

Mehr

Lehrstuhl für Physiologische Chemie, Tierärztliche Fakultät, LMU München

Lehrstuhl für Physiologische Chemie, Tierärztliche Fakultät, LMU München ENZYME II Beispiele für Stoffinhalte aus der Chemie als Grundlage für das Verständnis dieses Teiles: Säurestärke (pk s Wert), Begriff der Katalyse, Massenwirkungsgesetz und Gleichgewichtsverschiebung,

Mehr

Stoffwechsel. Die Chemie des Lebens ist in Stoffwechselwegen organisiert

Stoffwechsel. Die Chemie des Lebens ist in Stoffwechselwegen organisiert Die Chemie des Lebens ist in Stoffwechselwegen organisiert Der Stoffwechsel ist die Summe aller chemischen Reaktionen, die in den Zellen eines Organismus auftreten. Unter Mithilfe von Enzymen verläuft

Mehr

Hemmung der Enzym-Aktivität

Hemmung der Enzym-Aktivität Hemmung der Enzym-Aktivität Substrat Kompetitiver Inhibitor Enzym Enzym Substrat Nichtkompetitiver Inhibitor Irreversibler Inhibitor Enzym Enzym Enzym - Kinetik Michaelis Menten Gleichung Lineweaver -

Mehr

Aufgaben zur Enzymatik

Aufgaben zur Enzymatik Aufgaben zur Enzymatik Viele dieser Aufgaben wurden in den vergangenen Jahren im Rahmen von Klassenarbeiten und/oder Prüfungen gestellt. 1. Grundlagen 1.1. Die Temperatur wird in einem Enzymversuch mit

Mehr

Organische Chemie 1 Teil 2 1. Vorlesung, Dienstag

Organische Chemie 1 Teil 2 1. Vorlesung, Dienstag Inhalte der 1. Vorlesung: 1. Die Reaktivität organischer Moleküle 1.1 Warum geschehen Chemische Reaktionen 1.2 Gleichgewichtsreaktionen, Ungleichgewichtsreaktionen 1.2.1 Triebkraft chemischer Reaktionen

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Präsentation STOFFWECHSEL STOFFWECHSEL. Fettstoffwechsel im Sport. Biologische Oxidation Zitratzyklus und Atmungskette

Präsentation STOFFWECHSEL STOFFWECHSEL. Fettstoffwechsel im Sport. Biologische Oxidation Zitratzyklus und Atmungskette STOFFWESEL GRUNDLAGEN STÖRUNGEN:Diagnose, Therapie, Prävention 6 Bedeutung der körperlichen Aktivität Präsentation Fettstoffwechsel im Sport Glukose exokinase 1ATP -> 1ADP Glukose-6-Phosphat Phosphohexoisomerase

Mehr

Enzym-Wirkungsweise (Abb. 1) Heute werde ich über die Wirkungsweise von Enzymen sprechen. Ohne Katalysatoren, das heisst alleine durch thermischen

Enzym-Wirkungsweise (Abb. 1) Heute werde ich über die Wirkungsweise von Enzymen sprechen. Ohne Katalysatoren, das heisst alleine durch thermischen 1 Enzym-Wirkungsweise (Abb. 1) Heute werde ich über die Wirkungsweise von Enzymen sprechen. Ohne Katalysatoren, das heisst alleine durch thermischen Zusammenstoss der reagierenden Moleküle, laufen die

Mehr

5 Kinetischen Untersuchungen

5 Kinetischen Untersuchungen 5 Kinetischen Untersuchungen 5'-NT wird kinetisch seit mehr als 4 Jahren untersucht. Wie in der Einleitung beschrieben, sind hier besonders die Substratvielfalt und der Gebrauch der Metallionen als Kofaktoren

Mehr

1. Zeichnen und beschriften Sie die stereochemische Struktur von L- Threonin. Geben Sie an, ob R- oder S-Konfiguration vorliegt.

1. Zeichnen und beschriften Sie die stereochemische Struktur von L- Threonin. Geben Sie an, ob R- oder S-Konfiguration vorliegt. Übung und Lösung zur Übung Aminosäuren 1. Zeichnen und beschriften Sie die stereochemische Struktur von L- Threonin. Geben Sie an, ob R- oder S-Konfiguration vorliegt. 2. Das Tripeptid Glutathion ( -Glu-Cys-Gly)

Mehr

Versuch 5: Enzyme (Alkalische Phosphatase) (V )

Versuch 5: Enzyme (Alkalische Phosphatase) (V ) Versuch 5: Enzyme (Alkalische Phosphatase) (V10 6.03.2012) Lernziele: 1) Reaktionsgeschwindigkeit, Aktivierungsenergie, chemisches Gleichgewicht; 2) Was tun Katalysatoren und Enzyme, 3) Michaelis-Menten

Mehr

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte

Mehr

K3: Bestimmung der Michaelis-Menten-Kinetik von Urease

K3: Bestimmung der Michaelis-Menten-Kinetik von Urease K3: Bestimmung der Michaelis-Menten-Kinetik von Urease Einleitung: In diesem Versuch soll die Umsetzung von Harnstoff durch das Enzym Urease beobachtet werden. Fast alle Enzyme sind Proteine, manche bestehen

Mehr

Praktikum Biochemie B.Sc. Water Science WS Enzymregulation. Marinja Niggemann, Denise Schäfer

Praktikum Biochemie B.Sc. Water Science WS Enzymregulation. Marinja Niggemann, Denise Schäfer Praktikum Biochemie B.Sc. Water Science WS 2011 Enzymregulation Marinja Niggemann, Denise Schäfer Regulatorische Strategien 1. Allosterische Wechselwirkung 2. Proteolytische Aktivierung 3. Kovalente Modifikation

Mehr

Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I

Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I Institut für Anorganische Chemie Prof. Dr. R. Streubel Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I Vorlesung für die Studiengänge Bachelor Chemie und Lebensmittelchemie Im WS 08/09 Die

Mehr

1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus.

1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. 1) Ein offenes System zeichnet sich immer durch eine konstante Temperatur aus. zeichnet sich immer durch eine konstante Masse aus. kann mit der Umgebung Energie austauschen. kann mit der Umgebung Entropie

Mehr

Katalyse. Martin Babilon 14/07/2011. Katalyse. Martin Babilon Universität Paderborn. 14 Juli Montag, 18. Juli 2011

Katalyse. Martin Babilon 14/07/2011. Katalyse. Martin Babilon Universität Paderborn. 14 Juli Montag, 18. Juli 2011 Katalyse Universität Paderborn 14 Juli 2011 1 Übersicht Motivation & Einleitung Katalyse-Zyklus homogene Katalyse heterogene Katalyse 2 Motivation 3 Geschichte der Katalyse 6000 v. Christus: Alkoholvergärung

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Bioenergetik www.icbm.de/pmbio Energieformen Von Lebewesen verwertete Energieformen o Energie ist etwas, das Arbeit ermöglicht. o Lebewesen nutzen nur zwei Formen: -- Licht --

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Einstellung des Gleichgewichts,

Mehr

Fragen zum Versuch Kinetik:

Fragen zum Versuch Kinetik: Fragen zum Versuch Kinetik: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen von Rohrzucker im Wasser

Mehr

Kapitel 3 Alkene Struktur, Nomenklatur, Reaktivität Thermodynamik und Kinetik

Kapitel 3 Alkene Struktur, Nomenklatur, Reaktivität Thermodynamik und Kinetik Kapitel 3 Alkene Struktur, Nomenklatur, Reaktivität Thermodynamik und Kinetik 34 Geben Sie die systematischen Namen jeder der folgenden Verbindungen an: Welche der Verbindungen aus Übung besitzen E- und

Mehr

spaltet. Der Sauerstoff entflammt den Glimmspan. Bei der katalytischen Substanz handelt es sich um das Enzym Katalase.

spaltet. Der Sauerstoff entflammt den Glimmspan. Bei der katalytischen Substanz handelt es sich um das Enzym Katalase. ENZYMATIK 1. Vorversuch Versuch Spaltung von Wasserstoffperoxid (H 2 O 2 ) Material: Bäckerhefe, Braunstein (MnO 2 ), Wasserstoffperoxid, Rundkolben, Stativ, Brenner, Glimmspan Durchführung 1: 5ml Wasserstoffperoxid

Mehr

Enzym-Dynamik an einzelnen Molekülen. Paul Käufl

Enzym-Dynamik an einzelnen Molekülen. Paul Käufl Enzym-Dynamik an einzelnen Molekülen Paul Käufl Enzym-Dynamik einzelner Moleküle Quelle: (5) 2 Enzym-Dynamik einzelner Moleküle Bis vor ca. 20 Jahren: Chemische Reaktionen (in Lösung) im Wesentlichen nur

Mehr

GRUNDLAGEN DER ENZYMKINETIK: MICHAELIS-MENTEN-GLEICHUNG, HEMMTYPEN

GRUNDLAGEN DER ENZYMKINETIK: MICHAELIS-MENTEN-GLEICHUNG, HEMMTYPEN 45 GRUNDLAGEN DER ENZYMKINETIK: MICHAELIS-MENTEN-GLEICHUNG, HEMMTYPEN A. BIOCHEMISCHE GRUNDLAGEN Die katalytischen Eigenschaften eines Enzyms können durch verschiedene Faktoren beeinflusst werden. Dazu

Mehr

Kapitel 2 Die chemische Reaktion

Kapitel 2 Die chemische Reaktion Kapitel 2 Die chemische Reaktion 2.1 Die Triebkraft chemischer Reaktionen (und nicht nur der) Es gilt universell: Jedes materielle System versucht, den unter den gegebenen Umständen energieärmsten Zustand

Mehr

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose

Mehr

Reaktionskinetik. Katalyse

Reaktionskinetik. Katalyse Reaktionskinetik Katalyse Katalysatoren beshleunigen hemishe Reaktionen, ohne das Gleihgewiht zu beeinflussen. Sie beeinflussen nur die Aktiierungsenergie Katalyse Katalysatoren beeinflussen den Reaktionsweg

Mehr

Begriffe und Definitionen in der heterogenen Katalyse

Begriffe und Definitionen in der heterogenen Katalyse Begriffe und Definitionen in der heterogenen Katalyse 2 2.1 Zum Selbstverständnis der Katalyse Der Begriff Katalyse und die Geschichte seiner Entstehung sind im vorangegangenen Kapitel beleuchtet worden.

Mehr

Lösungen zur Übung 23 Aufgabe 1 Funktionelle Gruppen: Progesteron hat 2 Carbonylgruppen und eine C=C Doppelbindung.

Lösungen zur Übung 23 Aufgabe 1 Funktionelle Gruppen: Progesteron hat 2 Carbonylgruppen und eine C=C Doppelbindung. rganische hemie I Lösungen zur Übung 23 Aufgabe 1 Funktionelle Gruppen: Progesteron hat 2 arbonylgruppen und eine = Doppelbindung. 3 () 3 3 Progesteron Das Molekül hat 6 hiralitätszentren (mit * bezeichnet).

Mehr

9 ENZYMKINETIK 9.5 Pre-steady State Kinetik bei schnellen Reaktionen. 9.5 Pre-steady State Kinetik bei schnellen Reaktionen

9 ENZYMKINETIK 9.5 Pre-steady State Kinetik bei schnellen Reaktionen. 9.5 Pre-steady State Kinetik bei schnellen Reaktionen 9.5 Pre-steady State Kinetik bei schnellen Reaktionen Die bisherige Diskussion der enzymkatalytischen Mechanismen hat sich auf stationäre Zustände beschränkt. Dies wurde dazu benutzt, die Parameter v max,k

Mehr

Thermodynamik. Thermodynamik

Thermodynamik. Thermodynamik Geschlossenes System: Energieaustausch, aber kein Materieaustausch mit der Umgebung. Innere Energie: Jeder Stoff hat in sich Energie in irgendeiner Form gespeichert: die innere Energie U. U 1 = innere

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Kapitel 1 Grundlagen der Kinetik In diesem Kapitel werden die folgenden Themen kurz wiederholt: Die differenziellen und integralen Geschwindigkeitsgesetze von irreversiblen Reaktionen., 1., und. Ordnung

Mehr

Enzymatische Hydrolyse von Harnstoff

Enzymatische Hydrolyse von Harnstoff Übungen in physikalischer Chemie für B.Sc.-Studierende Versuch Nr.: W11 Version 217 (18817) Kurzbezeichnung: Enzymkinetik Enzymatische Hydrolyse on Harnstoff Aufgabenstellung Die enzymkatalysierte Hydrolyse

Mehr

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve.

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve. Institut für Physikalische Chemie Methodenkurs Anwendungen von Mathematica und Matlab in der Physikalischen Chemie im WS 205/206 Prof Dr Stefan Weber, Dr Till Biskup Aufgabenblatt zum Teil (Mathematica)

Mehr

Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie

Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - SS07 - Blatt 1 / 16 Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik Teil

Mehr

Vom Molekül zur Zelle Block 3 Seminar / Praktikum 2

Vom Molekül zur Zelle Block 3 Seminar / Praktikum 2 Vom Molekül zur Zelle Block 3 Seminar / Praktikum 2 Diese Präsentation befindet sich auf der Lehr-Inhalts Seite des Inst f. unter www.meduniwien.ac.at/hp/medizinische-genetik/lehre Helmut Dolznig Inst.

Mehr

RT N j Mit den Potentialen unter Standardbedingungen können wir die Energien der beiden Zustände identifizieren: = e Ei

RT N j Mit den Potentialen unter Standardbedingungen können wir die Energien der beiden Zustände identifizieren: = e Ei im Gleichgewicht wechseln genauso viele Teilchen aus dem einen Zustand in den zweiten wie umgekehrt, die chemischen Potentiale µ i sind also gleich) N i = e µ i µ N Mit den Potentialen unter Standardbedingungen

Mehr

Einführung in die Chemische Kinetik (Formale Reaktionskinetik)

Einführung in die Chemische Kinetik (Formale Reaktionskinetik) Einführung in die Chemische Kinetik (Formale Reaktionskinetik) 1 Einführung 2 Formale Reaktionskinetik einfacher Reaktionen 2.1 Reaktionsgeschwindigkeit einfacher Reaktionen 2.2 Bestimmung des Geschwindigkeitsgesetzes

Mehr

Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten

Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten 1. Grundlagen 1.1. Vorkenntnisse Informieren Sie sich vor Durchführung

Mehr

Enzymkinetik: Kinetik der alkalischen Phosphatase mit dem Substrat p-nitrophenylphosphat

Enzymkinetik: Kinetik der alkalischen Phosphatase mit dem Substrat p-nitrophenylphosphat Biophysikalisches Praktikum Institut für Biophysik Johann Wolfgang Goethe-Universität Frankfurt am Main Enzymkinetik: Kinetik der alkalischen Phosphatase mit dem Substrat p-nitrophenylphosphat (letzte

Mehr

Enzymkinetik Seite 1. Enzyme. Einführung

Enzymkinetik Seite 1. Enzyme. Einführung Enzymkinetik Seite 1 Enzyme Einführung In jeder Zelle laufen Hunderte chemischer Reaktionen ab, die (mit wenigen Ausnahmen) alle von hochwirksamen Biokatalysatoren (Enzymen ) beschleunigt und gesteuert

Mehr

Vortrag Enzyme. Sebastian Kurfürst. sebastian(at)garbage-group.de.

Vortrag Enzyme. Sebastian Kurfürst.  sebastian(at)garbage-group.de. Enzyme Vortrag Enzyme Sebastian Kurfürst /bio.html sebastian(at)garbage-group.de 1 Gliederung 1.Einführung 2.Reaktionsgeschwindigkeit chemischer Reaktionen 3.Enzyme ein Biokatalysator 4.Aufbau 5.Substrat-,

Mehr

Modellierung biologischer und molekularer Systeme. Enzymkinetik. Dr. Ingo Röder, IMISE, Universität Leipzig Folie 181

Modellierung biologischer und molekularer Systeme. Enzymkinetik. Dr. Ingo Röder, IMISE, Universität Leipzig Folie 181 Dr. Ingo Röder, IMISE, Universität Leipzig Folie 181 Einführung (1) Größe Symbol Einheit Chemische Substanz z.b. A, B, S i Menge z.b. A, B, S i mol (1 mol eines Stoffes enthält ca. 6 10 23 Teilchen (6.022

Mehr

Stoffwechsel. Metabolismus (1)

Stoffwechsel. Metabolismus (1) Vorlesung Zell- und Molekularbiologie Stoffwechsel Metabolismus (1) Zum Nachlesen Bücher Campbell: Kap. 6 59.95 Kap. 3 Kap. 13-14 29.95 www.icbm.de/pmbio - - - > Teaching diese Folien, VL Physiologie der

Mehr

Fachbereich Ökotrophologie Prof. Häusler SoSe 2005 Biochemie Definition und Fachgebiete

Fachbereich Ökotrophologie Prof. Häusler SoSe 2005 Biochemie Definition und Fachgebiete Biochemie Definition und Fachgebiete Grenzwissenschaft zwischen Chemie, Biologie, Agrarwissenschaften und Medizin Spezialgebiete wie Immunchemie, Neurochemie, Pathobiologie, Genetik, Molekularbiologie,

Mehr

Fragen zum Versuch 1. Kohlenhydrate. Fragen zum Versuch 2. Aminosäuren. Fragen zum Versuch 3. Lipide

Fragen zum Versuch 1. Kohlenhydrate. Fragen zum Versuch 2. Aminosäuren. Fragen zum Versuch 3. Lipide Fragen zum Versuch 1 Kohlenhydrate 1) Worin unterscheiden sich chemisch die folgenden Kohlenhydrate? a) Glucose und Fructose b) Laktose und Saccharose c) Stärke, Glykogen und Dextrin d) Was ist Agar-Agar,

Mehr

Unterrichtsvorhaben IV: Thema/Kontext: Enzyme im Alltag Welche Rolle spielen Enzyme in unserem Leben/beim Ablauf verschiedener Stoffwechselreaktionen?

Unterrichtsvorhaben IV: Thema/Kontext: Enzyme im Alltag Welche Rolle spielen Enzyme in unserem Leben/beim Ablauf verschiedener Stoffwechselreaktionen? Unterrichtsvorhaben IV: Thema/Kontext: Enzyme im Alltag Welche Rolle spielen Enzyme in unserem Leben/beim Ablauf verschiedener Stoffwechselreaktionen? Inhaltsfelder: IF 1 (Biologie der Zelle), IF 2 (Energiestoffwechsel)

Mehr

Reaktion und Energie

Reaktion und Energie Reaktion und Energie Grundsätzliches Bei chemischen Reaktionen werden die Atome der Ausgangsstoffe neu angeordnet, d. h. Bindungen werden gespalten und neu geknüpft. Die Alltasgserfahrung legt nahe, dass

Mehr

Bachelorstudiengang Biologie. Vorlesung Biochemie I Klausur am 11. Oktober 2012, 9:00 11:00, H18

Bachelorstudiengang Biologie. Vorlesung Biochemie I Klausur am 11. Oktober 2012, 9:00 11:00, H18 Bachelorstudiengang Biologie Vorlesung Biochemie I Klausur am 11. Oktober 2012, 9:00 11:00, H18 1. (a) Welche Aminosäuren mit positiv geladenen Seitenketten kennen Sie? Bitte geben Sie die Strukturformel

Mehr

Inhaltsverzeichnis. 1. Einleitung. 2. Aufgabenstellung. 3. Material, Methoden und Versuchsdurchführung. 4. Ergebnisse. 5.

Inhaltsverzeichnis. 1. Einleitung. 2. Aufgabenstellung. 3. Material, Methoden und Versuchsdurchführung. 4. Ergebnisse. 5. Inhaltsverzeichnis 1. Einleitung 1.1. Enzyme 1.2. Enzymaktivität 1.3. Cofaktoren 1.4. Reaktionsgeschwindigkeit 1.5. Enzym-Substrat-Affinität 1.6. Michaelis-Menten 1.7. Lineweaver-Burk 1.8. Enzymhemmung

Mehr