Mathematischer Vorkurs für Physiker WS 2009/10

Größe: px
Ab Seite anzeigen:

Download "Mathematischer Vorkurs für Physiker WS 2009/10"

Transkript

1 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die Angabe des Vektors kennzeichnen, der vom Koordinatenursprung O ausgeht und den Punkt P als Endpunkt besitzt. Die Komponenten dieses Vektors, des Ortsvektors, sind dann die Koordinaten (x, y, z) des Punkts P. Es gilt also für den Ortsvektor, der meist mit r bezeichnet wird: r = xe x + ye y + ze z, r = x y, r = x 2 + y 2 + z 2 z Bahnkurve: Hängt der Ortsvektor von der Zeit ab: r = r(t), dann beschreibt dies einen zeitlich veränderlichen Ort, also z.b. die Bahn eines Massenpunkts. Z.B: x(t) 1 + t 2 r(t) = y(t) = 1 + t 2 z(t) 0 y 10 t = t = 2 2 t = 0 t = x Ableitung von r(t): Zerlegt man r nach den festen Basisvektoren, dann sind die Komponenten Funktionen der Variablen t: r(t) = x(t)e x + y(t)e y + z(t)e z Bei der Bildung der Ableitung nach t werden die Komponenten einzeln differenziert, entsprechend der Ableitungsregel für Summen. Da die Basisvektoren konstant sind, bleiben sie bei der Differentiation erhalten. Es ist also: dr := dx e x + dy e y + dz e z

2 Man differenziert eine Vektorfunktion, indem man ihre Komponenten differenziert. Die Ableitung von r(t) nach t ist also wieder eine Vektorfunktion von t. Für die geometrische Interpretation der Ableitung von r(t) betrachten wir die alternative Definition der Ableitung dr r(t + t) r(t) (t) := lim t 0 t die oben gegebenen äquivalent ist. Aus dieser Definition entnimmt man, dass der Ableitungsvektor der Grenzwert der Sekantenvektoren ist, d.h. der Ableitungsvektor ist tangential an die Kurve r(t). z r(t + t) r(t) r(t) r(t + t) y x Die Länge von dr ist offenbar ein Maß dafür, wie schnell die Bahnkurve durchlaufen wird. Das lässt folgende Aussage plausibel erscheinen: Die Ableitung des Ortsvektors nach der Zeit ist die Geschwindigkeit: dr = v(t) Die Geschwindigkeit ist also ein zeitabhängiger Vektor, der in jedem Augenblick tangential zur Bahnkurve ist. Die Komponenten der Geschwindigkeit sind v(t) = ẋ ẏ ż Entsprechend: Die Ableitung der Geschwindigkeit nach der Zeit ist die Beschleunigung: dv = a(t) Die Beschleunigung ist also ein zeitabhängiger Vektor, der i.a. sowohl eine Tangential- als auch eine Normalkomponente relativ zur momentanen Geschwindigkeitsrichtung hat. Die Komponenten der Beschleunigung sind ẍ a(t) = ÿ z Ausgehend vom Ortsvektor r(t) erhält man durch Ableiten also die Geschwindigkeit v(t) und

3 die Beschleunigung a(t). Umgekehrt kann man bei vorgegebener Geschwindigkeit die Bahn des Teilchens rekonstruieren, und zwar durch Integration: t r(t) = r v(τ)dτ Dabei ist r 0 eine Integrationskonstante, und das Integral der Geschwindigkeit ist komponentenweise definiert: v(τ)dτ = e x v x (τ)dτ + e y v y (τ)dτ + e z v z (τ)dτ Ebenso erhält man aus vorgegebener Beschleunigung die Geschwindigkeit: t v(t) = v a(τ)dτ Aus der Beschleunigung a(t) eines Massenpunkts erhält man durch Integration nach der Zeit seine Geschwindigkeit v(t) zurück (bis auf eine Integrationskonstante v 0 ). Aus der Geschwindigkeit v(t) eines Massenpunkts erhält man durch Integration nach der Zeit seine Bahn r(t) zurück (bis auf eine Integrationskonstante r 0 ). Ebene Polarkoordinaten Betrachtet man einen Massenpunkt in einer Ebene (beispielsweise die Bewegung eines Planeten um die Sonne), dann kann man seinen Ort und seine Bewegung anstatt durch die kartesischen Koordinaten x und y auch durch die Polarkoordinaten r und ϕ beschreiben. Die Polarkoordinaten des Punktes P sind definiert als sein Abstand vom fest gewählten Ursprung O des Polarkoordinatensystems bzw. als der Richtungswinkel von P bezüglich einer fest gewählten Referenzrichtung. ϕ = 120 ϕ = 45 O ϕ r P ϕ = 200 r = 1 r = 2 So hat z.b. der Punkt P bezüglich des eingezeichneten Ursprungs und der Referenzrichtung ungefähr die Polarkoordinaten (r = 2.5,ϕ = 30 ). Die Koordinatenlinien sind Kreise um den Ursprung (r = const., ϕ variiert) und Ursprungshalbgeraden (ϕ = const., r variiert).

4 Äquivalent zu dieser geometrischen Definition der Polarkoordinaten ist die mathematische Definition, die sich auf die schon bekannten kartesischen Koordinaten stützt, indem sie die Transformationsgleichungen angibt, mit deren Hilfe man die Polarkoordinaten eines Punktes in seine kartesischen Koordinaten umrechnen kann: x = r cos ϕ y = r sin ϕ Dabei ist 0 r und 0 ϕ < 2π. Die Umkehrung lautet: r = x 2 + y 2 ϕ = arctan y x Dass diese Transformationsgleichungen gelten, ist aufgrund der geometrischen Definition der Polarkoordinaten unmittelbar einleuchtend. Beispiel: Die gleichförmige Kreisbewegung hat in Polarkoordinaten die einfache Form r(t) = r 0, ϕ(t) = ωt Die geradlinig-gleichförmige Bewegung wird hingegen durch die Funktionen r(t) = r vr 0 t cos(α ϕ 0 ) + v 2 t 2 ( ) vt sin α + r0 sin ϕ 0 ϕ(t) = arctan vt cos α + r 0 cos ϕ 0 dargestellt. Offenbar eignen sich Polarkoordinaten eher für die Darstellung von rotationssymmetrischen Bewegungen und Situationen. ortsabhängige Basisvektoren: Den Ortsvektor kann man mit Hilfe der Polarkoordinaten schreiben als r = r cos ϕe x + r sinϕe y Dies ist im Grunde nichts anderes als die Zusammenfassung der Transformationsgleichungen in Vektorschreibweise. Wenn r und ϕ ihre erlaubten Werte durchlaufen, dann durchläuft r die ganze Ebene. Lässt man r konstant und variiert nur ϕ, dann beschreibt r einen Kreis, im umgekehrten Fall eine Ursprungshalbgerade, also die Koordinatenlinien. Das führt zur Definition der ortsabhängigen Einheitsvektoren als den normierten Tangentialvektoren an die Koordinatenlinien: e r e ϕ := cos ϕe x + sin ϕe y := sin ϕe x + cos ϕe y

5 und ihre Umkehrung e x e y = cos ϕe r sin ϕe ϕ = sin ϕe r + cos ϕe ϕ e ϕ e r r P O ϕ Diese ortsabhängigen Einheitsvektoren sind den Polarkoordinaten besser angepasst als die konstanten kartesischen Basisvektoren e x,e y. Auch bei allgemeinen krummlinigen und mehrdimensionalen Koordinatensystemen definiert man ortsabhängige Basisvektoren ( lokale Basis, Basisfeld ) auf dieselbe Weise. Die ortsabhängigen Basisvektoren e r,e ϕ der Polarkoordinaten sind praktisch, wenn man ein rotationssymmetrisches Vektorfeld betrachtet, z.b. das Gravitationsfeld der Sonne in der Umlaufsebene der Planeten g(r) = Gm r 2 e r denn dies hat dann nur eine einzige Komponente. Ortsvektor, Geschwindigkeit und Beschleunigung: Um den Ortsvektor des Punktes P in Polarkoordinaten möglichst einfach darzustellen, entwickelt man ihn in der zu P gehörenden lokalen Basis: r = xe x + ye y = r cos ϕ(cos ϕe r sin ϕe ϕ ) + r sin ϕ(sin ϕe r + cos ϕe ϕ ) = re r Dieses Ergebnis ist recht anschaulich. Wie lautet nun die Darstellung des Geschwindigkeits- bzw. des Beschleunigungsvektors in Polarkoordinaten, d.h. wie erhält man deren Komponenten bezgl. e r und e ϕ aus den Polarkoordinaten der Bewegung r(t),ϕ(t)? Antwort: Ableiten des Ortsvektors nach t: v = ṙ = (re r ) = ṙe r + rė r Im Unterschied zu den kartesischen Basisvektoren e x,e y sind e r,e ϕ ortsabhängig, d.h. ihre

6 Zeitableitung verschwindet nicht, wenn man sich in der Ebene bewegt. Genauer gilt: ė r = ϕe ϕ ė ϕ = ϕe r (Der Beweis folgt aus den Definitionsgleichungen von e r und e ϕ durch Ableiten nach t.) Das ist ebenfalls anschaulich: Wenn sich nur r ändert, also ϕ = 0 ist, dann bewegt man sich entlang einer Ursprungsgeraden und weder e r noch e ϕ ändern sich. Nur wenn ϕ 0 ist, ändern sich e r noch e ϕ, dabei zeigt die zeitliche Änderung von e r in die Richtung e ϕ und die von e ϕ in die Richtung e r. Damit ergibt sich nun für den Geschwindigkeitsvektor in Polarkoordinaten: v = ṙ = ṙe r + r ϕe ϕ Die Geschwindigkeit hat also eine Radialkomponente ṙ und eine Winkelkomponente r ϕ. Für den Beschleunigungsvektor in Polarkoordinaten ergibt sich durch nochmalige Zeitableitung: a = v = ( r r ϕ 2 )e r + (r ϕ + 2ṙ ϕ)e ϕ Man unterscheide sorgfältig zwischen der Radialkomponente der Beschleunigung r r ϕ 2 und der Radialbeschleunigung r; ebenso zwischen der Winkelkomponente der Beschleunigung r ϕ + 2ṙ ϕ und der Winkelbeschleunigung ϕ! Z.B. bei einer gleichförmigen Kreisbewegung ist r = 0, aber es gibt eine nichtverschwindende Radialkomponente der Beschleunigung, nämlich r ϕ 2 (Zentripetalbeschleunigung).

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand) l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

Die Keplerschen Gesetze

Die Keplerschen Gesetze Die Keplerschen Gesetze Franz Embacher Fakultät für Physik der Universität Wien Didaktik der Astronomie, Sommersemester 009 http://homepage.univie.ac.at/franz.embacher/lehre/didaktikastronomie/ss009/ 1

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Probestudium der Physik: Mathematische Grundlagen

Probestudium der Physik: Mathematische Grundlagen Probestudium der Physik: Mathematische Grundlagen Ludger Santen 1. Februar 2013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 1 Einführung Die Mathematik ist die Sprache der

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt.

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt. PARAMETERFUNKTIONEN Zwei Beispiele: gsave currentpoint translate 21 4 div setlin 1 1 x = 2t 2 1 y = t < t

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Ingenieurmathematik für Maschinenbau, Blatt 1

Ingenieurmathematik für Maschinenbau, Blatt 1 Ingenieurmathematik für Maschinenbau, Blatt 1 Probeklausur Ingenieurmathematik für Maschinenbau Studiengang Prüfungsfach Prüfer Prüfungstermin Prüfungsdauer Prüfungsunterlagen Hilfsmittel Maschinenbau

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Technische Mechanik I Vorlesungs- Rumpfmanuskript

Technische Mechanik I Vorlesungs- Rumpfmanuskript Technische Mechanik I Vorlesungs- Rumpfmanuskript Prof. Dr.- ing. Jens Jensen Hochschule Bremen (FH) - University of Applied Sciences Fachbereich 05 Maschinenbau Edition 07, Oktober 2007 2 Vorwort Wer

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Möglichkeiten zur Modellierung und Untersuchung von Rotationsbewegungen und deren Überlagerungen in populären Fahrgeschäften

Möglichkeiten zur Modellierung und Untersuchung von Rotationsbewegungen und deren Überlagerungen in populären Fahrgeschäften Universität Bielefeld Fakultät für Physik Wintersemester 2008 / 2009 Prof. Dr. Bärbel Fromme Möglichkeiten zur Modellierung und Untersuchung von Rotationsbewegungen und deren Überlagerungen in populären

Mehr

Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen)

Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Priv.-Doz. Dr. Reinhard Mahnke Institut für Physik Lehrveranstaltung Nr. 12557 (Wintersemester 2012/13: 1 SWS

Mehr

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement Kapitel 4 Arbeit und Energie 4.1 Ein Ausflug in die Vektoranalysis 4.1.1 Linienelement Das Linienelement dr längs einer Kurve im Raum lautet (Siehe Abb. 4.1): ds dr = d dy dz (4.1) y dr d dy dz z Abbildung

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Physik A. Teil 1: Mechanik

Physik A. Teil 1: Mechanik Roland Engfer Physik A für Naturwissenschaftler Teil 1: Mechanik UNIVERSITAS TURICENSIS MDCCC XXXIII Skriptum zur Vorlesung von Andreas Schilling WS 004/5 Physik-Institut der Universität Zürich September

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Wie erstellt man dynamische Elemente mit JSXGraph?

Wie erstellt man dynamische Elemente mit JSXGraph? Wie erstellt man dynamische Elemente mit JSXGraph? 1. Kurzinformation zu JSXGraph Was ist JSXGraph? Eine freie dynamische Mathematiksoftware, die vollständig in Javascript programmiert ist. Daher benötigt

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

2.5.2 Selbstorganisierte Karten: das Modell von Kohonen. Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht

2.5.2 Selbstorganisierte Karten: das Modell von Kohonen. Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht 2.5.2 Selbstorganisierte Karten: das Modell von Kohonen Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht zwischen den einzelnen Neuronen gibt, spielt deren räumliche Anordnung keine

Mehr

Angewandte Mathematik

Angewandte Mathematik Informelle Kompetenzmessung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung BHS Jänner 2015 Angewandte Mathematik Teil A + Teil B (Cluster 8) Korrekturheft Aufgabe 1 Bevölkerungswachstum

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Gefesselte Masse. Jörg J. Buchholz 23. März 2014

Gefesselte Masse. Jörg J. Buchholz 23. März 2014 Gefesselte Masse Jörg J. Buchholz 23. März 204 Einleitung In Abbildung ist eine Punktmasse m dargestellt, die sich, von einem masselosen starren tab der Länge l gefesselt, auf einer Kreisbahn bewegt. Dabei

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Notizen zur Vorlesung Gewöhnliche Differentialgleichungen G Sweers Wintersemester 08/09 ii Inhaltsverzeichnis Einführung Modelle 2 Explizite Lösungen 4 2 Trennbar 5 22 Linear erster Ordnung 6 23 Homogen

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen IV. Koordinatensysteme und geometrische Transformationen Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Skalare Punkte und Vektoren 2.

Mehr

Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen)

Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Mathematische Methoden für das Lehramt (Lehramt an Gymnasien & Lehramt an Regionalen Schulen) Priv.-Doz. Dr. Reinhard Mahnke Institut für Physik Lehrveranstaltung Nr. 12557 (Wintersemester 2013/14: 1 SWS

Mehr

Erstes Nyquistkriterium im Zeitbereich

Erstes Nyquistkriterium im Zeitbereich Erstes Nyquistkriterium im Zeitbereich Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion

Mehr

Klassische Theoretische Physik: Mechanik

Klassische Theoretische Physik: Mechanik Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 psimon@astro.uni-bonn.de 21. November 2013 1 Zweikörperproblem Wir sehen uns nun ein ideales Zweikörperproblem

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: andreasa@sbox.tu-graz.ac.at. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................

Mehr

Apfelmännchen Theorie und Programmierung

Apfelmännchen Theorie und Programmierung Apfelmännchen Theorie und Programmierung Das Thema "Apfelmännchen" gehört zum Oberthema "Chaos und Ordnung in dynamischen Systemen". Es ist ein relativ neues Forschungsgebiete der Mathematik ( ab ca. 1980

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte

Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte Roman Gächter 27. Februar 2008 Inhaltsverzeichnis 1 Vorwort 3 2 Oberfläche 4 2.1 Einführung................................ 4 2.2 Geometrie und

Mehr

Markov-Prozesse mit stetigem Zustands- und Parameterraum

Markov-Prozesse mit stetigem Zustands- und Parameterraum Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse

Mehr