Blatt 6. Schwingungen- Lösungsvorschlag

Größe: px
Ab Seite anzeigen:

Download "Blatt 6. Schwingungen- Lösungsvorschlag"

Transkript

1 Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator Ein Teilchen der Masse befinde sich in eine Potential der For: Vx, y, z) = 1 k xx + k y y + k z z ), k x,y,z > 0. a) Zeigen Sie, dass sich das Teilchen für k x = k y = k z auf einer ellipsenförigen Bahn bewegt. b) Für welche anderen Werte von k x, k y, k z ) erwarten Sie geschlossene Bahnkurven? Lösung. a) Die Lagrangefunktion ist L = ẋ + ẏ + ż ) 1 k xx + k y y + k z z ). I Spezialfall k x = k y = k z = k haben wir L = ẋ + ẏ + ż ) k x + y + z ). Die Bewegungsgleichungen sind ẍ + ω x = 0, ÿ + ω y = 0, z + ω z = 0. 1) Daher ist die Anziehungskraft ier parallel zu Radiusvektor und hängt nur vo Abstand vo Zentru ab. Deshalb ist der Drehipuls L = r v zeitlich konstant. Es folgt, dass die Bewegung ier in einer Ebene erfolgt r ist ier orthogonal zu L). Wählen wir die Koordinaten x, y, z so, dass diese Ebene die x y Ebene ist, also zt) = 0. Die allgeeine Lösung der Bewegungsgleichungen ist xt) = a cos ωt + α) yt) = b cos ωt + β) ) Wenn jetzt α = β + π wäre, könnten wir sofort die Ellipsengleichung schreiben: x a + y b = 1. Diese wäre eine Ellipsengleichung it Mittelpunkt in Koordinatenursprung. Hier aber ist α eine Integrationskonstante in der allgeeinen Lösung. Die Ellipse ist also gedreht.

2 Wir schreiben in Gl. ) das yt) u: yt) b und setzen δ β α. Dann Deshalb Oder = cos ωt + α) cos β α) sin ωt + α) sin β α), cos ωt + α) = x a, sin ωt + α) = cos ωt + α) cos δ sin δ y b sin δ = x cos δ a sin δ y b sin δ. x a ) x cos δ + a sin δ y ) = 1. b sin δ x xy cos δ + y a ab b = sin δ. Dieses ist eine Ellipsengleichung die zugehňörige quadratische For positiv definit ist). b) Die allgeeine Lösung ist xt) = a cos yt) = b cos zt) = c cos kx ky kz t + α t + β t + γ Die Perioden sind i allgeeinen Fall verschieden. Eine geschlossene Bahn ist nur dann öglich, wenn es eine geeinsae Periode gibt oder zwei von a, b, c gleich Null ist). Wenn abc 0, dann ist die Bedingung ist k x k y = l n, Wenn z.b. a = 0 und bc 0, dann nur k y k z = p q, k y = p, l, n, p, q N 3) k z q p, q N Wenn z.b. a = 0, b = 0, c 0, dann die Bewegung ist periodisch. Also wenn wir die Anfangsbedingungen nicht beschränken, uss die Bedingung 3) erfüllt werden, u eine periodische Lösung ier zu garantieren.

3 Aufgabe 6.. Gedäpfter, haronischer Oszillator Betrachten Sie einen gedäpften, haronischen Oszillator it Masse. Die Eigenfrequenz des ungedäpften Oszillators sei ω 0 und die Däpfungskonstante sei κ. Die Bewegungsgleichung lautet ẍ + κẋ + ω 0x = 0. 4) a) Lösen Sie die Bewegungsgleichung 4) für den Fall ω 0 > κ it Anfangsbedingungen x0) = x 0 und ẋ0) = v 0 über den Standardansatz xt) = expλt). b) Eritteln Sie die Lösung für den Fall ω 0 = κ als Grenzfall von a). c) Sei nun ω 0 = κ. Berechnen Sie für den Fall x 0 = 0 den Zeitpunkt t 1, bei de die axiale Auslenkung, also der Ukehrpunkt, erreicht wird. Lösung. a) Mit de Ansatz xt) = expλt) erhalten wir das charakteristische Polyno der Differentialgleichung 4) Mit ω = λ + κλ + ω o = 0, λ ± = κ ± i ω 0 κ. ω 0 κ erhalten wir ein Fundaentalsyste für die Lösungen der Bewegungsgleichung { exp κt + iωt), exp κt iωt) } oder alternativ { e κt sin ωt, e κt cos ωt }. Die allgeeine Lösung ist daher xt) = e κt c 1 sin ωt + c cos ωt), ẋt) = e κt ωc κc 1 ) sin ωt + ωc 1 κc ) cos ωt). Die Anfangsbedingungen liefern daher c 1 = 1 ω v 0 + κx 0 ), c = x 0. b) I Fall ω 0 = κ ist ω = 0 und dait die beiden Lösungen aus a) nicht ehr linear unabhängig. Da λ = κ nun doppelte Nullstelle des charakteristischen Polynos ist, erhalten wir als ein Fundaentalsyste { e κt, te κt}. 3

4 Die allgeeine Lösung ist daher xt) = c 1 t + c )e κt, ẋt) = c 1 c 1 κt c κ)e κt. Die Anfangsbedingungen liefern daher erneut c 1 = v 0 + κx 0, c = x 0. Diese Lösung ergibt sich auch durch Grenzwertbetrachtung. Füt ω 0 gilt sin ωt li = t, li cos ωt = 1. ω 0 ω ω 0 Dait erhalten wir direkt aus der Lösung aus Teil a) li xt) = v0 + κx ) 0 ω 0 e κt sin ωt + x 0 cos ωt ω = e κt v 0 + κx 0 ) t + x 0 ). c) Sei nun x 0 = 0. A Ukehrpunkt bei t 1 ist ein lokales Maxiu, so dass gilt 0 = ẋt 1 ) = v 0 v 0 κt 1 )e κt 1 t 1 = 1 κ. Aufgabe 6.3. Erzwungene Schwingung Der gedäpfte, haronische Oszillator aus Aufgabe 6.. werde nun von einer Kraft angetrieben. Ft) = F cos ωt 5) a) Finden Sie die allgeeine Lösung xt) und betrachten Sie den Fall später Zeiten b) Skizzieren Sie die Abhängigkeit der Aplitude der erzwungenen Schwingung von der Frequenz ω für kleine Däpfung, κ ω 0 und starke Däpfung. c) Diskutieren Sie die Aplitude und die Phasenverschiebung für schwache Däpfung und ω ω 0. Lösung. Diese Aufgabe ist i Wesentlichen L&L 6. 4

5 a) Die Differentialgleichung für die erzwungene Schwingung lautet in Erweiterung von Gleichung 4) u die äußere Kraft Ft) ẍ + κẋ + ω 0 x = F cos ωt. 6) Die allgeeine Lösung setzt sich zusaen aus der allgeeinen Lösung der hoogenen Gleichung aus Aufgabe Aufgabe 6.. und einer partikulären Lösung xt) = x ho t) +x } {{ } part t) e κt t x part t). Da die hoogene Lösung stets einen exponentiell abfallenden Faktor enthält, spielt sie i eingeschwungenen Zustand also für große Zeiten t keine Rolle ehr. Wir üssen noch eine partikuläre Lösung finden. Auf Grund der Linearität der Differentialgleichung 6) gilt das Superpositionsprinzip und wir können sie zur einfacheren Lösung in eine äquivalente Differentialgleichung für koplexe xt) uwandeln. Da Ft) = F cos ωt = Re Fe i ωt), gilt für jede koplexe) Lösung der koplexifizierten Differentialgleichung ẍ + κẋ + ω 0 x = F ei ωt, 7) dass Rext)) eine Lösung der ursprünglichen Differentialgleichung 6) ist. Wir erwarten, dass durch den Antrieb eine Schwingung it der Frequenz der äußeren Kraft induziert wird. Der Oszillator wird der äußeren Kraft folgen, es kann aber eine Phasenverschiebung auftreten. Wir achen daher für die partikuläre Lösung von 7) Ansatz Einsetzen in 7) liefert x t) = ae i ωt ϕ). a ) ω + iκ ω + ω 0 e i ωt ϕ) = F ωt ei ω 0 ω + iκ ω = F a eiϕ. Auf der rechten bzw. linken Seite dieser letzten Gleichung steht jeweils eine koplexe Zahl in kartesischer Darstellung bzw. in Polardarstellung. Die beiden Zahlen sind gleich, wenn ihre Beträge und ihre Iaginärteile gleich sind, also ω 0 ω ) + 4κ ω = F a, κ ω = F sin ϕ. a Daraus erhalten wir für die Aplitude a und Phase ϕ unserer Lösung a = tan ϕ = F ω, 8) 0 ω) + 4κ ω κ ω. 9) ω ω 0 5

6 Mit diesen Paraetern ist die erzwungene Schwingung als Lösung von 6) gegeben durch xt) = Re x t) ) = Re ae i ωt ϕ)) = a cos ωt ϕ), vt) = ẋt) = a ω sin ωt ϕ). b) Für sehr große ω fällt die Aplitude in beiden Fällen wie 1/ ω ab. Für schwache Däpfung doiniert für kleine Frequenzen der Ter ω 0 ω) Abb. 1a)). Für starke Däpfung wird die Aplitude durch κ ω bestit Abb. 1b)). a/a0) a/a0) ω/ω ω/ω 0 a) Schwache Däpfung b) Starke Däpfung Abbildung 1: Frequenzabhängigkeit der Aplitude c) Wir schreiben die treibende Frequenz als ω = ω + ɛ, it ɛ 1. Mit κ ω 0 haben wir ω ω 0 ω 0 ɛ. Dait ergeben sich Aplitude und Frequenz zu a = tan ϕ = κ ɛ. F ω 0 ɛ + κ, Da die Phasenverschiebung stetig sein uss, sehen wir aus Gl. 9), dass 0 ϕ π, d.h. die erzwungene Schwingung folgt ier der treibenden Schwingung hinterher. In Resonanz ist die Phasenverschiebung genau π/ und für sehr große ω nähert sie sich schnell an π. Aufgabe 6.4. Massenpunkte auf Schienen Zwei gleiche Massen gleiten reibungsfrei und ohne Einwirkung der Schwerkraft) auf zwei parallelen, geradlinigen Schienen, welche i Abstand a entlang der x-achse orientiert seien Abbildung ). Die beiden Massen seien durch eine haronische Feder Feder-Konstante k, Ruhelänge l) iteinander verbunden. a) Forulieren Sie die potentielle Energie der Anordnung. Bestien Sie die Ruhelagen der beiden Massen und deren Stabilität für die Fälle a > l und a < l. b) Geben Sie die Lagrange-Funktion des Systes an. Verwenden Sie dazu die generalisierten Koordinaten Q = 1 x 1 + x ) und q = x 1 x. 6

7 c) Bestien Sie die Bewegungsgleichungen des Systes. Linearisieren Sie die Bewegungsgleichungen für kleine Auslenkungen aus der Ruhelage beachten Sie die Fallunterscheidung aus a). d) Forulieren Sie den Energie-Erhaltungssatz und erklären Sie die verschiedenen Bewegungsarten des Systes qualitativ. a x1 x x Abbildung : Zwei Massen auf Schienen. Lösung. a) Die Länge der Feder ist x 1 x ) + a. Deshalb E pot = 1 k x 1 x ) + a l). Die Ruhelagen sind solche x 1 und x, dass E pot ein Extreu hat. Allerdings hängt E pot nur von x 1 x ab. Bezeichnen wir q x 1 x ; dann E pot q) = 1 k q + a l). Das Extreu ) de pot dq = 0 = kq q + a l = kq q + a kql q + a ergibt q = 0 und q = ± l a falls a < l. Die Stabilität bestien wir, inde wir d E dq pot berechnen: d dq E pot = d dq kq kql q + a = k kl q + a + kq l q + a ) 3/ = k 1 a l q + a ) 3/. Dieses ist positiv also ein Miniu der Energie) wenn Jetzt betrachten wir die zwei Fälle. a 4 l < q + a ) 3. 10) Wenn a > l, wir haben nur ein Extreu bei q = 0. Dann ist Gl.10) it a 4 l < a 6 erfüllt. Also wir haben ein Miniu der potentiellen Energie, eine stabile Ruhelage. Wenn a < l, wir haben drei Extrea: q = 0 und q = ± l a. Bei q = 0, ist Gl.10), a 4 l < a 6 nicht erfüllt. Also ist q = 0 keine stabile Ruhelage. Bei q = ± l a, ergibt Gl.10) a 4 l < l 6. Also sind q = ± l a stabile Ruhelagen. 7

8 b) Die kinetische Energie ist E kin = ẋ ) 1 + ẋ. Deshalb die Lagrange-Funktion ist L = E kin E pot = ẋ 1 + ẋ) 1 k q + a l). Verwenden wir dann die verallgeeinerte Koordinaten q = x 1 x, Q = 1 x 1 + x ): wir haben x 1 = Q + q, x = Q q, L = ) 1 q + Q 1 k q + a l). c) Bewegungsgleichungen: Q = 0, q = kq + kql q + a = d dq E pot. Die erste Gleichung ist bereits linear. Zur Linearisierung der zweiten schreiben wir q = q 0 + w, wobei q 0 eine Ruhelage ist, und w eine kleine Auslenkung. Dann ist die linearisierte Gleichung ẅ = d E pot dq w = k 1 a l q=q0 q + a ) 3/ w. Bei q 0 = 0, Bei q 0 = ± l a, d) Gesatenergie ist erhalten: E tot = E kin + E pot = ẅ = k 1 l ) w. 11) a ẅ = k 1 a l ) w. 1) ) 1 q + Q + 1 k q + a l) = const Die Bewegung it Q = 0 ist Qt) = C 1 +C t, also die gleichförige Bewegung des Schwerpunktes beider Massen. Die Bewegung der Koordinate qt) ist oszillatorisch u eine stabile Ruhelage, und exponentiell wachsend u eine instabile. 8

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Schräger Wurf Ein Massepunkt der Masse m werde mit der Anfangsgeschwindigkeit

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Lösungen zu den Übungen zur Newtonschen Mechanik

Lösungen zu den Übungen zur Newtonschen Mechanik Lösungen zu den Übungen zur Newtonschen Mechanik Jonas Probst.9.9 1 Bahnkurve eines Massenpunktes Aufgabe: Ein Massenpunkt bewegt sich auf folgender Trajektorie: 1. Skizzieren Sie die Bahnkurve. r(t) (a

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung 1. Schwingungen Fast alles schwingt, d.h. der Zustand ändert sich periodisch it der Zeit wie in Kreisbewegung. Bsp. Uhr, Kolben i Autootor, wippende Boote auf de Wasser. Haronische Schwingung die einfachste

Mehr

Übungen zur Theoretischen Physik I: Mechanik

Übungen zur Theoretischen Physik I: Mechanik Prof Dr H Friedrich Physik-Departent T30a Technische Universität München Blatt 4 Übungen zur Theoretischen Physik I: Mechanik (Abgabe schriftlich, in der Übungsgruppe in der Woche vo 805-2205) Betrachten

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

2ml2 folgt die Form der Phasenraumtrajektorien zu

2ml2 folgt die Form der Phasenraumtrajektorien zu PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt WS 8/9 3..9. Phasenraumportrait eines Fadenpendels. Eine Masse m sei an einer masselosen Stange der Länge l aufgehängt,

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Lösung 09 Klassische Theoretische Physik I WS 15/16. G(t t ) = Θ(t t )e α(t t ). (1)

Lösung 09 Klassische Theoretische Physik I WS 15/16. G(t t ) = Θ(t t )e α(t t ). (1) Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 09 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 0 Punkte Sebastian Zanker, Daniel Mendler

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

Blatt 05.3: Green sche Funktionen

Blatt 05.3: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

15. Vorlesung Sommersemester

15. Vorlesung Sommersemester 15. Vorlesung Soerseester 1 Kontinuusgrenzfall der Bewegungsgleichungen Was wird aus den Bewegungsgleichungen i Kontinuusgrenzwert? I diskreten Fall sind diese η j = kη j+1 η j + η j 1 1 und an führt wieder

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Vorkurs Matheatik-Physik, Teil 8 c 26 A. Kersch Dynaik. Newton sche Bewegungsgleichung Reaktionsgesetz F geändert Der Bewegungszustand eines Körpers wird nur durch den Einfluss von (äußeren) Kräften F

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 6

Grundlagen der Physik 2 Lösung zu Übungsblatt 6 Grundlagen der Physik Lösung zu Übungsblatt 6 Daniel Weiss 17. Mai 1 Inhaltsverzeichnis Aufgabe 1 - Helholtz-Spulen 1 a) agnetische Feldstärke.............................. 1 b) hoogenes Feld..................................

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Theoretische Physik I: Weihnachtszettel Michael Czopnik

Theoretische Physik I: Weihnachtszettel Michael Czopnik Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

PHYSIK I. Sommersemester 2007

PHYSIK I. Sommersemester 2007 Testprüfung, Musterlösung 1. Einfache Mechani Die Perle hat nur einen Freiheitsgrad, sie ann sich nur entlang des Drahtes bewegen. Wir bezeichnen den Abstand der Perle von der Drehachse it r. Auf die Perle

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Allgemeine Mechanik Musterlo sung 5.

Allgemeine Mechanik Musterlo sung 5. Allgemeine Mechanik Musterlo sung 5 U bung HS 203 Prof R Renner Gekoppelte Pendel Wir betrachten ein System aus zwei gleichen mathematischen Pendeln der La nge l = l2 = l mit Massen m = m2 = m im Schwerefeld

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

5.1 Eigenwerte und Eigenvektoren

5.1 Eigenwerte und Eigenvektoren 5 Eigenwerte und Eigenvektoren Die Eigenwerttheorie ist ein besonders wirkungsvolles Werkzeug der linearen Algebra Sie liefert zb Lösungsethoden zur Auffindung von - Fixgeraden linearer Abbildungen, insbesondere

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Prüfung aus Physik III (PHB3) Donnerstag 8. Juli 2010

Prüfung aus Physik III (PHB3) Donnerstag 8. Juli 2010 Fachhochschule München FK06 Soerseester 2010 Prüfer: Prof. r. Maier Prüfung aus Physik III (PHB3) onnerstag 8. Juli 2010 Zugelassene Hilfsittel: Forelsalung (Bestandteil der Prüfung), Taschenrechner (nicht

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

4.5. Erzwungene Schwingung. Exp. I 69: Pohl'sches Rad Bewegungsgleichung

4.5. Erzwungene Schwingung. Exp. I 69: Pohl'sches Rad Bewegungsgleichung - 63-4.5. Erzwungene Schwingung 4.5.. Bewegungsgleichung In vielen Fällen schwingt ein Syste nicht frei, sondern an führt ih von außen Energie zu, inde an eine periodische Kraft a schwingenden Syste angreifen

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Bestimmen Sie die Rayleigh sche Dissipationsfunktion, stellen Sie die Lagrange-Funktion. dv v = 3πrηv 2. (1) z + D (3)

Bestimmen Sie die Rayleigh sche Dissipationsfunktion, stellen Sie die Lagrange-Funktion. dv v = 3πrηv 2. (1) z + D (3) PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Huel Blatt 4 WS 2008/2009 4.11.2008 1. TeilcheninHonig.EineKugelitMasseundRadiusrfälltineineGefäß,dasit 4Pkt.) Honig gefüllt ist und

Mehr