Darstellung von Kurven und Flächen

Größe: px
Ab Seite anzeigen:

Download "Darstellung von Kurven und Flächen"

Transkript

1 Darstellung von Kurven und Flächen Technische Universität Dresden Fakultät Informatik Institut für Software- und Multimediatechnik Dozent: Dr. Mascolous Referent:

2 Gliederung / Einleitung 1 / Kurven 1.1 Verbindung von zwei Kurven 1.2 Ausgewählte Kurven 1.2.1Hermite-Kurven Beziér-Kurven Kubische Bezierkurven Splines Kubische B-Splines NURBS 1.3 Interpolation Polynominterpolation B-Spline Interpolation Bézier Interpolation 2.Flächen 2.1 Bézierflächen Quellen- und Literaturverzeichnis

3 1.1 Verbindung von 2 Kurven 2 / 25 Problem: Art der Verbindung, wenn man eine Kurve durch 2 Teilkurven niedrigeren Grades beschreiben will beide Kurven müssen gemeinsamen Punkt besitzen dies nennt man G 0 -Stetigkeit bzw. C 0 -Stetigkeit Tangentenvektoren im Schnittpunkt gleiche Richtung = G 1 -Stetigkeit Tangentenvektoren gleichen Betrag = C 1 -stetig automatisch G 1 -stetig. C n -stetig = sie bis zur n. Ableitung übereinstimmen 1.Ableitung = Geschwindigkeit eines Punktes; 2.Ableitung = die Beschleunigung. G 1 -Stetigkeit = Voraussetzung für glatt erscheinende Kurve

4 Ausgewählte Kurven 3 / 25 Kurven sind allgemein Polynome, wobei die drei Kurven für die Achsen x, y, z jeweils durch ein Polynom n.ten Grades in Abhängigkeit von t beschrieben werden. Kubische Kurven sind von der allgemeinen Form: x(t) = a x t 3 + b x t 2 +c x t+d x Da man 4 Koeffizienten hat, braucht man 4 Bedingungen, um die Kurve zu charakterisieren.

5 Bézier-Kurven 4 / 25 Aussehen: Ein Band liegt zwischen den beiden Endpunkten, und die Kontrollpunkte ziehen das Band zu sich hin mit einer Stärke, die sich proportional zum Abstand des Kontrollpunktes zur Kurve verhält. Allgemeine Formel: n-dimensionale Bézierkurve: Bernsteinpolynome: Pi: Kontrollpunkte Wertebereich: 0 t 1

6 Kubische Bézierkurven 5 / 25 Gleichung: C(t) = P 0 (1-t) P 1 t (1-t) P 2 t 2 (1-t) + P 3 t 3 Bedingungen: 2 Endpunkte (P 1, P 4 ) und 2 Zwischenpunkte (P 2, P 3 ), wobei P 1 P 2 und P 3 P 4 die Tangenvektoren in P 1 und P 4 implizit angeben. Eigenschaften: die Kurve durchläuft die beiden Endpunkte affine Transformation (Verschiebung, Skalierung, Rotation, Scherung) kann auf die Bézierkurve durch Transformation der Kontrollpunkte angewendet werden ("affine Invarianz") als gewichtete Summe polynomialer Basisfunktionen darstellbar Summe der Basisfunktionen hat an einer bestimmten Stelle den Wert 1 =>Kurve liegt in konvexer Hülle der Kontrollpunkte

7 Kubische Bézierkurven 6 / 25 C 0 -Stetigkeit durch gemeinsamen Kontrollpunkt C 1 -Stetigkeit, wenn P 4 = P 5 (letzter Punkt 1. Kurve = 1. Punkt 2. Kurve) und Strecke P 4 P 6 Mittelpunkt P 5 hat (der Tangentenvektor beider Kurven im Punkt 4 ist gleich)

8 Kubische Bézierkurven 7 / 25 Darstellung (Casteljau-Algorithmus): 1. Möglichkeit: Kurve berechnen für bestimmte Werte von t 2. Möglichkeit: Casteljau-Algorithmus ( relativ einfache bestimmung eines Punktes auf der Kurve) Verbindung der einzelnen Punkte zu Polygonzug, um Näherungslösung für Kurve zu erhalten

9 Kubische Bézierkurven 8 / 25 Arbeitsweise (speziell für kubische): 4 Kontrollpunkte sind durch Geraden verbunden, wobei ein Punkt P 0 i immer mit seinem Nachfolger P0 i+1 verbunden ist (i = 0, 1, 2) Teilung der 4 Strecken im Verhältnis t : (1-t) (t є [0, 1]) 3 neue Punkte P 1 i (i = 0, 1, 2) Teilung dieser im gleichen Verhältnis 2 Punkte P 2 i (i = 0,1) Teilung dieser Strecke P 3 i, der genau der Funktionswert von der Kurve an der Stelle t ist Also muss man nur Grundrechenarten ausführen und keine Fakultäten bzw. Potenzen berechnen.

10 Kubische Bézierkurven 9 / 25

11 Hermite-Kurven 10 / 25 Bedingungen (kubisch): 2 Endpunkte (Kurve läuft durch sie hindurch) und 2 Tangenvektoren in diesen Punkten. Eigenschaften: siehe Bezier-Kurven

12 Splines 11 / 25 Spline: flexibler Metallstreifen, mit denen Flächen von Flugzeugen, Autos und Schiffen konstruiert wurden an Enden der Streifen werden kleine Gewichte angebracht Krümmung unter normaler Belastung sind sie C 2 -stetig Mathematisches Äquivalent: natürliche kubische Splines interpolieren (durchlaufen) alle Kontrollpunkte Koeffizienten der Kurven hängen von allen n Kontrollpunkten ab zur Berechnung muss eine (n+1) * (n+1) Matrix invertiert werden Änderung eines Kontrollpunktes Auswirkungen auf gesamte Kurve

13 Kubische B-Splines 12 / 25 B steht für Basis, da B-Splines als gewichtete Summe polynomialer Basisfunktionen sind (wie auch Bézierkurven) Summe der Basisfunktionen hat an jeder Stelle den Wert 1 Kurve innerhalb der konvexen Hülle der Kontrollpunkte relativ einfache Berechnung und lokale Steuerung machen B-Spline-Kurven und -Flächen zu am weitest verbreiteten Kurven zur Beschreibung von gekrümmten Flächen (1-t) 3 3t 3 6t t 3 + 3t 2 +3t + 1 t 3 Q(t) = P 0 + P 1 + P 2 + P

14 Kubische B-Splines 13 / 25

15 Kubische B-Splines 14 / 25 Eigenschaften: interpolieren Kontrollpunkte nicht (approximieren nur) Koeffizienten hängen nur von einigen Kontrollpunkten ab gewisse lokale Änderungen durchführbar (Koeffizienten schneller berechenbar) Stetigkeiten entstehen durch gemeinsame Nutzung von Kontrollpunkten durch mehrere Segmente ein Kontrollpunkt hat Einfluss auf max. 4 Kurvensegmente bewegt man ihn in eine Richtung, bewegen sich diese Kurvensegmente in gleiche Richtung bestehen aus n-3 kubischen polynomialen Kurvensegmenten, die alle einen eigenen Definitionsbereich 0 <= t <= 1 haben Substitution t = t+k gemeinsamer, stetiger Definitionsbereich für den gesamten Spline Wiederholen der ersten 3 Kontrollpunkte am Ende der Folge von Kontrollpunkten geschlossene Kurve verläuft üblicherweise nahe an Mittelpunkten der Strecken zwischen benachbarten Kontrollpunkten

16 Kubische B-Splines 15 / 25 Uniforme Splines: Knoten (die Verbindungspunkte der einzelnen Kurven) haben gleiche Abstände voneinander Interpolation: Wiederholte Verwendung von Kontrollpunkte (direkt hintereinander) Interpolation bestimmter Punkte Aber: oft entstehen Geradenstücke oder Spitzen anderes Verfahren verwendet Phantompunkte, wobei 2 neue Kontrollpunkte eingeführt werden Kurve durchläuft beide Endpunkte Darstellung (Algorithmus von De-Boor): (Äquivalent zum Casteljau-Algorithmus) bei B-Spline 3. Grades werden 2 Iterationen benötigt 1. Iteration 2 neue Punkte 2. Iteration ein neuer Punkt = gesuchter Punkt auf der Kurve

17 NURBS 16 / 25 Definition: NURBS = Non uniform rational B-Splines Nicht-uniform bedeutet, dass die Knoten möglicherweise unterschiedlich großen Abstände voneinander haben. Rational bedeutet, dass die Kurve als Quotient von 2 B-Spline- Polynomen schreibbar ist. Durch die Nichtuniformität ist mehrfache Nutzung von Kontrollpunkten zulässig, wodurch zwar die Stetigkeit gesenkt wird, aber die Interpolation von Punkten ermöglicht wird. Ein Knoten darf allerdings nicht öfter als n (n = Grad des Polynoms) auftreten, da sonst Unterbrechungen der Kurven auftreten.

18 NURBS 17 / 25 Eigenschaften: Invariant bei Rotation, Skalierung, Translation und Zentralprojektion (nichtrationale Kurven sind bei Zentralprojektion nicht invariant); d.h. man muss Transformation nur auf Kontrollpunkte anwenden, nicht auf jeden Punkt Bézierkuven sowie rationale B-Splines darstellbar Bsp: Divisor 1 setzen nichtuniformer rationaler B-Spline Beschränkung auf gleiche Parameterintervalle uniforme Kurven Bézierkurven = Spezialfall von B-Splines exakte Kegelschnitte sowie Kreise darstellbar, die häufig in CAD- Anwendungen benötigt werden

19 Polynominterpolation 18 / 25 zu n + 1 Punkten existiert ein Interpolationspolynom n-ten Grades man erhält das Interpolationspolynom z.b. mit Hilfe der Formel von Lagrange:

20 B-Spline Interpolation 19 / 25 Interpolation dieser Menge von Punkten: stückweise lineare Interpolation liefert Menge von Geradenstücken:

21 B-Spline Interpolation 20 / 25 Polynominterpolation 7.Grades erzeugt diese Kurve: Kubische Spline-Interpolation:

22 Bézier Interpolation 21 / 25

23 Flächen 22 / 25 Allgemeine Formel für parametrisierte kubische Kurve: Q(t) = G * M * T G ist Geometriematrix (Bézier: Kontrollpunkte). G = [G 1 G 2 G 3 G 4 ]. M ist Basis-Matrix (Koeffizienten des Polynoms). T ist Parameter-Matrix (T = [t 3 t 2 t 1]). Wenn die Geometriematrix nicht konstant ist (also die Kontrollpunkte selber eine Funktion in Abhängigkeit von s sind), ergibt sich: Q(t,s) = [G 1 (s) G 2 (s) G 3 (s) G 4 (s)] * M * T Kubischen Fläche: alle G i (s) sind selber kubische Polynome Für ihre Beschreibung braucht man 16 Unbekannte (4 pro Polynom bei 4 Polynomen).

24 Flächen 23 / 25 Darstellung: Man wählt einige Werte für konstantes s und einige für konstantes t und berechnet mit ihnen die entstehenden Kurven. Verbindung zu einer Fläche Aufgrund des hohen Berechnungsaufwands wurden andere Methoden wie die Vorwärtsdifferenziation entwickelt.

25 Bézierflächen 24 / 25 Zur Beschreibung einer Bézierfläche benötigt man 16 Kontrollpunkte. Um C 0 -Stetigkeit zwischen 2 Flächen zu erhalten, müssen sie 4 Kontrollpunkte gemeinsam haben (also eine Kante). G 1 -Stetigkeit erhält man, indem die jeweils 4 Punkte neben den Kantenpunkten auf einer Geraden liegen.

26 Quellen- und Literaturverzeichnis 25 / 25 Foley, James (u.a.); Grundlagen der Computergraphik, Einführung, Methoden Konzepte; Bonn, 1994; ISBN Glassner, Andrew (u.a.); Graphics Gems I; San Diego, 1990; ISBN Piegl, Les und Tiller, Wayne; The NURBS BOOK; Heidelberg, 1995; ISBN Rauber, Thomas; Algorithmen in der Computergraphik; Stuttgart, 1993; ISBN Wikipedia (

Thema des Referats: Darstellung von Kurven und Flächen

Thema des Referats: Darstellung von Kurven und Flächen Technische Universität Dresden im WS 2004/05 Fakultät Informatik Institut für Institut für Software- und Multimediatechnik Proseminar:Computergrafik Dozent:Dr. Mascolous Referent: Patrick Brausewetter

Mehr

Polynome im Einsatz: Bézier-Kurven im CAD

Polynome im Einsatz: Bézier-Kurven im CAD Polynome im Einsatz: Bézier-Kurven im CAD Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 25 Kurven im Raum Eine Kurve im

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Proseminar Computergraphik, 10. Juni 2008 Christoph Dähne Seite 1 Inhalt Polygonnetze 3 Knotenliste 3 Kantenliste 3 Parametrisierte kubische Kurven 4 Definition 4 Stetigkeit

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) =

Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) = Institut für Geometrie Abteilung für Geometrie im Bauwesen und im Scientific Computing Prof. Dr. H. Pottmann Interpolation & Approximation Splines Geg: Menge von Punkten Ges: Kurve, welche die Punkte interpoliert

Mehr

Prüfungsdauer: 120 Minuten

Prüfungsdauer: 120 Minuten Computergraphik und Multimediasysteme Seite 1 von 6 Klausur: Computergraphik II Probeklausur Semester: Prüfer: Prüfungsdauer: 1 Minuten Hilfsmittel: Schreibgeräte, Lineal, nichtprogrammierbarer Taschenrechner

Mehr

Approximation durch Polynome

Approximation durch Polynome durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz

Mehr

Proseminar Bernsteinpolynome Bézier-Flächen. Dana Eckhardt Matr.-Nr:

Proseminar Bernsteinpolynome Bézier-Flächen. Dana Eckhardt Matr.-Nr: Proseminar Bernsteinpolynome Bézier-Flächen Dana Eckhardt Matr.-Nr: 4291637 Inhaltsverzeichnis 1 Einführung 2 1.1 Grundidee und Darstellung....................... 2 1.2 Satz 3.20.................................

Mehr

Grundlagen der geometrischen Datenverarbeitung

Grundlagen der geometrischen Datenverarbeitung Grundlagen der geometrischen Datenverarbeitung Von Prof. Dr. rer. nat. Josef Hoschek und Dr. rer. nat. Dieter Lasser Technische Hochschule Darmstadt Mit zahlreichen Figuren B. G. Teubner Stuttgart 1989

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Coputergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! 1 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe und Grundlagen Objekttransforationen Objektrepräsentation und -Modellierung Sichttransforationen

Mehr

Kurven und Flächen. Interaktive Kontrolle und Präsentation komplexer Kurven und Flächen (=Modellierung) 3D Modellierung Prof. Dr.-Ing. H.-P.

Kurven und Flächen. Interaktive Kontrolle und Präsentation komplexer Kurven und Flächen (=Modellierung) 3D Modellierung Prof. Dr.-Ing. H.-P. Kurven und Flächen Interaktive Kontrolle und Präsentation komplexer Kurven und Flächen (=Modellierung) 154 Modellieren mit Freiformkurven und -flächen Modellierungsprozesse (Taping) in der Automobilindustrie

Mehr

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung)

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) 7. Modelle für Flächen gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) man unterscheidet 2 Typen: finite Interpolationen / Approximationen: endliche Zahl von Stützstellen / Kontrollpunkten

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

Sie braucht weniger Speicherplatz als das Polygon und

Sie braucht weniger Speicherplatz als das Polygon und Kapitel 7 Kurven Die bisher besprochenen 2D-Objekte haben bis auf den Kreis den Nachteil, daß sie im weitesten Sinne eckig sind. Wenn ein Objekt mit runder Form verlangt wird, z.b. ein Herz, ein Schiffsrumpf,

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

11. Darstellung von Kurven und Flächen

11. Darstellung von Kurven und Flächen H.J. Oberle Approximation WS 23/4. Darstellung von Kurven und Flächen Bézier Kurven. Unser Ziel ist es, polynomiale Kurven auf dem Rechner möglichst effizient darzustellen. Hierzu nutzen wir die Basisdarstellung

Mehr

Dieses Kapitel vermittelt:

Dieses Kapitel vermittelt: 2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Rekonstruktion kontinuierlicher Daten Multivariate Bezier-Interpolation Transfinite Interpolation Spline-Funktionen Ulrich Rüde

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Rekonstruktion kontinuierlicher Daten Interpolation multivariater Daten Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester

Mehr

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe 5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.)

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.) 5. Gitter, Gradienten, Interpolation 5.1. Gitter (Rezk-Salama, o.j.) Gitterklassifikation: (Bartz 2005) (Rezk-Salama, o.j.) (Bartz 2005) (Rezk-Salama, o.j.) Allgemeine Gitterstrukturen: (Rezk-Salama, o.j.)

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Grundlagen der 3D-Modellierung

Grundlagen der 3D-Modellierung April 28, 2009 Inhaltsverzeichnis 1 Einführung 2 Direkte Darstellungsschemata 3 Indirekte Darstellungsschemata 4 Parametrische Kurven und Freiformflächen 5 Abschluss Motivation Vom physikalischen Körper

Mehr

Übungen mit dem Applet Interpolationspolynome

Übungen mit dem Applet Interpolationspolynome Interpolationspolynome 1 Übungen mit dem Applet Interpolationspolynome 1 Ziele des Applets... 2 2 Übungen mit dem Applet... 2 2.1 Punkte... 3 2.2 y=sin(x)... 3 2.3 y=exp(x)... 4 2.4 y=x 4 x 3 +2x 2 +x...

Mehr

Interpolation und Integration mit Polynomen

Interpolation und Integration mit Polynomen Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus

Mehr

Geometrische Algorithmen in der Ebene

Geometrische Algorithmen in der Ebene Aufgabe 1 Schnitt von Gerade und Kreis Aus einer Textdatei werden die Daten für eine Gerade g (zwei Punkte a, b R 2 ) und für einen Kreis g (Mittelpunkt m R 2 und Radius r) eingelesen. Diese Datei kann

Mehr

Spline Morphing. Softwarepraktikum im IWR. Carl Friedrich Bolz. Carl Friedrich Bolz

Spline Morphing. Softwarepraktikum im IWR. Carl Friedrich Bolz. Carl Friedrich Bolz Spline Morphing Softwarepraktikum im IWR Einführung Motivation: Splines sind die Grundlage von jeglicher Vektorgrafik, 3D-Grafik, CAD/CAM,... Splines werden häufig zur Beschreibung von Schrift verwendet,

Mehr

Approximationsverfahren

Approximationsverfahren Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approimationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Computergrafik. Michael Bender, Manfred Brill. Ein anwendungsorientiertes Lehrbuch ISBN Inhaltsverzeichnis

Computergrafik. Michael Bender, Manfred Brill. Ein anwendungsorientiertes Lehrbuch ISBN Inhaltsverzeichnis Computergrafik Michael Bender, Manfred Brill Ein anwendungsorientiertes Lehrbuch ISBN 3-446-40434-1 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40434-1 sowie

Mehr

Bezier-Kurven. Hamid Fetouaki, Emma Skopin. 28. Januar 2009. Universität Kassel FB Mathematik/Informatik

Bezier-Kurven. Hamid Fetouaki, Emma Skopin. 28. Januar 2009. Universität Kassel FB Mathematik/Informatik Ableitungen von Universität Kassel FB Mathematik/Informatik 28. Januar 2009 Ableitungen von Motivation Bis in den späten 50er Jahren: Zeichnung der Kurven am Papier Fertigung der Modelle aus Holz und Ton

Mehr

Parameterdarstellung einer Funktion

Parameterdarstellung einer Funktion Parameterdarstellung einer Funktion 1-E Eine ebene Kurve Abb. 1-1: Die Kurve C beschreibt die ebene Bewegung eines Teilchens 1-1 Eine ebene Kurve Ein Teilchen bewegt sich in einer Ebene. Eine ebene Kurve

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

KAPITEL 8. Interpolation

KAPITEL 8. Interpolation KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0

Mehr

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013 Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche

Mehr

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester Aufgabe 5

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester Aufgabe 5 Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Sommersemester 01 Prof. Dr. Wolfgang Dahmen Yuanjun Zhang, M.Sc., Dipl.-Math.

Mehr

F u n k t i o n e n Rationale Funktionen

F u n k t i o n e n Rationale Funktionen F u n k t i o n e n Rationale Funktionen Die erste urkundlich erwähnte Rechenmaschine wurde 163 von Wilhelm Schickard in einem Brief an Johannes Kepler knapp beschrieben. Die Maschine besteht aus einem

Mehr

8 Polynominterpolation

8 Polynominterpolation 8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Das isoperimetrische Problem

Das isoperimetrische Problem Das isoperimetrische Problem Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 18. Oktober 3 Das isoperimetrische Problem, auch bekannt als das Problem der Dido, ist es, unter allen geschlossenen ebenen

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht

Mehr

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden,

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden, Kapitel 3 Interpolation 31 Einführung Bemerkung 31 Motivation, Aufgabenstellung Gegeben seien eine Funktion f C([a,b]) und x i [a,b], i = 0,n, mit a x 0 < x 1 < < x n b (31) Die Interpolationsaufgabe besteht

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Interaktive und automatisierte Hypergraphenvisualisierung mittels NURBS-Kurven

Interaktive und automatisierte Hypergraphenvisualisierung mittels NURBS-Kurven Institut für Mathematik der Universität zu Lübeck Interaktive und automatisierte Hypergraphenvisualisierung mittels NURBS-Kurven Diplomarbeit vorgelegt von Ronny Bergmann Betreuer PD Dr. Hanns-Martin Teichert

Mehr

um diese Formen spater (eventuell in einem vergroerten Mastab) rekonstruiren zu konnen (Modellruckfuhrung). Das Problem der Datenreduktion und der dam

um diese Formen spater (eventuell in einem vergroerten Mastab) rekonstruiren zu konnen (Modellruckfuhrung). Das Problem der Datenreduktion und der dam GRUNDLAGEN DER CAD/CAM ENTWICKLUNG MIT SPLINEKURVEN - EINE EINFUHRUNG - Dan - Eugen Ulmet Fachhochschule Esslingen - Hochschule fur Technik, Kanalstr. 33, 7378 Esslingen ZUSAMMENFASSUNG Splinekurven und

Mehr

Grundlagen der Computergraphik Klausur SS08

Grundlagen der Computergraphik Klausur SS08 Grundlagen der Computergraphik Klausur SS08 Prof. Dr. Holger Theisel 23. Juli 2008 Vorname: Nachname: Matrikelnummer: Anzahl zusätzlicher Blätter: Die Tabelle wird bei der Korrektur ausgefüllt! Aufgabe

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Polynome und ihre Nullstellen

Polynome und ihre Nullstellen Polynome und ihre Nullstellen 29. Juli 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Explizite Berechnung der Nullstellen 2.1 Polynome vom Grad 0............................. 2.2 Polynome vom Grad 1.............................

Mehr

Funktionen. D. Horstmann: Oktober

Funktionen. D. Horstmann: Oktober Funktionen D. Horstmann: Oktober 2016 128 Funktionen Definition 9. Eine Funktion f ist eine Rechenvorschrift, die jedem Element einer Menge D genau ein Element einer Zielmenge Z zuweist. Die Menge D heißt

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Wir konstruieren eine Wasserrutsche!

Wir konstruieren eine Wasserrutsche! Wir konstruieren eine Wasserrutsche! Teilnehmer: Leo Graumann Anh Vu Ho Yiyang Huang Felix Jäger Charlotte Kappler Wilhelm Mebus Alice Wamser Gruppenleiter: René Lamour Caren Tischendorf Heinrich-Hertz-Oberschule,

Mehr

Einleitung...?? I Grundlagen aus Mengenlehre und Logik...?? II Von den ganzen Zahlen bis zu den reellen Zahlen...??

Einleitung...?? I Grundlagen aus Mengenlehre und Logik...?? II Von den ganzen Zahlen bis zu den reellen Zahlen...?? Inhalt der Vorlesung Einleitung..........................................................?? I Grundlagen aus Mengenlehre und Logik............................?? II Von den ganzen Zahlen bis zu den reellen

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung Technische Universität Chemnitz 4. April 2011 Fakultät für Mathematik Höhere Mathematik I.2 Aufgabenkomple 1: Funktionen, Interpolation, Grenzwerte, Ableitung Letzter Abgabetermin: 2. April 2011 (in Übung

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Einführungsbeispiel Kostenfunktion

Einführungsbeispiel Kostenfunktion Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Fachhochschule Aachen. Seminararbeit. im Studiengang Scientific Programming. Splines in der Datenverarbeitung. Herr Prof. Dr.

Fachhochschule Aachen. Seminararbeit. im Studiengang Scientific Programming. Splines in der Datenverarbeitung. Herr Prof. Dr. Fachhochschule Aachen Seminararbeit im Studiengang Scientific Programming Thema: Splines in der Datenverarbeitung eingereicht von: Selman Terzi eingereicht am: 14. Dezember 2012 Erster Betreuer: Zweiter

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder

Mehr

Modellierung. Oliver Hartmann

Modellierung. Oliver Hartmann Modellierung Oliver Hartmann oliver.hartmann@uni-ulm.de Inhalt Boolesche Operationen Splines B-Splines Bezier-Kurven NURBS Anwendung Sculpting Volumengrafik Marching Cubes Ray Casting Texture Mapping Boolesche

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

π und die Quadratur des Kreises

π und die Quadratur des Kreises π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge

Mehr

Computergrafik. Ein anwendungsorientiertes Lehrbuch. Bearbeitet von Michael Bender, Manfred Brill

Computergrafik. Ein anwendungsorientiertes Lehrbuch. Bearbeitet von Michael Bender, Manfred Brill Computergrafik Ein anwendungsorientiertes Lehrbuch Bearbeitet von Michael Bender, Manfred Brill 1. Auflage 2003. Taschenbuch. 528 S. Paperback ISBN 978 3 446 22150 5 Format (B x L): 16,9 x 24,1 cm Gewicht:

Mehr

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter:

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter: Die Unlösbarkeit der Gleichung fünften Grades durch adikale Teilnehmer: Max Bender Marcus Gawlik Anton Milge Leonard Poetzsch Gabor adtke Miao Zhang Gruppenleiter: Jürg Kramer Andreas-Oberschule Georg-Forster-Oberschule

Mehr

5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer

5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer 3 Differentialgeometrische Eigenschaften von Kurven und Flächen Ziel dieses Abschnittes ist es, eine kurze Einführung in die Anfangsgründe der mathematischen Theorie der Raumkurven und Flächen zu geben.

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Interpolation. Kapitel 3

Interpolation. Kapitel 3 Kapitel 3 Interpolation Die Interpolation von Funktionen oder Daten ist ein häufig auftretendes Problem sowohl in der Mathematik als auch in vielen Anwendungen Das allgemeine Problem, die sogenannte Dateninterpolation,

Mehr

8. Der Fundamentalsatz der Algebra

8. Der Fundamentalsatz der Algebra 8. Aussage Fundamentalsatz der Algebra. Für jede natürlich Zahl n und beliebigen komplexen Koeffizienten a 0,a,...,a n hat die algebraische Gleichung x n +a n x n +...+a x+a 0 = 0, () eine Lösung in C.

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen. Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr