Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Größe: px
Ab Seite anzeigen:

Download "Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den"

Transkript

1 Labor SMV Versuch Erläuterungen zum Aliasing FB: EuI, Darmstadt, den 26.5 Elektrotechnik und Informationstechnik Rev., 9.5

2 Auf den folgenden Seiten sind einige typische Abtastsituationen zusammengestellt, wie sie auch im Laborversuch untersucht werden sollen. Sie sollen dabei helfen, die Natur des Aliasings besser zu verstehen. Die gleichzeitig abgebildeten Spektren erlauben den direkten Vergleich zwischen Zeit- und Frequenzbereich.. Fall: f S =,2 * f A, Shannon sicher erfüllt Elektrotechnik und Informationstechnik Rev., 9.5

3 2. Fall: f S =,45 * f A, Shannon knapp erfüllt Elektrotechnik und Informationstechnik Rev., 9.5

4 3. Fall: f S =,55 * f A, Shannon nicht mehr erfüllt Elektrotechnik und Informationstechnik Rev., 9.5

5 4. Fall: f S =,95 * f A Elektrotechnik und Informationstechnik Rev., 9.5

6 5. Fall: f S =,5 * f A (vergleiche Fall 4) Elektrotechnik und Informationstechnik Rev., 9.5

7 6. Fall: f S =,5 * f A Je nach Phasenlage des Signals zur Abtastung kann es (wie auch bei allen anderen ungeradzahligen Vielfachen der halben Abtastfrequenz) zu unterschiedlichen Amplituden kommen Elektrotechnik und Informationstechnik Rev., 9.5

8 7. Fall: f S =,75 * f A Elektrotechnik und Informationstechnik Rev., 9.5

9 8. Fall: f S =,95 * f A Elektrotechnik und Informationstechnik Rev., 9.5

10 9. Fall: f S = 2,5 * f A Elektrotechnik und Informationstechnik Rev., 9.5

11 . Fall: f S = 2,25 * f A (vergleiche Fall 7) Elektrotechnik und Informationstechnik Rev., 9.5

12 . Fall: f S = 2,5 * f A (vergleiche Fall 6, f S =,5 * f A ) Elektrotechnik und Informationstechnik Rev., 9.5

13 Analyse der Spektren Als Abtastfrequenz wurde Hz gewählt, was völlig willkürlich ist, da die Signalfrequenzen immer als Vielfache der Abtastfrequenz gewählt wurden. Die Shannon-Frequenz, bis zu der noch kein Aliasing auftritt, liegt damit bei 5 Hz und auch ein notwendiges Rekonstruktionsfilter (RKF) muss in diesem Beispiel seine Eckfrequenz bei 5 Hz haben, um unerwünschte, durch die Abtastung entstehende Seitenbänder wieder entfernen zu können (s. Abbildung unten, idealisierter Amplitudengang des Rekonstruktionsfilter). Ideales Rekonstruktionsfilter bei halber Abtastfrequenz von 5 Hz Frequenz in Hz Wie zu erwarten zeigen nur die Spektren der Fälle und 2, dass das Signal durch das RKF wieder hergestellt werden könnte. Dabei wird mit Annäherung der Signalfrequenz an die halbe Abtastfrequenz diese Rekonstruktion schwieriger, denn das Filter muss immer steilflankiger werden, wenn es die untere Frequenz des ersten Seitenbandes noch sicher entfernen soll, ohne das Nutzsignal nennenswert zu verändern. Fall 3 zeigt schließlich das erste Beispiel für nicht erfülltes Abtasttheorem. Die Spektren von Fall 2 und Fall 3 sind identisch, aber dennoch unterschiedlichen Ursprungs. Im Fall 2 zeigt die Linie bei 45 Hz das Nutzsignal, die Linie bei 55 Hz das erste durch Abtastung entstandene Seitenbandsignal. Im Fall 3 ist es umgekehrt: Die Linie bei 55 Hz ist das Nutzsignal, während die Linie bei 45 Hz das in das Basisband gespiegelte erste Seitenbandsignal darstellt. Setzt man nun das RKF ein, so entfernt es statt des Störsignals das Nutzsignal bei 55 Hz, während es das Alias-Signal beim 45 Hz durchlässt. Durch den Abtastvorgang ist so aus einem 55 Hz Signal ein eigentlilch nicht existentes 45 Hz Signal geworden. Offensichtlich ist es nicht mehr möglich, durch Tiefpassfilterung das Nutzsignal wiederzugewinnen. Die im Zeitbereich zu beobachtenden Schwebungen dürfen nicht mit einer additiven Überlagerung eines Hz Sinussignals verwechselt werden. So ergibt sich die Schwebungsfrequenz vielmehr aus der additiven Überlagerung der 45 und der 55 Hz Frequenz im Abtastsignal, woraus eine Schwebung von (55-45) Hz = Hz resultiert. Deshalb ist diese Hz Elektrotechnik und Informationstechnik Rev., 9.5

14 Schwebung auch nicht im Spektrum des Abtastsignals enthalten, sondern nur die Linien bei 45/55 Hz. Für alle anderen Fälle (4 bis ) tritt Aliasing auf, wobei die entstehenden Signalfrequenzen immer als in das Basisband gespiegelte Seitenbandfrequenzen gedeutet werden können. Das Abtast-Spektrum ist dabei periodisch, was dazu führt, dass sich Spektren für bestimmte Vielfache der Abtastfrequenz wiederholen. So sind die Signalfrequenzen, die Vielfache der halben Abtastfrequenz sind, besonders zu beachten: Für f S = (2*n+) * f A /2, mit n =, 2 3 4,, also ungeradezahlige Vielfache der Abtastfrequenz, treten im Spektrum Linien bei entsprechenden Vielfachen von f A /2 auf, wobei hier auch die Phasenlage der Abtastung zum Eingangssignal eine Rolle spielt. Tastet der Abtaster immer im Nulldurchgang ab, so liefert er eine Nullfolge. Dies ist z.b. gerade beim Shannon schen Grenzfall ein Problem, denn für f S = f A /2 kann die Amplitude des Signals schon nicht mehr sicher rekonstruiert werden. Für f S = n * f A, mit n = 2 3 4,, also ganzzahligen Vielfachen der Abtastfrequenz, wiederum werden Seitenbänder zur Frequenz gespiegelt, so dass es z.b. im Falle f S = f A dazu kommt, dass das abgetastete Signal scheinbar einen konstanten Wert besitzt, tatsächlich aber nur immer wieder beim gleichen Phasenwinkel des Sinussignals abgetastet wird. Anschaulich ist klar, dass dieses Verhalten dann auch bei Vielfachen der Abtastfrequenz auftritt, wobei dann aber nicht jede Periode des Signals abgetastet wird, sondern nur jede zweite, dritte, etc.. Elektrotechnik und Informationstechnik Rev., 9.5

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr.

Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr. Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung Dr. Thomas Komarek 1 Übersicht Praktische Anwendung: Super Audio Compact Disc (SACD) Grundlagen

Mehr

Abtastregelung - Theorie und Praxis

Abtastregelung - Theorie und Praxis Abtast- Regler Prozess FHD Prof. Dr. Gernot Freitag Seite 1 Historie Abtastregelung - Theorie und Praxis - Einführung / Historie - In den 50er Jahren erstmals Überlegungen zum Einsatz von Digitalrechnern

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Elektrotechnik II: Kolloquium 4

Elektrotechnik II: Kolloquium 4 Elektrotechnik II: Kolloquium 4 Digitalschaltungen Hubert Abgottspon: abgottspon@eeh.ee.ethz.ch Markus Imhof: imhof@eeh.ee.ethz.ch Inhalt des Kolloquium: Digitale Messkette Sensor 1) Filter S&H- Versträker

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Multimediale Werkzeuge 1, Audio-Berabeitung normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Beachte: Teilbänder werden nach den Unter-Abtasten "aufgeblasen" (siehe

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

4.2 Abtastung und Rekonstruktion zeitkontinuierlicher

4.2 Abtastung und Rekonstruktion zeitkontinuierlicher 7 4 Fouriertransformation für zeitdiskrete Signale und Systeme nicht auf [, ] zeitbegrenzt ist. Es kommt daher zu einer Überlappung der periodischen Fortsetzungen. Für die Herleitung der Poissonschen Summenformel

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 3. Aufgabenblatt. Aufgabe: Up-/Downsampling Die Abtastfolge x[n] wird mit dem Faktor M unter- und dem Faktor L überabgetastet.

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu 1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Digitalisierung von Tönen. Von Paul

Digitalisierung von Tönen. Von Paul Digitalisierung von Tönen Von Paul Was passiert beim hören Tonquelle erzeugt Schallwellen Alle vibrierende Objekte erzeugen Schallwellen. Durch die Vibration wird das Medium stoßweise verdichtet. Schallwellen

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

2. Anordnung zur digitalen Signalverarbeitung

2. Anordnung zur digitalen Signalverarbeitung 2. Anordnung zur digitalen Signalverarbeitung Prof. Dr.-Ing. Dr. h.c. Norbert Höptner Prof. Dr.-Ing. Stefan Hillenbrand Ergänzende Informationen zur Vorlesung Signalverarbeitungssysteme Abschnitte 2.1-2.5.

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Grundlagen Videotechnik, Modulation

Grundlagen Videotechnik, Modulation Grundlagen Videotechnik, Modulation AM Spektrum: Spektrum des Nutzsignals viele Sinus-Komponenten Ampl.moduliertes Signal Frequenz der Trägerwelle Beachte: Bandbreite des AM Signals ist doppelt so groß

Mehr

Dipl.-Ing. (TU) Jürgen Wemheuer

Dipl.-Ing. (TU) Jürgen Wemheuer Dipl.-Ing. (TU) Jürgen Wemheuer wemheuer@ewla.de http://ewla.de 1 Statt kontinuierlicher (Amplituden-)Werte einer stetigen Funktion sind nur diskontinuierliche, diskrete Werte möglich (begrenzter Wertevorrat):

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Eingebettete Systeme

Eingebettete Systeme Institut für Informatik Lehrstuhl für Eingebettete Systeme Prof. Dr. Uwe Brinkschulte Benjamin Betting Eingebettete Systeme 1. Aufgabe (Regelsystem) 3. Übungsblatt Lösungsvorschlag a) Das Fahrzeug kann

Mehr

Das Nyquist-Shannon Theorem

Das Nyquist-Shannon Theorem Fachbereich Medieninformatik Hochschule Harz Das Nyquist-Shannon Theorem Referat Philip Lücke Matrikelnummer: 10070 Abgabe: 15.01.2007 Seite: 1 Inhaltsverzeichnis 1 Einleitung...3 2 Das Phänomen des stillstehenden

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition:

NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition: NANO III Digital-Analog-Wandler Datenakquisition: Analog-Digital-Wandler Abtastung Prinzip des DAC (DAC = Digital - Analog - Converter) 2 0 R 1 4Bit DAC 1 12/16 2 1 R 1 / 2 8/16 2 2 R 1 / 4 4/16 2 3 R

Mehr

Bildrekonstruktion & Multiresolution

Bildrekonstruktion & Multiresolution Bildrekonstruktion & Multiresolution Verkleinern von Bildern? Was ist zu beachten? Es kann aliasing auftreten! Das Abtasttheorem sagt wie man es vermeidet? ===> Page 1 Verkleinern von Bildern (2) Vor dem

Mehr

Einführung in die Medieninformatik 1

Einführung in die Medieninformatik 1 Einführung in die Medieninformatik 1 Wintersemester 2007/08 Prof. Dr. Rainer Malaka, Digitale Medien Medieninformatik 1 1 Plan (vorläufig) 31.10. Einführung 7.11. Menschen: Wahrnehmung 14.11. Menschen:

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

5.5 Theorie und Praxis der Signalabtastung

5.5 Theorie und Praxis der Signalabtastung ELEKTRONIK FÜR EMBEDDED SYSTEMS TEIL 5, ABSCHNITT 5 EES05_03 SEITE 1 5.5 Theorie und Praxis der Signalabtastung Wie gut ist eigentlich "digital"? Von der digitalen Speicherung und Verarbeitung eigentlich

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

Wahl der Abtastraten bei Messsystemen

Wahl der Abtastraten bei Messsystemen Wahl der Abtastraten bei Messsystemen White Paper von Prof. Dr.-Ing. Klaus Metzger Die eingestellte Abtastrate (Anzahl der Messungen je Sekunde oder kurz Abtastfrequenz) eines Messkanals kann entscheidend

Mehr

Musterlösung zur Aufgabe A1.1

Musterlösung zur Aufgabe A1.1 Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Bild-Erfassung Digitalisierung Abtastung/Quantisierung

Bild-Erfassung Digitalisierung Abtastung/Quantisierung Multimediatechnik / Video Bild-Erfassung Digitalisierung Abtastung/Quantisierung Oliver Lietz Bild-Erfassung Abtastung / Digitalisierung Scanner: Zeilenweise Abtastung mit CCD Digitale Kamera: Flächenweise

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München, Medieninformatik

Mehr

4 Erzeugung von Tonsignalen

4 Erzeugung von Tonsignalen 4 Erzeugung von Tonsignalen 4.1 Etwas Theorie: Sample, Samplefrequenz, Abtasten Zeit in ms u1(t) 0 0 1 3,09 2 5,88 3 8,09 4 9,51 5 10 6 9,51 7 8,09 8 5,88 9 3,09 10 0 11-3,09 12-5,88 13-8,09 14-9,51 15-10

Mehr

LABORVERSUCH MT2. Grundlagen der digitalen Messsignalerfassung. Labor Messtechnik FGA. Prof. Dr. rer. nat.g. Haussmann Dipl. Ing.

LABORVERSUCH MT2. Grundlagen der digitalen Messsignalerfassung. Labor Messtechnik FGA. Prof. Dr. rer. nat.g. Haussmann Dipl. Ing. LABORVERSUCH MT2 Grundlagen der digitalen Messsignalerfassung Prof. Dr. rer. nat.g. Haussmann Dipl. Ing. Wolfgang Then Ha V06/06 Versuch Grundlagen der digitalen Messsignalfassung Seite 1 0. Bedeutung

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

3.7 Anti-Alias-Verfahren

3.7 Anti-Alias-Verfahren 3.7 Anti-Alias-Verfahren Wir hatten Treppeneffekte bereits beim Rastern von Bildern kennengelernt. Aber auch beim Wiederholen verkleinerter Texturen können sich durch Rasterungseffekte unschöne Interferenzerscheinungen

Mehr

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel) 4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales

Mehr

Modulationsverfahren Inhalt

Modulationsverfahren Inhalt Inhalt 1. Allgemeines... 2 2. Übersicht über... 3 5. Amplitudenmodulation... 3 3.1 Zweiseitenbandmodulation... 5 3.2 Einseitenbandmodulation... 5 4. Winkelmodulation... 6 5. Tastmodulation(Digitale Modulation)...

Mehr

Musterlösung zur Aufgabe A4.1

Musterlösung zur Aufgabe A4.1 Musterlösung zur Aufgabe A4.1 a) Mit N = 8 Bit können insgesamt 2 8 Quantisierungsintervalle dargestellt werden M = 256. b) Nummeriert man die Quantisierungsintervalle von 0 bis 255, so steht die Bitfolge

Mehr

Vorlesung Grundlagen der Videotechnik. Vorlesung 7. Modulationsarten

Vorlesung Grundlagen der Videotechnik. Vorlesung 7. Modulationsarten Vorlesung Grundlagen der Videotechnik Vorlesung 7 Modulationsarten 1 7. Modulationsarten Wie bekommen wir unser Signal über die Senderwelle übertragen? wir können unser Signal (Ton, Video) nicht direkt

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof.

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München, Medieninformatik

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte)

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Digitale Übertragung analoger Signale Vorteile digitaler Übertragung störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Nachteiler digitaler Übertragung natürliche Signale

Mehr

Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen Systemen

Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen Systemen tm Technisches Messen 74 (2007) 2 / DOI 10.1524/teme.2007.74.2.63 Oldenbourg Verlag 63 Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen

Mehr

3.6 Analog-Digital-Umsetzung

3.6 Analog-Digital-Umsetzung 3.6 AnalogDigitalUmsetzung 1 Abtastung von Signalen FlashUmsetzer (ParallelUmsetzer) Stufenumsetzer (Successive Approximation) Integrierende Umsetzer DeltaSigma Umsetzer Anhang Abtastung 2 Abtastung (Sampling):

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

Einführung in die Nachrichtenübertragung

Einführung in die Nachrichtenübertragung Klausur Einführung in die Nachrichtenübertragung Vorlesung und Rechenübung - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:................................... Matr.Nr:..........................

Mehr

Klausur zur Vorlesung Signale und Systeme

Klausur zur Vorlesung Signale und Systeme Name: 10. Juli 2008, 11.00-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Mitschrift Übungen, Skript, handgeschriebene 2-seitige

Mehr

Dazu werden so genannte Modulationstechniken verschiedenster Art angewandt.

Dazu werden so genannte Modulationstechniken verschiedenster Art angewandt. 5. Modulation Für die Uebertragung eines Nutzsignals über Leitungen oder durch die Luft muss das informationstragende Signal, das Nutzsignal, an die Eigenschaften des Uebertragungswegs angepasst werden.

Mehr

Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern

Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern Praktische MLS Messung mit typischen Fehlerbildern In diesem praktischen Beispiel möchten wir Ihnen zeigen, wie Sie mit MLS den Frequenzgang einer Soundkarte messen können. MLS ist ein sehr leistungsfähiges

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

Laborpraktikum Grundlagen der Kommunikationstechnik

Laborpraktikum Grundlagen der Kommunikationstechnik Institut für Elektronik, Signalverarbeitung und Kommunikationstechnik Laborpraktikum Grundlagen der Kommunikationstechnik Versuch Analoge Pulsmodulationsverfahren KT 03 Pulsamplitudenmodulation PAM Pulsdauermodulation

Mehr

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC NANO III - MSR Themen: Signalabtastung Analog Digital Converter (ADC) A ADC D Digital Analog Converter (DAC) D DAC A Nano III MSR Physics Basel, Michael Steinacher 1 Signalabtastung Praktisch alle heutigen

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

Erfassen von Analogsignalen: Bandbreite, Nyquist-Abtasttheorem und Alias-Effekt

Erfassen von Analogsignalen: Bandbreite, Nyquist-Abtasttheorem und Alias-Effekt Virtuelle Instrumente in der Praxis VIP 2017 Kurzfassung Erfassen von Analogsignalen: Bandbreite, Nyquist-Abtasttheorem und Alias-Effekt Vanessa Blumenstein National Instruments Germany GmbH, München Wissenschaftler

Mehr

PRAKTIKUMSVERSUCH M/S 2

PRAKTIKUMSVERSUCH M/S 2 Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme PRAKTIKUMSVERSUCH M/S 2 Betreuer: Dipl.-Ing. Burkhard Hensel Dr.-Ing. Alexander Dementjev ALLGEMEINE BEMERKUNGEN

Mehr

MATLAB: Einführung und Anwendungen

MATLAB: Einführung und Anwendungen MATLAB: Einführung und Anwendungen Prof. Dr. H.-G. Stark Hochschule Aschaffenburg 9. November 206 Literatur [] F. Grupp/F. Grupp: MATLAB 7 für Ingenieure: Grundlagen und Programmierbeispiele, Oldenbourg,

Mehr

Kurzbeschreibung des FFT-Moduls und der Netzoberwellenanalyse

Kurzbeschreibung des FFT-Moduls und der Netzoberwellenanalyse Kurzbeschreibung des FFT-Moduls und der Netzoberwellenanalyse Erweiterung der Software SP107 von HAMEG Stand V1.2 1 KURZBESCHREIBUNG DES FFT-MODULS...3 EINLEITUNG:... 3 MERKMALE DES FFT-MODULS... 4 FFT-Fenster...

Mehr

Elektrische Messtechnik

Elektrische Messtechnik Elektrische Messtechnik Versuch: ZFM Versuchsvorbereitung. Warum ist eine Umformung eines beliebig geformten Messsignals in ein Rechtecksignal erforderlich? Warum wird zur Frequenz- und Periodendauermessung

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Spektralanalyse. Fortgeschrittenen Praktikum I Teil A. Nils Thielke und Robert Brauer. 26. November 2012

Spektralanalyse. Fortgeschrittenen Praktikum I Teil A. Nils Thielke und Robert Brauer. 26. November 2012 Fortgeschrittenen Praktikum I Teil A Spektralanalyse Nils Thielke und Robert Brauer 26. November 2012 Wir erklären, dass wir dieses Protokoll eigenhändig anhand des angehängten Messprotokolls und der angegebenen

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen Elektrizitätslehre und Schaltungen Versuch 38 ELS-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung 1.1 Wechselstromwiderstände (Lit.: Gerthsen) 1.2 Schwingkreise (Lit.: Gerthsen)

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan Lösung zur Übung 4.5.1/1: 5 Mesut Civan x e t= x e [t t t 1 ] x a t=ht für x e t=t x a t= x e [ht ht t 1 ] x a t= x e [ht ht t 1 ] a) t 1 T e Da die Impulsdauer t 1 des Eingangsimpulses größer ist als

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Vorbereitung und Protokoll zum Praktikum Elektronische Messtechnik

Vorbereitung und Protokoll zum Praktikum Elektronische Messtechnik Technische Universität Chemnitz Fakultät für Elektrotechnik und Informationstechnik Professur für Mess- und Sensortechnik Vorbereitung und Protokoll zum Praktikum Elektronische Messtechnik Versuch: Digitalspeicheroszilloskop

Mehr

Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil I. Fourieranalyse

Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil I. Fourieranalyse 04 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik eil I Fourieranalyse Stichworte: FOURIERreihe (trigonometrische Reihe), FOURIERkoeffizienten, FOURIERanalyse

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Digitalisierung und ihre Konsequenzen

Digitalisierung und ihre Konsequenzen Digitalisierung und ihre Konsequenzen Bisher haben wir im Zusammenhang mit dem FID und den daraus resultierenden frequenzabhängigen Spektren immer nur von stetigen Funktionen gesprochen. In Wirklichkeit

Mehr

2. Der Tiefpass. Filterschaltungen

2. Der Tiefpass. Filterschaltungen 130 2. Der Tiefpass Wirksamkeit Schaltungsvarianten Der Tiefpass ist die in der EMV am häufigsten eingesetzte Filterschaltung. Zum besseren Verständnis und zur Abschätzung der Wirksamkeit des Filters können

Mehr

E408 Versuchsprotokoll - Korrekturblatt 1 Grundpraktikum II - Gruppe 4 Lars Hallmann, Johannes Kickstein, Stefan Hanke

E408 Versuchsprotokoll - Korrekturblatt 1 Grundpraktikum II - Gruppe 4 Lars Hallmann, Johannes Kickstein, Stefan Hanke E408 Versuchsprotokoll - Korrekturblatt 1 Grundpraktikum II - Gruppe 4 Lars Hallmann, Johannes Kickstein, Stefan Hanke Inhaltsverzeichnis 1 Einleitung 1 2 Versuche 2 2.1 Eingesetzte Geräte.......................

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Rauschen. Signalverarbeitung. Zur Erinnerung. Fourier theorem

Rauschen. Signalverarbeitung. Zur Erinnerung. Fourier theorem verarbeitung 1. Klassifizierung und charakterisierung der e 2. verarbeitungskette Fourier theorem Rauschen f sinus t3 Rauschen: die gemessenen (als informationen dienenden) physikalischen Parameter, die

Mehr

4 Erzeugung von Tonsignalen

4 Erzeugung von Tonsignalen 4 Erzeugung von Tonsignalen 4.1 Etwas Theorie: Sample, Samplefrequenz, Abtasten Zeit in ms u1(t) 0 0 1 3,09 2 5,88 3 8,09 4 9,51 5 10 6 9,51 7 8,09 8 5,88 9 3,09 10 0 11-3,09 12-5,88 13-8,09 14-9,51 15-10

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr