Allgemeine Relativitätstheorie und Schwarze Löcher

Größe: px
Ab Seite anzeigen:

Download "Allgemeine Relativitätstheorie und Schwarze Löcher"

Transkript

1 1 Allgemeine Relativitätstheorie und Schwarze Löcher Christian Haderer

2 2

3 KAPITEL 1 GRUNDLAGEN DER ALLGEMEINEN RELATIVITÄTSTHEORIE Die allgemeine Relativitätstheorie (kurz ART) ist immer noch die fundamentale Theorie von Raum, Zeit und Materie. Die ihr zugrundeliegenden Feldgleichungen, die Einsteingleichungen, stellen einen Zusammenhang her zwischen der Krümmung der Raumzeit und der Materieverteilung im Universum. Mathematisch wird die Allgemeine Relativitätstheorie im Rahmen der abstrakten Dierentialgeometrie formuliert, wobei hier eine Raumzeit selbst als vierdimensionale orientierte und zeitorientierte Lorentz-Mannigfaltigkeit aufgefasst wird. Aus Zeitmangel können wir hier den eigentlich notwendigen mathematischen Hintergrund nicht entwickeln, wir beginnen daher mit einer sehr anschaulichen Denition der Raumzeit. Denition 1. Die Raumzeit (das Universum) ist die Menge aller Ereignisse (t, x). Remark 2. Gravitation wird in der Allgemeinen Relativitätstheorie nicht als Kraftfeld (wie in der klassischen Physik) gedeutet, sondern ist ein Ausdruck der Krümmung der Raumzeit. Die Masse- bzw. Energieverteilung wird durch den so genannten Energie-Impuls-Tensor beschrieben. Fundamentalpostulat 3. Ist (M, g) eine Raumzeit, die Materie mit Energie- Impuls-Tensor T enthält, dann gilt wobei G der Einstein-Tensor ist. G = 8πT, Remark for Experts ;) 4. Mathematisch deniert man den Einstein-Tensor G einer Raumzeit als G := Ric 1 2 Sg, wobei wir mir Ric die ( 1 3) -Kontraktion des Riemannschen Krümmungstensorfeldes R bezeichnen und mit S die metrische Kontraktion ihres Ricci-Tensorfeldes 3

4 4KAPITEL 1. GRUNDLAGEN DER ALLGEMEINEN RELATIVITÄTSTHEORIE deuten. g ist das übliche Lorentzsche ( 0 2) -Tensorfeld, das in jedem Tangentialraum ein nicht degeneriertes und symmetrisches Skalarprodukt mit Zentralindex 1 in der Signator deniert.

5 KAPITEL 2 MATHEMATISCHER BACKGROUND Unser Ziel ist es nun die (Dierential)Geometrie Schwarzer Löcher zu untersuchen. Die Schwarzschild-Raumzeit ist dabei das primitivste relativistische Modell eines Universums, das nur einen einzigen Stern enthält und wurde 1916 von Karl Schwarzschild gefunden; kurz nachdem die Allgemeine Relativitätstheorie formuliert wurde. Während man die Schwarzschild-Metrik bequem aus einer Warped-Product-Konstruktion ableiten kann (einer Produktmannigfaltigkeitsdarstellung), begnügen wir uns hier lediglich mit ihrer Formulierung. Das Wichtige dabei ist, dass die Schwarzschildmetrik eine Lösung der obigen Einsteingleichungen ist, d.h. sie ist eine zulässige Deutung in der Allgemeinen Relativitätstheorie. Um die Metrik zu formulieren, brauchen wir den Begri der abstrakten Tensoren und der Tensorfelder. Dazu die folgende Denition 5. Ein ( r s) -Tensor ist eine multilineare Abbildung g((t, x)) : T (t,x) M... T (t,x) M T (t,x) M... T (t,x) M R, wobei wir mit T (t,x) M den Tangentialraum am Ereignis (t, x) meinen und das kartesische Produkt r-mal über den Dualraum des Tangentialraums und s-mal über T (t,x) M selbst geht. Denition 6. Ein ( r s) -Tensorfeld ordnet nun jedem Ereignis (t, x) einen ( r s) - Tensor zu, ist also eine Abbildung g : (t, x) g((t, x)). Zur Denition des "Linienelements"brauchen wir noch den Begri der Tensorierung zweier Tensoren bzw. derer Tensorfelder, dieser ist aber sehr einfach (nämlich punktal) deniert. Denition 7. Sind g 1 ((t, x)) und g 2 ((t, x)) zwei Tensoren der Stufe ( r 1 s 1 ) bzw. 5

6 6 KAPITEL 2. MATHEMATISCHER BACKGROUND ( r2 s 2 ), dann ist ihr Tensorprodukt deniert als g 1 ((t, x)) g 2 ((t, x))(β 1,..., β r1, γ 1,..., γ r2, f 1,..., f s1, g 1,..., g s2 ) := g 1 ((t, x))(β 1,..., β r1, f 1,..., f s1 )g 2 ((t, x))(γ 1,..., γ r2, g 1,..., g s2 ) So weit, so unanschaulich! Unsere Metrik deniert sich jetzt allerdings sehr einfach, nämlich wenn wir in der obigen Denition des Tensorfeldes r = 0 und s = 2 setzen und verlangen, dass der in jedem Punkt angeheftete Tensor eine symmetrische und nicht ausgeartete Bilinearform ist. Die Geometrie reduziert sich hier also auf eine einfache Konstruktion in der Linearen Algebra. Fassen wir die Zeit t und den Radiusvektor r als (glatte) Funktionen auf und ordnen ihnen eine Ableitung zu (das kovariante Dierential), so schreibt sich die Schwarzschildmetrik als folgende Gleichung g = (1 2GM c 2 r )dt2 + dr2 1 2GM c 2 r + r 2 (dθ 2 + sin 2 θdφ 2 ), wobei dt 2 := dt dt, dr 2 := dr dr, dθ 2 := dθ dθ und dφ 2 := dφ dφ ist. Das ist die Schwarzschildmetrik. Im Folgenden setzen wir G = c = 1. Sehr häug (und wir werden uns auch daran halten) ndet sich in der Literatur die Abkürzung dω 2 2 := dθ 2 + sin 2 θdφ 2, die Metrik schreibt sich also als g = (1 2M r )dt2 + dr2 1 2M r + r 2 dω 2 2.

7 KAPITEL 3 SCHWARZSCHILDGEOMETRY IN A NUTSHELL Remark 8. Wir betrachten jetzt die Schwarzschildmetrik mit r := r 0, θ := θ 0 und φ := φ 0, d.h. nur die Zeit t lassen wir variabel. Die Ableitungen dr, dθ und dφ verschwinden daher in unserer Metrik und es bleibt der Ausdruck Hier können nun zwei Fälle eintreten. (ZA) Wir setzen r > 2M und erhalten g = (1 2M r )dt2. (1 2M r )dt2 < 0, d.h. unsere Metrik wird zeitartig (ZA). (RA) Wir setzen r < 2M und erhalten (1 2M r )dt2 > 0, d.h. unsere Metrik wird raumartig (RA). Die Fläche r := r 0, θ := θ 0, φ := φ 0 und r = 2M heisst Horizont (oder Schwarzschildhorizont). Wenn wir uns die Schwarzschildmetrik noch einmal ansehen, stossen wir auf ein mathematisches Problem, wenn 1 2M r = 0 wird. In diesem Fall wird der Ableitungsterm mit dt 2 verschwinden und der Ableitungsterm mit dr 2 divergieren. An diesem Punkt besitzt die Metrik oensichtlich eine Singularität, aber keine geometrische, sondern eine Koordinatensingularität, d.h. eine undenierte Stelle, die nur durch eine schlechte Wahl der Koordinaten hervorgerufen wird. Um dieses Problem zu umgehen schreibt man die Metrik ein wenig um. Eine sehr akzeptable Lösung dafür ist die Kruskallösung. Formal schreibt sich unsere Metrik jetzt als g = 32M 3 e r 2M dudv + r 2 dω 2 r 2. 7

8 8 KAPITEL 3. SCHWARZSCHILDGEOMETRY IN A NUTSHELL Dabei sind die neuen (Kruskal)Koordinaten U und V jetzt gegeben durch und U := ( r 2M 1) 1 2 e r 4M e t 4M V := ( r 2M 1) 1 2 e r 4M e t 4M.

9 KAPITEL 4 PENROSE-DIAGRAMME Penrose-Diagramme (Carter-Penrose-Diagramme) sind unerlässliche Werkzeuge, um in der Allgemeinen Relativitätstheorie die Struktur einer Raumzeit im Unendlichen, insbesondere ihre kausale Struktur, zu untersuchen. Dabei dient eine spezielle mathematische Operation, die konforme Transformation, dazu, um sich eine konforme Metrik aus der zu untersuchenden Raumzeit zu beschaen. Die Eigenschaften der Metriken sind aufgrund der Konformität übertragbar. Das Penrose-Diagramm ist ein Raumzeit-Diagramm der konform kompaktizierten Raumzeit. Kompaktizierung bedeutet in diesem Zusammenhang, dass eine unendlich ausgedehnte, physikalische Raumzeit auf eine 'unphysikalische' Raumzeit in ein endliches Gebiet transformiert wird. Bei der Transformation bildet man vereinfacht gesagt unendliche Intervalle auf endliche Intervalle ab. Wir beginnen damit das Penrose-Diagramm für die Minkowski-Raumzeit, also die ache Raumzeit aufzustellen. Die Nomenklatur in Penrose-Diagrammen ordnet bestimmten Punkten und Flächen im Diagramm ein Symbol zu. Sie sind assoziiert mit unterschiedlichen Typen von Unendlichkeiten (VZU) Die vergangene zeitartige Unendlichkeit ist ein Gebiet, wo die Zeitkoordinate gegen negativ unendlich geht, während die Raumkoordinate endlich bleibt. Hier beginnen zeitartige Geodäten. In der Symbolik wird dies mit einem grossen oder kleinen Buchstaben i mit Index gekennzeichnet. (ZZU) Die zukünftige zeitartige Unendlichkeit ist ein Gebiet, wo die Zeitkoordinate gegen positiv unendlich geht, während die Raumkoordinate endlich bleibt. Hier enden zeitartige Geodäten. In der Symbolik wird dies mit einem grossen oder kleinen Buchstaben i mit Index + gekennzeichnet. (RU) Die raumartige Unendlichkeit ist ein Gebiet, wo die Raumkoordinate gegen positiv unendlich geht, während die Zeitkoordinate endlich bleibt. Bis hier erstrecken sich raumartige Flächen. In der Symbolik wird dies mit einem grossen oder kleinen Buchstaben i mit Index 0 gekennzeichnet. 9

10 10 KAPITEL 4. PENROSE-DIAGRAMME

11 KAPITEL 5 LITERATUR (i) Samir D. Mathur - The black hole geometry, (ii) Barrett O'Neill - Semi Riemannian geometry (with applications to general relativity), (iii) Stephen Hawking & George Ellis - The large scale structure of space-time. 11

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung Allgemeine Relativitätstheorie Schwarzschildlösung und Anwendung Previously, on... Letztes Mal: Einsteingleichung und die Geodätengleichung Wir werden die Schwarzschild-Lösung der Einsteingleichung im

Mehr

Penrose-Diagramme. Seminararbeit - Gekrümmter Raum und gedehnte Zeit. Aris Stefanov aus Regensburg

Penrose-Diagramme. Seminararbeit - Gekrümmter Raum und gedehnte Zeit. Aris Stefanov aus Regensburg Penrose-Diagramme Seminararbeit - Gekrümmter Raum und gedehnte Zeit Aris Stefanov aus Regensburg unter Anleitung von Prof. em. Dr. Wolfgang Gebhardt und Prof. Dr. Gunnar Bali 18. November 2015 Inhaltsverzeichnis

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen

Mehr

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^ Inhaltsverzeichnis Vorwort Liste der verw endeten Sym bole V X V 1 N ew ton sche Mechanik 1 1.1 Die Grundgleichungen der Newton schen Mechanik... 1 1.1.1 Gravitationspotential und K raft... 1 1.1.2 Bewegungsgleichung

Mehr

Das Singularitätentheorem von Hawking Teil 2

Das Singularitätentheorem von Hawking Teil 2 Das Singularitätentheorem von Hawking Teil Jakob Hedicke 0.06.06 In diesem Vortrag werden wir den Beweis des Singularitätentheorems von Stephen Hawking vervollständigen. Im letzten Vortrag wurde bereits

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 1

Gravitation und Krümmung der Raum-Zeit - Teil 1 Gravitation und Krümmung der Raum-Zeit - Teil 1 Gauß hat gezeigt, daß es Möglichkeiten gibt, die Krümmung von Flächen durch inhärente Messungen auf der Fläche selbst zu bestimmen Gauß sches Krümmungsmaß

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Kontrollfragen Allgemeine Relativitätstheorie Stephan Mertens Wintersemester 2009 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Warum kann das Newton sche Gravitationsgesetz

Mehr

Allgemeine Relativitätstheorie, was ist das?

Allgemeine Relativitätstheorie, was ist das? , was ist das? 1905 stellte Albert Einstein die Spezielle Relativitätstheorie auf Beim Versuch die Gravitation im Rahmen der Speziellen Relativitätstheorie zu beschreiben stieß er allerdings schnell auf

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

Simulation zur Periheldrehung

Simulation zur Periheldrehung Simulation zur Periheldrehung Sebastian Hähnel 30.03.2015 Inhaltsverzeichnis 1 Lösung der Einstein-Gleichung 1 2 Lösung der Bewegungsgleichungen 2 3 Dimensionslose Gleichung 4 4 Einige Beispiele 4 1 Lösung

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

Eine Einführung. Felix Fleischmann. 16. Mai 2011

Eine Einführung. Felix Fleischmann. 16. Mai 2011 Eine Einführung Felix Fleischmann Erlangen Center for Astroparticle Physics 16. Mai 2011 F. Fleischmann Inhaltsverzeichnis 1 Historisches 2 ART als klassische Feldtheorie Lösung der Einstein-Gleichungen:

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine anschauliche Einführung in die Grundlagen Wegelemente euklidischer Raum: Minkowski-Raum: y c t ds dy ds 2 =dx 2 dy 2 ds c d t ds 2 =c 2 dt 2 dx 2 dx x invariant bei

Mehr

Einführung in die Relativitätstheorie

Einführung in die Relativitätstheorie Ray d'lnverno Einführung in die Relativitätstheorie Zweite, durchgesehene und korrigierte Auflage Deutsche Ausgabe herausgegeben von Gerhard Schäfer WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis

Mehr

Schwarzschild-Metrik. Stefan Wittmann

Schwarzschild-Metrik. Stefan Wittmann Schwarzschild-Metrik Stefan Wittmann 28.10.2015 Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen 3 2.1 Spezielle Relativitätstheorie......................... 3 2.2 Äquivalenzprinzip...............................

Mehr

(Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik

(Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik (Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik Patrick Mangat Referat zur Vorlesung Kosmologie 16. November 2011 Idee und Eigenschaften der de Sitter Metrik Die Geburt der kosmologischen

Mehr

Tarnkappen und mathematische Räume

Tarnkappen und mathematische Räume Tarnkappen und mathematische Räume Stefan Müller-Stach http://hodge.mathematik.uni-mainz.de/ stefan/biblio.html Ein Raum Mathematische Räume Die moderne Mathematik bietet einen universellen Baukasten zur

Mehr

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg Geometrie der Maxwell-Theorie Max Camenzind Senioren Uni Würzburg Die Themen Die Geometrisierung der Speziellen Relativität durch Hermann Minkowski im Jahre 1908. Die kausale Struktur der RaumZeit. Die

Mehr

Gravitation und Raumzeitkrümmung

Gravitation und Raumzeitkrümmung Roland Steinbauer Fakultät für Mathematik, Universität Wien ÖAW, Gravitation 2015, Oktober 2015 1 / 36 Die Einsteingleichungen (1) November 1915 Albert Einstein, Zur allgemeinen Relativitätstheorie Die

Mehr

Schwarze Löcher. Sackgassen in der Raumzeit. Franz Embacher. Fakultät für Physik der Universität Wien

Schwarze Löcher. Sackgassen in der Raumzeit. Franz Embacher. Fakultät für Physik der Universität Wien Schwarze Löcher Sackgassen in der Raumzeit Franz Embacher Fakultät für Physik der Universität Wien Vortrag im Rahmen von physics:science@school 13/14 Wien, BG & GRG 3, Boerhaavegasse 15 18. Dezember 2013

Mehr

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt Kosmologisches Standardmodell Übersicht Einführung und kosmologisches Prinzip ART und Metriken Robertson-Walker-Metrik und

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Hubert Goenner. Einführung in. die spezielle. und allgemeine Relativitätstheorie

Hubert Goenner. Einführung in. die spezielle. und allgemeine Relativitätstheorie Hubert Goenner Einführung in die spezielle und allgemeine Relativitätstheorie 0 Einleitung 1 0.1 Spezielle Relativitätstheorie 1 0.2 Allgemeine Relativitätstheorie 2 Teil I 1 Relativitätsprinzip und Lorentztransformation

Mehr

9 Der Riemann sche Krümmungstensor

9 Der Riemann sche Krümmungstensor 9 Der Riemann sche Krümmungstensor Bevor wir weitere physikalische Ergebnisse der ART wie Gravitationswellen oder die Verwirbelung der Raumzeit durch rotierende Massen diskutieren, wollen wir uns in den

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 2

Gravitation und Krümmung der Raum-Zeit - Teil 2 Gravitation und Krümmung der Raum-Zeit - Teil 2 Einsteinsche Gravitationsfeldgleichungen Krümmung der Raumzeit = universelle Konstante x Energie- und Impulsdichte Die Raumzeit wirkt auf die Masse (Energie),

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Grundideen der allgemeinen Relativitätstheorie

Grundideen der allgemeinen Relativitätstheorie Grundideen der allgemeinen Relativitätstheorie David Moch La Villa 2006 Inhalt Newtons Physik und ihr Versagen Einsteins Lösung von Raum und Zeit: Die spezielle Relativitätstheorie Minkowskis Vereinigung

Mehr

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016 Kausalität Seminar zur Lorentz Geometrie Jonas Haferkamp 9. Juni 2016 1 Einleitung Kausalität ist das Prinzip von Ursache und Wirkung. Um dieses Konzept zu formalisieren, ist offenbar ein sinnvoller Zeitbegriff

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

Geometrische Methoden zur Analyse dynamischer Systeme

Geometrische Methoden zur Analyse dynamischer Systeme Geometrische Methoden zur Analyse dynamischer Systeme Markus Schöberl markus.schoeberl@jku.at Institut für Regelungstechnik und Prozessautomatisierung Johannes Kepler Universität Linz KV Ausgewählte Kapitel

Mehr

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag Krümmung in der Mathematik und Physik Relativitätstheorie im Alltag Justus-Liebig-Universität Giessen Dr. Frank Morherr Was ist Krümmung? Gerade soll Krümmung Null haben. Prototyp Kreis - großer Radius,

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 8 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Quiz: Wo und was in aller Welt ist das? Themen Sternentstehung Sternentwicklung Das

Mehr

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren.

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - deutsche Wikipedia - Spacetime and

Mehr

Hauptseminar: Kosmologie

Hauptseminar: Kosmologie Hauptseminar: Kosmologie Metrik des homogenen und isotropen Raumes Steffen Keßler Universität Stuttgart Hauptseminar: Kosmologie p. 1/41 Das kosmologische Prinzip Kosmologisches Prinzip: Hauptseminar:

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie (ART) c 1 /4h by sphere, 2014-07-17 powered by LAT E X was soll das alles überhaupt? was soll das alles überhaupt? ˆ damals : Newton-Mechanik was soll das alles überhaupt?

Mehr

Kapitel 4. Lorentz-Tensoren

Kapitel 4. Lorentz-Tensoren Kapitel 4 Lorentz-Tensoren Nach Möglichkeit versucht man, die Gesetze der Physik so aufzustellen, dass sie in allen Inertialsystemen die gleiche Form haben, also forminvariant unter Translationen und Rotationen

Mehr

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat Allgemeine Relativitätstheorie Ausarbeitung Von Jan Kaprolat Grundlegende Motivation zur ART Die Allgemeine Relativitätstheorie (ART) ist die Erweiterung der speziellen Relativitätstheorie (SRT). Sie bezieht

Mehr

Die Einsteinsche Feldgleichung. Seminararbeit

Die Einsteinsche Feldgleichung. Seminararbeit Die Einsteinsche Feldgleichung Seminararbeit David Eiber Oktober 2015 Inhaltsverzeichnis 1 Probleme der Verallgemeinerung des Newtonschen Potentials 3 2 Einsteinsche Feldgleichung 4 2.1 Einsteins Annahmen..............................

Mehr

Standardmodell der Kosmologie

Standardmodell der Kosmologie ! "# $! "# # % & Standardmodell der Kosmologie Urknall und Entwicklung des Universums Inhalt Einleitung Experimentelle Hinweise auf einen Urknall Rotverschiebung der Galaxien kosmische Hintergrundstrahlung

Mehr

Zu den Atommassen. Dr. sc. Petra Schopf. 15. Dezember 2015

Zu den Atommassen. Dr. sc. Petra Schopf. 15. Dezember 2015 Zu den Atommassen Dr. sc. Petra Schopf 15. Dezember 2015 1 1 Einleitung In [1] hatten wir ein auf der Schwarzschild-Raumzeit beruhendes Atommodell entwickelt. In dieser kurzen Notiz entwickeln wir ein

Mehr

Seminar Frühes Universum Wintersemester 2003/04. Markus Kromer

Seminar Frühes Universum Wintersemester 2003/04. Markus Kromer Seminar Frühes Universum Wintersemester 2003/04 Weltmodelle I: Friedmann-Modell des Universums Markus Kromer Friedmann-Modell des Universums - Einführung 2 Einführung Hubble-Gesetz Grundgedanken der ART

Mehr

Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - [1] deutsche, englische Wikipedia (Literaturverweise hierauf gekennzeichnet mit [1, de]; [1, en]) - [2] Spacetime and

Mehr

Das Universum als RaumZeit

Das Universum als RaumZeit Das Universum als RaumZeit Max Camenzind Würzburg - 2017 Das ist eine der ältesten Aufnahmen von Andromeda "nebula, photographiert am Yerkes Observatorium um 1900. Für unsere modernen Augen ist dies wirklich

Mehr

Allgemeine Relativitätstheorie und Quantentheorie

Allgemeine Relativitätstheorie und Quantentheorie Allgemeine Relativitätstheorie und Quantentheorie Der Zusammenhang zwischen Gravitation und den Rest der Grundkräfte in komplexen Raum von 19. Januar 2012 bis? Fachbereich theoretische Physik/Mathematik

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Vom Spannungstensor zum Impulsstrom

Vom Spannungstensor zum Impulsstrom Vom Spannungstensor zum Impulsstrom Physikalische Grundpraktika FU-Berlin Quelle: Skript zur Mechanik, Herrmann Welche Größe wird durch den Pfeil symbolisiert? Wie hängt die Größe (formal) mit anderen

Mehr

Gravitationskollaps einer Staubwolke

Gravitationskollaps einer Staubwolke Gravitationskollaps einer Staubwolke Hendrik van Hees 27. Mai 215 1 Einleitung und Konventionen In dieser Vorlesung betrachten wir die Frage, wie der Gravitationskollaps einer radialsymmetrischen Staubwolke

Mehr

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................

Mehr

Die Einsteinsche Feldgleichung

Die Einsteinsche Feldgleichung Die Einsteinsche Feldgleichung Volker Perlick ZARM, Univ. Bremen, Germany Eisenbahnfriedhof Uyuni, Bolivien Heraeus-Seminar 100 Jahre Allgemeine Relativitätstheorie Potsdam, 11 März 2015 Newton Einstein

Mehr

Grundlagen der Differentialgeometrie und Einführung in die Allgemeine Relativitätstheorie

Grundlagen der Differentialgeometrie und Einführung in die Allgemeine Relativitätstheorie Grundlagen der Differentialgeometrie und Einführung in die 4. Theoretiker-Workshop der jungen Deutschen Physikalischen Gesellschaft auf dem Dürerhof in Waldkappel-Gehau Vortrag am 05. Januar 2013 Definition

Mehr

Relativität und Realität

Relativität und Realität Max Drömmer Relativität und Realität Zur Physik und Philosophie der allgemeinen und der speziellen Relativitätstheorie mentis PADERBORN Inhaltsverzeichnis Vorwort... 15 Einleitung... 17 Kapitel 1 Allgemeine

Mehr

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden 4.12.2010 Das Leben des Albert E. - Relativitätstheorie Das Leben der Sterne Schwarze Löcher Wurmlöcher

Mehr

Tensoren auf einem Vektorraum

Tensoren auf einem Vektorraum ANHANG A Tensoren auf einem Vektorraum In diesem Anhang werden einige Definitionen und Ergebnisse betreffend Tensoren ohne Anspruch auf mathematische Strenge zusammengestellt. Das Ziel ist, den modernen

Mehr

Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen

Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen Workshop MNU-Tagung Leipzig 2016 Technische Universität Dresden Dr. rer. nat. Frank Morherr Albert Einstein und das Universum

Mehr

Schwarze Löcher I. Markus Pössel & Björn Malte Schäfer. Vom Schwarzen Loch bis zum Urknall: Einsteins Astrophysik für Nicht-Physiker

Schwarze Löcher I. Markus Pössel & Björn Malte Schäfer. Vom Schwarzen Loch bis zum Urknall: Einsteins Astrophysik für Nicht-Physiker Vom Schwarzen Loch bis zum Urknall: Einsteins Astrophysik für Nicht-Physiker Haus der Astronomie/Institut für Theoretische Astrophysik 17.12.2015 Inhalt 1 Prolog I: Fluchtgeschwindigkeit 2 Prolog II: Achilles

Mehr

Mathematisierung der Gravitation: Die Schwarzschildlösung der Einsteingleichungen als Grundmodell vieler Phänomene der Gravitation

Mathematisierung der Gravitation: Die Schwarzschildlösung der Einsteingleichungen als Grundmodell vieler Phänomene der Gravitation Gerhard Huisken Mathematisierung der Gravitation: Die Schwarzschildlösung der Einsteingleichungen als Grundmodell vieler Phänomene der Gravitation Als Beispiel für ein mathematisches Modell in der theoretischen

Mehr

Modelle des Universums. Max Camenzind Akademie HD Januar 2015

Modelle des Universums. Max Camenzind Akademie HD Januar 2015 Modelle des Universums Max Camenzind Akademie HD Januar 2015 Unsere Themen Weltmodelle: Einsteins statisches Universum von 1917. das desitter Modell die Friedmann Modelle 1922/1924. das Lemaître Universum

Mehr

Was ist Gravitation?

Was ist Gravitation? Was ist Gravitation? Über die Einheit fundamentaler Wechselwirkungen zur Natur schwarzer Löcher Hans Peter Nilles Physikalisches Institut, Universität Bonn Was ist Gravitation, UniClub Bonn, März. 2011

Mehr

Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung

Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung Anja Teuber Münster, 29. Oktober 2008 Inhaltsverzeichnis 1 Einleitung 2 2 Allgemeine Relativitätstheorie und die Einstein schen Feldgleichungen

Mehr

Relativistische Energie

Relativistische Energie Relativistische Energie Nachdem wir den Begriff des Impulses eines Teilchens so erweitert haben, dass auch in relativistischen Systemen ohne äußere Krafteinwirkung die Impulserhaltung gewährleistet ist,

Mehr

Positive und negative Krümmungen im Gaußschen Dreieck

Positive und negative Krümmungen im Gaußschen Dreieck Positive und negative Krümmungen im Gaußschen Dreieck Peter H. Richter Herrn Prof. Dr. Siegfried Großmann zum 70. Geburtstag gewidmet Bremen, 28. Februar 2000 überarbeitete Version: 20. Mai 2000 Zusammenfassung

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 11 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der Woche Fast Radio Burst zum ersten (?) Mal lokalisiert:

Mehr

Mathematik und Astrophysik

Mathematik und Astrophysik Mathematik und Astrophysik Ralf Bender Sternwarte der Ludwig-Maximilians-Universität Max-Planck-Institut für extraterrestrische Physik 1 Die Welt ist alles, was der Fall ist. Wittgenstein Die physikalische

Mehr

Das Konzept der Raumzeit-Krümmung

Das Konzept der Raumzeit-Krümmung Das Konzept der Raumzeit-Krümmung Franz Embacher Fakultät für Physik der Universität Wien Vortrag auf der Jahrestagung der Wiener Arbeitsgemeinschaft für Astronomie Wien, 14. November 2015 Das Konzept

Mehr

Kosmologie I. Thorben Kröger. Juni 2008

Kosmologie I. Thorben Kröger. Juni 2008 Kosmologie I Thorben Kröger Juni 2008 1 / 48 1 Einführung 2 Robertson-Walker-Metrik 3 Friedmann Gleichungen 4 Einfache Universen 2 / 48 1 Einführung 2 Robertson-Walker-Metrik 3 Friedmann Gleichungen 4

Mehr

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden 6.12.2014 Das Leben des Albert E. - Relativitätstheorie Das Leben der Sterne Schwarze Löcher Wurmlöcher

Mehr

Schwarze Löcher. Reinhard Meinel Friedrich-Schiller-Universität Jena

Schwarze Löcher. Reinhard Meinel Friedrich-Schiller-Universität Jena Schwarze Löcher Reinhard Meinel Friedrich-Schiller-Universität Jena 1. Einleitung 2. Die Schwarzschild-Lösung 3. Der Ereignishorizont 4. Radiale Null-Geodäten 5. Kollaps zum Schwarzen Loch 6. Rotierende

Mehr

Ein relativistisches Molekül-Modell

Ein relativistisches Molekül-Modell Ein relativistisches Molekül-Modell Dr. sc. Petra Schopf 25. Juni 2015 1 In Andenken an Dr. Siegfried Greschner 2 1 Einleitung In [1] wurde mit Hilfe der Schwarzschild-Raumzeit ein Atommodell entwickelt.

Mehr

Die Schwarzschildmetrik

Die Schwarzschildmetrik Die Schwarzschildmetrik und andere Lösungen der Einstein'schen Feldgleichungen Kay-Michael Voit Inhalte Gekrümmte Räume Krümmung Einbettung in Raum höherer Dimension Riemann'sche Geometrie Die Schwarzschildmetrik

Mehr

Hyperbolische Geometrie

Hyperbolische Geometrie Hyperbolische Geometrie von Sebastian Kalinka und Alexander Thomaso nach dem Buch Elementare Differentialgeometrie von Christian Bär Wiederholung Für κ R setzt man ˆM κ := {(x, y, z) R 3 x 2 + κ(y 2 +

Mehr

3. Vorlesung Wintersemester

3. Vorlesung Wintersemester 3. Vorlesung Wintersemester 1 Parameterdarstellung von Kurven Wir haben gesehen, dass man die Bewegung von Punktteilchen durch einen zeitabhängigen Ortsvektor darstellen kann. Genauso kann man aber auch

Mehr

Robertson-Walker-Metrik und Friedmann-Gleichung

Robertson-Walker-Metrik und Friedmann-Gleichung Robertson-Walker-Metrik und Friedmann-Gleichung Saskia Schmiemann Ausarbeitung zum Seminarvortrag vom 06.11.2013 1 Einleitung Im vorherigen Vortrag wurde die historische Entwicklung der Erkenntnisse des

Mehr

Raumzeit für Alle! Raum, Zeit, Raumzeit. Spezielle und Allgemeine Relativitätstheorie. mit einfachen mathematischen Hilfsmitteln nachvollziehen

Raumzeit für Alle! Raum, Zeit, Raumzeit. Spezielle und Allgemeine Relativitätstheorie. mit einfachen mathematischen Hilfsmitteln nachvollziehen Raumzeit für Alle! Raum, Zeit, Raumzeit Spezielle und Allgemeine Relativitätstheorie mit einfachen mathematischen Hilfsmitteln nachvollziehen P. Schneider, Herborn Mai 2015, Addendum Oktober 2017, Interne

Mehr

Holonomiegruppen Riemannscher Mannigfaltigkeiten

Holonomiegruppen Riemannscher Mannigfaltigkeiten Holonomiegruppen Riemannscher Mannigfaltigkeiten Skript zum Seminarthema Holonomiegruppen von Überlagerungen und Riemannschen Produkten Sommersemester 2009 an der Humbol Universität zu Berlin. Daniel Schliebner

Mehr

Symplektische Geometrie

Symplektische Geometrie 31. August 2005 Symplektische Vektorrume Wiederholung: Eine (schwach) symplektische Form auf einem Vektorraum V ist eine Bilinearform die schiefsymmetrisch ist, d.h. ω : V V R ω(w.v) = ω(v, w) für alle

Mehr

Krümmung in der Mathematik und Physik

Krümmung in der Mathematik und Physik de.wikipedia.org/wiki/nichteuklidische_geometrie www.scilogs.de/die-sankore-schriften/files/geometriendesunivefrsums.jpg Krümmung in der Mathematik und Physik Relativitätstheorie im Alltag Wolfram Mathworld

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

DIE EINSTEINSCHEN FELDGLEICHUNGEN

DIE EINSTEINSCHEN FELDGLEICHUNGEN DIE EINSTEINSCHEN FELDGLEICHUNGEN 15.01.03 0. VORBEMERKUNGEN 0.1. ALLGEMEINE VORBEMERKUNGEN 0.2. SPEZIELLE VORBEMERKUNGEN 0.1.1. Thematische Eindrücke 0.2.1. Die Problematik der Didaktik - Einsteinsche

Mehr

Allgemeine Relativitätstheorie und Quantenphysik

Allgemeine Relativitätstheorie und Quantenphysik Allgemeine Relativitätstheorie und Quantenphysik Franz Embacher Fakultät für Physik der Universität Wien Vortrag am Bundes-Oberstufenrealgymnasium Wien 3, 26. April 2016 Vortrag an der Österreichischen

Mehr

Das Standardmodell der Kosmologie Die Friedmann-Gleichung

Das Standardmodell der Kosmologie Die Friedmann-Gleichung Seminar: Theorie der Teilchen und Felder Das Standardmodell der Kosmologie Die Friedmann-Gleichung Bastian Brandt 1 1 bastianbrandt@uni-muenster.de Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Einleitung

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Klassische Elektrodynamik Pascal Peter 13.01.09 Pascal Peter () Klassische Elektrodynamik 13.01.09 1 / 35 Gliederung 1 Klassische Elektrodynamik Einführung Die maxwellschen Gleichungen Vektornotation 2

Mehr

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3 Inhaltsverzeichnis Teil I Grundlagen 1 Einleitung 3 1.1 Was wir nicht herleiten können... 3 1.2 Überblick über das Buch... 5 1.3 Elementarteilchen und fundamentale Wechselwirkungen 8 2 Die Spezielle Relativitätstheorie

Mehr

Theorie der Gravitationswellen

Theorie der Gravitationswellen 28. Januar 2008 1 Historisches 2 Theoretische Grundlagen 3 Die Feldgleichungen 4 Eigenschaften von Gravitationswellen 5 Ausblick Historisches Historisches 1905 H. Poincaré : Gravitationswechselwirkung

Mehr

Stringtheorie: Auf der Suche nach der Weltformel

Stringtheorie: Auf der Suche nach der Weltformel Stringtheorie: Auf der Suche nach der Weltformel Jan Louis Universität Hamburg Sylt, Juli 2005 2 Physik des 20. Jahrhunderts Quantentheorie (QT) Planck, Bohr, Heisenberg,... Physik von kleinen Skalen (Mikrokosmos)

Mehr

Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich)

Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich) Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich) Gerd Termathe, Dipl.-Ing. gerd@termathe.net c Dezember 206 - Für Tobias - Abstract Es wird gezeigt, dass der Lorentzfaktor, Bestandteil

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10. 10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Wiederholung Sternentwicklung. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1

Wiederholung Sternentwicklung. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Wiederholung Sternentwicklung Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 stellare schwarze Löcher (Kollapsare) Historisches stellare schwarze Löcher vs. supermassive schwarze Löcher Eigenschaften

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Wie Einstein seine Feldgleichungen fand

Wie Einstein seine Feldgleichungen fand Wie Einstein seine Feldgleichungen fand Johannes Neidhart 5. November 2009 Inhaltsverzeichnis 1 Einleitung 1 2 Die ersten Schritte 2 3 Die Entwurf Arbeit 2 4 Die Abkehr von der allgemeinen Kovarianz 4

Mehr

Inhaltsverzeichnis. Vorwort. Einführung in die Thematik

Inhaltsverzeichnis. Vorwort. Einführung in die Thematik Inhaltsverzeichnis Vorwort Einführung in die Thematik i iii 1. Theorie der Tensoren im n-dimensionalen Raum 1 1.1. TensorenalsgeometrischeObjekte... 1 1.1.1. n-dimensionalerraum... 1 1.1.2. EigenschaftenvonTensoren...

Mehr

Grundlagen der Allgemeinen Relativitätstheorie

Grundlagen der Allgemeinen Relativitätstheorie Grundlagen der Allgemeinen Relativitätstheorie Matthias Hagner 19. Mai 2003 Zusammenfassung Dieser Vortrag soll eine Einführen in die Grundlagen der Allgemeinen Relativitätstheorie geben. Dabei sollen

Mehr

Die Einsteinschen Feldgleichungen

Die Einsteinschen Feldgleichungen Die Einsteinschen Feldgleichungen 1 Forderungen an die Feldgleichungen 2 2 Forderungen an die Feldgleichungen Es ist nicht möglich die Einsteinschen Feldgleichungen strikt aus bekannten Tatsachen abzuleiten.

Mehr