72 Orthonormalbasen und Konvergenz im quadratischen Mittel

Größe: px
Ab Seite anzeigen:

Download "72 Orthonormalbasen und Konvergenz im quadratischen Mittel"

Transkript

1 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in Verbindung mit den zugrunde liegenden elementaren Resultaten über Hilberträume. Letztere sind auch für die mathematischen Grundlagen der Quantenmechanik wichtig (vgl. HM 4). Endlichdimensionale Hilberträume wurden bereits in Abschnitt 5 untersucht, lineare Operatoren auf solchen Räumen in Abschnitt Räume quadratintegrierbarer Funktionen. a) Für eine meßbare Menge A M(R n ) sei L 2 (A) := {f M(A,C) A f(x) 2 dx < } () der Raum der quadratintegrierbaren Funktionen auf A. b) Wegen 2 fg(x) f(x) 2 + g(x) 2 wird durch f,g := Af(x)g(x)dx (2) ein Halbskalarprodukt auf L 2 (A) definiert mit f,f = 0 f(x) = 0 fast überall. (3) c) Analog zu 56.5 erhält man durch Identifikation fast überall gleicher Funktionen den Raum L 2 (A) := L 2(A) / N(A), (4) auf dem (2) ein Skalarprodukt definiert. d) Im Zusammenhang mit Fourier-Reihen verwendet man auf L 2 [ π,π] an Stelle von (2) meist das Skalarprodukt f,g := π f(x)g(x)dx. (5) 72.2 Hilberträume. a) Es sei, ein Skalarprodukt auf einem Vektorraum E. Für x,y E gilt dann die binomische Formel x+y,x+y = x,x +2Re x,y + y,y. (6) b) Weiter hat man die Schwarzsche Ungleichung x,y 2 x,x y,y, x,y E. (7) c) Durch x := x,x (8) wird eine Norm auf E definiert. Ist E unter dieser Norm vollständig, so heißt E ein Hilbertraum. d) Die Räume L 2 (A) und L 2 (A) sind vollständig; L 2 (A) ist ein Hilbertraum.

2 302 XI. Fourier - Analysis 72.3 Orthonormalsysteme. Es sei E ein Hilbertraum und Z eine Indexmenge. a) Eine Menge von Vektoren {v k } E heißt Orthonormalsystem (ONS), falls v k,v l = δ kl für k,l Z gilt. b) Nach (7.5) sind die Funktionen {e ikx } ein ONS in L 2 [ π,π]. Die Skalarprodukte f,e ikx = f(k) = π f(x)e ikx dx (9) sind gerade die Fourier-Koeffizienten von f L 2 [ π,π]; daher werden auch für ein allgemeines ONS {v k } in E die Zahlen x(k) := x,v k Fourier-Koeffizienten von x E bezüglich {v k } genannt. c) Für ein endliches ONS {v k } in E und ξ k K gilt der Satz des Pythagoras ξ k v k 2 = ξ k 2. (0) Insbesondere ist ein ONS {v k } linear unabhängig. d) Für Vektoren x E ergibt sich aus (6) und (0) x x(k)v k 2 = x 2 Aus () ergibt sich sofort die x(k) 2. () 72.4 Satz (Besselsche Ungleichung). Es seien Z eine Indexmenge und {v k } ein ONS in E. Für jede endliche Teilmenge Z Z gilt dann x(k) 2 x 2, x E. (2) Wir untersuchen nun, motiviert durch konkrete Fourier-Reihen, durch Z indizierte abzählbare ONSe; statt dessen kann man auch andere abzählbare Indexmengen, insbesondere N oder N 0 betrachten Orthogonale Summen. Es sei {v k } ein ONS in einem Hilbertraum E. Für Zahlen ξ k K mit ξ k 2 < ist dann die aus paarweise orthogonalen Summanden bestehende Reihe ξ k v k in E konvergent; in der Tat bilden die Partialsummen eine Cauchy-Folge wegen n k m ξ k v k 2 = n k m ξ k 2. Wie bei absolut konvergenten skalaren Reihen (vgl. Theorem 28.7) ist hier die Konvergenz unbedingt, d. h. alle Umordnungen der Reihe konvergieren gegen die gleiche Summe. Eine solche orthogonale Summe ist daher über beliebige abzählbare Indexmengen definiert Theorem. Für ein ONS {v k } in einem Hilbertraum E sind äquivalent: (a) Für alle x E gilt die Fourier-Entwicklung x = x(k)v k = x,v k v k. (3)

3 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 303 (b) Für alle x E gilt die Parsevalsche Gleichung x 2 = (c) Der Raum [v k ] ist dicht in E. x(k) 2. (4) (d) Das ONS {v k } ist maximal, d.h. es gilt {v k } = {0}. Beweis. (a) (b) folgt sofort aus (), (a) (c) ist klar. (c) (d) : Für x {v k} gilt x,v = 0 für alle v [v k] und somit x = 0. (d) (a) :Fürx E setzenwirx := x(k)v k E. Dannist x x,v k = 0 für alle k Z und somit x x = Orthonormalbasen. Ein ONS {v k } in einem Hilbertraum E heißt Orthonormalbasis (ONB) von E, falls die Aussagen (a)-(d) aus Theorem 72.6 gelten Separable Räume. Essei E einnormierter Raum.EineMengeM E heißt separabel, wenn es eine in M dichte abzählbare Menge {x,x 2,x 3,...} gibt. TeilmengenseparablerRäumesindwiederseparabel(vgl.[K2],Satz4.0).DieRäumeL (A) und L 2 (A) sind für alle meßbaren Mengen A M(R n ) separabel (vgl. [K3], Satz 0.5) Satz. Ein Hilbertraum E ist genau dann separabel, wenn er eine abzählbare ONB besitzt. Beweis. : Es sei {x,x 2,x 3,...} eine in E dichte abzählbare Menge. Durch Weglassen geeigneter Vektoren erhält man eine Folge linear unabhängiger Vektoren, deren lineare Hülle in E dicht ist und daraus durch Gram-Schmidt-Orthonormalisierung (vgl. 5.0) eine ONB von E. : Für eine ONB {v k} von E ist die Menge { n ξ k v k n N, ξ k Q+iQ} k= n abzählbar und dicht in E. Nicht separable Hilberträume besitzen überabzählbare Orthonormalbasen. Allerdings sind alle in der Quantenmechanik auftretenden Hilberträume separabel, und dies gilt auch für die allermeisten in der Analysis vorkommenden Hilberträume. Nun können wir ähnlich wie in 5.9 orthogonale Projektionen auf beliebige abgeschlossene Unterräume konstruieren: 72.0 Theorem. Es seien E ein separabler Hilbertraum und F E ein abgeschlossener Unterraum. a) Zu x E gibt es genau einen Vektor Px F mit der Eigenschaft x Px F. Mit einer ONB {v k } von F ist diese gegeben durch Px := P F x := x(k)v k = x,v k v k, x E. (5)

4 304 XI. Fourier - Analysis b) Unter allen Vektoren y F wird der Abstand x y genau für y = Px minimal. Insbesondere gilt x Px = d F (x) x y für alle y F. (6) c) Die orthogonale Projektion P : E F, P(x) := Px, ist linear mit P = und P(x) = x für x F. Für x,y E gilt Px,y = Px,Py = x,py. (7) Man hat R(P) = F und N(P) = F sowie die direkte Zerlegung E = F F. (8) Beweis. a)nachsatz72.9besitzt F eineonb,undnach72.5istdiesummein(5) erklärt. Nun rechnet man x P F x,v l = 0 für l Z einfach nach. Ist auch y F mit x y F, so folgt P F x y F und auch P F x y = (P F x x)+(x y) F, also P F x y = 0. b) Für x E und y F gilt auch z := y P F x F. Mit dem Satz des Pythagoras folgt x y 2 = x P F x z 2 = x P F x 2 + z 2, (9) und dies ist genau für z 2 = 0 minimal. c) Offenbar ist P F : E F linear. Mit y = 0 in (9) ist z = P F x, und man erhält P F x x für alle x E. Wegen (5) gilt P F (x) = x für x F und P F x = 0 für x F. Formel (7) folgt aus Px,y Py = x Px,Py = 0, und (8) ergibt sich aus x = Px+(I P)x. Nun kommen wir auf konkrete Fourier-Reihen zurück: 72. Theorem. Die Funktionen {e ikx } bilden eine Orthonormalbasis des Hilbertraums L 2 [ π,π]. Für f L 2 [ π,π] konvergiert also die Fourier-Reihe im quadratischen Mittel gegen f, d.h. es gilt f n k= n f(k)e ikx 2 0 für n. (20) Man hat die Parsevalsche Gleichung f(k) 2 = f 2 2 = und für f,g L 2 [ π,π] gilt π f(x) 2 dx, (2) f(k)ĝ(k) = f,g = π f(x)g(x)dx. (22) Beweis. Die Dichtheit von [e ikx ] folgt aus dem Satz von Fejér 7.7a) und der Dichtheit von C (R) in L 2 [ π,π]. Formel (22) ergibt sich aus (2) mittels der Polarformel 4 f,g = f +g 2 f g 2 +i f +ig 2 i f ig 2. (23)

5 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Beispiele und Bemerkungen. a) Mit den Koeffizienten a k, b k der reellen Fourier-Entwicklung von f L 2 [ π,π] (vgl. (7.) (7.4)) gilt die Parsevalsche Gleichung in der Form a a k 2 + b k 2 = π π f(x) 2 dx. (24) b) Aus der Entwicklung π x = 2 die Eulersche Formel k 2 = π 0 sinkx k 72.3 Satz. Für f C (R) Cst (R) gilt für 0 < x < (vgl. (7.25)) ergibt sich ( ) π x 2 dx = 2 6. (25) f(k) < ; (26) insbesondere konvergiert die Fourier-Reihe von f gleichmäßig gegen f. Beweis. Partielle Integration liefert f(k) = ik f (k), (27) da sich die ausintegrierten Terme wegen der Periodizität wegheben. Aus der Schwarzschen Ungleichung im R 2n und der Besselschen Ungleichung folgt weiter n k = f(k) = n f n k (k) ( k = k = ) / 2 n ( k 2 k = f (k) 2 ) / 2 π 3 f Satz. Für f L 2 [ π,π] konvergiert die Fourier-Reihe auch in der L -Norm gegen f. Für π a < b π gilt b a f(x)dx = f(k) b a eikx dx. (28) Beweis. Für Funktionen h L 2 [ π,π] gilt nach der Schwarzschen Ungleichung b a h(x) dx π h(x) dx ( π h(x) 2 dx) / 2. (29) 72.5 Beispiel. a) Ersetzt man x durch x in (7.25)), so erhält man B (x) := x 2 = π Wegen Satz 72.4 ist f(x) := sin 2kπx k, 0 < x <. (30) cos 2kπx k 2 (0,), und es folgt f(x) = x 2 x+c. Wegen muß c = 6 0 f(x)dx = sein, und es folgt B 2 (x) := x 2 x+ 6 = k 2 0 cos2kπxdx = 0 eine Stammfunktion von 2x auf cos 2kπx k 2, 0 < x <. (3)

6 306 XI. Fourier - Analysis Da beide Seiten von (3) auf R stetige Funktionen definieren, gilt (3) sogar für x [0,]. Mit x = 0 erhält man wieder (25), und x = 2 liefert ( ) k+ k 2 = = π2 2. (32) b) Durchweitere Integrationvon (3)kannmanauch diesummen m N berechnen, vgl. dazu auch (74.9). k m fürgerade Eine Anwendung der Parsevalschen Gleichung und der Flächenformel (6.7) ist die Lösung des isoperimetrischen Problems nach A. Hurwitz: 72.6 Satz. Für Gebiete G G st (R 2 ) mitstückweiseglattem Rand in der Ebene ist λ(g) 4π L( G)2, (33) und Gleichheit gilt nur für Kreise. Beweis. Man kann annehmen, daß G nur aus einer Kurve besteht und daß L( G) = gilt; dann ist λ(g) π zu zeigen. Für die ausgezeichnete Parametrisierung γ = x+iy C st ([0,],C) von G gilt γ (0) = 0 sowie γ (s) = für s [0, ]. Aus der Flächenformel (6.7), der Parsevalschen Gleichung (22) und Formel (27) ergibt sich λ(g) = 2 0 (x(s)y (s) y(s)x (s))ds = Im 2 0 γ (s)γ(s)ds = π Im γ (k) γ(k) = π k γ(k) 2 π = π. k 2 γ(k) 2 = π γ (k) 2 = 2 0 γ (s) 2 ds Dabei hat man nur dann Gleichheit, wenn γ(k) = 0 für alle k Z\{0,} ist, und dann parametrisiert γ(s) = γ(0)+ γ()e is eine Kreislinie.

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

10 Hilberträume. (b) λx,y = λ x,y für x,y X, λ K. (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C)

10 Hilberträume. (b) λx,y = λ x,y für x,y X, λ K. (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C) 10 Hilberträume 10.1. Definition. Sei X ein Vektorraum über K. Eine Abbildung, : X X K heißt Skalarprodukt, falls (a) x 1 + x,y = x 1,y + x,y für x 1,x,y X (b) λx,y = λ x,y für x,y X, λ K (c) x, y = y,

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik Kapitel Lineare normierte Räume.1 Allgemeiner Überblick Definition.1. Eine Menge X, in der über einem Zahlenkörper K (K = R oder K = C) die Addition und λ-multiplikation mit den üblichen Verbindungsaxiomen

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ). 1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n-

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n- I. Lineare Algebra Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung 1. Determinanten (siehe Fischer/Kaul I, S.329-339) Matrix. Determinanten von 2 2- und 3 3-Matrizen. Alternierende Multilinearformen

Mehr

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist Orthogonalität p. 1 Skalarprodukt Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind u := u 1 u 2. u n reelle n-tupel, dann ist und v := v 1 v 2. v n u v := u 1 v 1 + u 2

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof Dr H Brenner Osnabrück SS 26 Lineare Algebra und analytische Geometrie II Vorlesung 2 Orthogonalität Mit dem Skalarprodukt kann man die Eigenschaft zweier Vektoren, aufeinander senkrecht zu stehen,

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

10.2. SELBSTADJUNGIERTE OPERATOREN 67

10.2. SELBSTADJUNGIERTE OPERATOREN 67 10.2. SELBSTADJUNGIERTE OPERATOREN 67 10. Spektralsatz 10.1. Spektrum. Sei K entweder R oder C. Definition 10.1.1. Sei X ein Banachraum und T L(X,X) L(X). (i) Die Menge ρ(t) K aller rellen oder komplexen

Mehr

3.6 Approximationstheorie

3.6 Approximationstheorie 3.6 Approximationstheorie Bisher haben wir uns im Wesentlichen mit der Interpolation beschäftigt. Die Approximation ist weiter gefasst: wir suchen eine einfache Funktion p P (dabei ist der Funktionenraum

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr

11.2 Orthogonalität. Wintersemester 2013/2014

11.2 Orthogonalität. Wintersemester 2013/2014 Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 2013/2014 Markus Scheighofer Lineare Algebra I 11.2 Orthogonalität Definition 11.2.1. Seien V ein K-Vektorraum mit Skalarprodukt

Mehr

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht ANALYSIS I FÜR TPH WS 206/7 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Untersuchung von Reihen mittels Konvergenzkriterien Aufgabe 2: Konvergenz und Berechnung von Reihen I Aufgabe 3: ( )

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges 11. Kompakte Operatoren Seien X, Y Banachräume, und sei T : X Y ein linearer Operator. Definition 11.1. T heißt kompakt, enn T (B) eine kompakte Teilmenge von Y ist für alle beschränkten Mengen B X. Wir

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physiker (Analysis 3) I... Hinweise: II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physiker (Analysis 3) I... Hinweise: II... ................ Note I II Name Vorname Matrikelnummer tudiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNICHE UNIVEITÄT MÜNCHEN Fakultät für Mathematik

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Lebesgue-Integral und L p -Räume

Lebesgue-Integral und L p -Räume Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k Skalarprodukte Tutorium 7 Bemerkung. Für jeden komplexen Vektorraum V mit dim V und jede komplexe Bilinearform P auf V findet man einen Vektor v mit P (v, v) =. Es gibt also keine positiv definite Bilinearformen

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8

Mehr

Höhere Mathematik I/II

Höhere Mathematik I/II Markus Stroppel Höhere Mathematik I/II Z. Zusätze. Z.. Skalarprodukte in Funktionenräumen. Wir wollen an einigen Beispielen zeigen, dass es nützlich sein kann, Skalarprodukte auch in ganz allgemeinen (reellen)

Mehr

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr