Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung

Größe: px
Ab Seite anzeigen:

Download "Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung"

Transkript

1 Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung 1. Grundbegriffe Würfeln, Werfen einer Münze, Messen der Lebensdauer einer Glühbirne Ausfall/Ausgang: Würfeln: Augenzahlen 1, 2, 3, 4, 5, 6 Münze: Kopf/Zahl Glühbirne: 3,7 h In der Wahrscheinlichkeitsrechnung benötigt man für alle möglichen Ausgänge einen sogenannten. Diesen bezeichnen wir mit Ω (=Omega). Ω... Menge alle Ausgänge Beispiele: Werfen eines Würfel Werfen einer Münze Werfen zweier Würfel Ω = Ω = 1, 2, 3, 4, 5, 6 Ω = Lebensdauer einer Glühbirne Ω = Ereignisse Ereignisse werden meist mit irgendwelchen Großbuchstaben abgekürzt. Beispiel: Die Wahrscheinlichkeit für das Ereignis A bezeichnet man mit P(A). Beispiel: Würfeln G... es kommt eine gerade Zahl 1 P(G) = 1 Quelle: Education Group GmbH ( Lizenz: CC BY- NC- SA 3.0 AT Seite 1/3

2 Allgemein: E ist Ereignis 2. Zufallsexperiment Was ist ein Zufallsexperiment? 3. Laplace-Experiment Beispiel: Münzwurf A = K B = Z Setzt man auf Zahl, so ist B ein günstiger Fall. Wie hoch ist die Wahrscheinlichkeit, dass B eintritt? Def.: Wahrscheinlichkeit nach Laplace P A = Anzahl der für A günstigen Ausgänge Anzahl aller möglichen Ausgänge Zurück zum Beispiel: P(B) =!! Bem.: Wahrscheinlichkeit nach Laplace allgemeiner: P(A) = A Ω Seite 2/3

3 Laplace-Annahme gilt z. B.: Würfeln, Werfen einer Münze Gilt nicht: Werfen eines Reißnagels, Zündholzschachtel 4. Grundregeln der Wahrscheinlichkeit von Kolmogorow Mögliche Werte Die Wahrscheinlichkeit eines Ereignisses liegt immer zwischen 0 und 1: Es gilt: 0 P(A) 1 Sicheres Ereignis Das sichere Ereignis hat die Wahrscheinlichkeit 1: P Ω = 1 Vorschicht bei relativen Häufigkeiten als Wahrscheinlichkeiten 5. Additionsregel Wenn zwei Ereignisse einander ausschließen, ist die Wahrscheinlichkeit, dass entweder das eine oder das andere Eintritt, gleich der Summe der beiden Wahrscheinlichkeiten. Es gilt:, sofern 6. Gegenereignis Wahrscheinlichkeit des Gegenereignisses : Aufgaben: (1) Beweisen Sie die Additionsregel! (2) Für ein unmögliches Ereignis gilt: P( = 0 (3) Begründen Sie, warum der Münzwurf ein Laplace-Experiment ist, der Wurf einer Zündholzschachtel dagegen nicht. Seite 3/3

4 Interaktives Skriptum LÖSUNG: Elementare Wahrscheinlichkeitsrechnung 1. Grundbegriffe Würfeln, Werfen einer Münze, Messen der Lebensdauer einer Glühbirne Ausfall/Ausgang: Würfeln: Augenzahlen 1, 2, 3, 4, 5, 6 Münze: Kopf/Zahl Glühbirne: 3,7 h In der Wahrscheinlichkeitsrechnung benötigt man für alle möglichen Ausgänge einen sogenannten Ereignisraum. Diesen bezeichnen wir mit Ω (=Omega). Ω... Menge alle Ausgänge Beispiele: Werfen eines Würfel Werfen einer Münze Werfen zweier Würfel Ω = 1, 2, 3, 4, 5, 6 Ω = Z, K Ω = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Lebensdauer einer Glühbirne Ω = R + 0 Ereignisse Ereignisse werden meist mit irgendwelchen Großbuchstaben abgekürzt. Beispiel: Die Wahrscheinlichkeit für das Ereignis A bezeichnet man mit P(A). Beispiel: Würfeln G... es kommt eine gerade Zahl 2 P(G) = = 3 6 = 1 2 = 50 % 2 Quelle: Education Group GmbH ( Lizenz: CC BY- NC- SA 3.0 AT

5 Allgemein: E ist Ereignis E Ω 2. Zufallsexperiment Was ist ein Zufallsexperiment? hängt vom Zufall ab Experiment kann beliebig oft wiederholt werden, OHNE dass sich die Ergebnisse gegenseitig beeinflussen. 3. Laplace-Experiment alle Ereignisse sind gleichwahrscheinlich es gibt nur endlich mögliche Ausgänge des Experiments Beispiel: Münzwurf A = K B = Z Setzt man auf Zahl, so ist B ein günstiger Fall. Wie hoch ist die Wahrscheinlichkeit, dass B eintritt? Def.: Wahrscheinlichkeit nach Laplace P A = Anzahl der für A günstigen Ausgänge Anzahl aller möglichen Ausgänge Zurück zum Beispiel: P(B) =!! Bem.: Wahrscheinlichkeit nach Laplace allgemeiner: P(A) = A Ω

6 Laplace-Annahme gilt z. B.: Würfeln, Werfen einer Münze Gilt nicht: Werfen eines Reißnagels, Zündholzschachtel 4. Grundregeln der Wahrscheinlichkeit von Kolmogorow Mögliche Werte Die Wahrscheinlichkeit eines Ereignisses liegt immer zwischen 0 und 1: Es gilt: 0 P(A) 1 Sicheres Ereignis Das sichere Ereignis hat die Wahrscheinlichkeit 1: P Ω = 1 Vorschicht bei relativen Häufigkeiten als Wahrscheinlichkeiten 5. Additionsregel Wenn zwei Ereignisse einander ausschließen, ist die Wahrscheinlichkeit, dass entweder das eine oder das andere eintritt, gleich der Summe der beiden Wahrscheinlichkeiten. Es gilt: P(A B) = P(A) + P(B), sofern A B = 6. Gegenereignis Wahrscheinlichkeit des Gegenereignisses A : 1 P(A) = P( A) 1 P( A) = P(A) Aufgaben: (1) Beweisen Sie die Additionsregel! (2) Für ein unmögliches Ereignis gilt: P( = 0 (3) Begründen Sie, warum der Münzwurf ein Laplace-Experiment ist, der Wurf einer Zündholzschachtel dagegen nicht.

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

Statistik 1: Einführung

Statistik 1: Einführung Seite Stat- Statistik : Einführung Die mathematische Disziplin der Stochastik, die die Teilgebiete Wahrscheinlichkeitstheorie und mathematische Statistik umfaßt, beschäftigt sich mit der Beobachtung, Aufzeichnung

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

3.2. Aufgaben zu mehrstufigen Zufallsexperimenten

3.2. Aufgaben zu mehrstufigen Zufallsexperimenten .. Aufgaben zu mehrstufigen Zufallsexperimenten Aufgabe : Baumdiagramm mit Erwartungswert beim zweimaligen Würfeln Ein ungezinkter sechsseitiger Würfel wird zweimal geworfen. a) Zeichne einen repräsentativen

Mehr

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik)

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) Prof. Dr. Reinhold Kosfeld Fachbereich Wirtschaftswissenschaften Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) 1. Einleitung Deskriptive Statistik: Allgemeine und spezielle

Mehr

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung Modul: Stochastik Ablauf Vorstellung der Themen Lernen Spielen Wiederholen Zusammenfassen Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Stochastik - Kapitel 1

Stochastik - Kapitel 1 Stochastik - Kapitel 1 Aufgaben ab Seite 9 I. Ereignisräume 1. Ergebnis und Ergebnisraum; Baumdiagramm Experimente werden nach der Vorhersehbarkeit ihres Versuchsausganges unterschieden: - Experimente,

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Modellierungskonzepte 2

Modellierungskonzepte 2 Modellierungskonzepte 2 Elke Warmuth Humboldt-Universität Berlin WS 2008/09 1 / 50 1 Pfadregeln 2 Begriff Umbewertung von Chancen Bayessche Formel 3 Verwechslungsgefahr Implizite Lotterien 2 / 50 mehrstufige

Mehr

Versuch: Zufälliges Ziehen aus der Population

Versuch: Zufälliges Ziehen aus der Population Wahrscheinlichkeit Ein Test diagnostiziert Kranke zu 99% richtig Gesunde zu 90% richtig 5% der Bevölkerung ist krank? Wie wahrscheinlich ist es, dass jemand krank ist, wenn der Test dies diagnostiziert?

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Statistische Verfahren in der Computerlinguistik. Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb

Statistische Verfahren in der Computerlinguistik. Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb Statistische Verfahren in der Computerlinguistik Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb Übersicht Statistische vs. symbolische Verfahren in der CL Statistik beschreibende Statistik

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten Teil 2: Wahrscheinlichkeitsrechnung 326 Grundlagen Wozu Wahrscheinlichkeitsrechnung? Definition und egriff der Wahrscheinlichkeit erechnung von Laplace-Wahrscheinlichkeiten Rechnen mit einfachem Mengenkalkül

Mehr

Knut Bartels / Hans Gerhard Strohe. Arbeitsblätter. zur Vorlesung im Wintersemester 2005/06. Statistik II Induktive Statistik

Knut Bartels / Hans Gerhard Strohe. Arbeitsblätter. zur Vorlesung im Wintersemester 2005/06. Statistik II Induktive Statistik Knut Bartels / Hans Gerhard Strohe Arbeitsblätter zur Vorlesung im Wintersemester 2005/06 Induktive Statistik Dies ist kein Vorlesungsskript Wirtschafts- und Sozialwissenschaftliche Fakultät Lehrstuhl

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Statistik 1 für SoziologInnen Einführung in die Univ.Prof. Dr. Marcus Hudec WAHRSCHEINLICHKEITSRECHNUNG It is remarkable that a science which began with the consideration of games of chance should have

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Aktiv Kurs Thema Kompakt Test. Reißnägel werfen

Aktiv Kurs Thema Kompakt Test. Reißnägel werfen . Reißnägel werfen Die Klasse 7a will wissen, mit welcher Wahrscheinlichkeit beim Reißnägel fallen lassen die Nadel nach oben zeigt. Dazu lässt jeder Schüler/jede Schülerin der Klasse einen Reißnagel 00-mal

Mehr

Stochastik. 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1

Stochastik. 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1 Stochastik 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1 Inhaltsverzeichnis 1 Einführung in die Wahrscheinlichkeitsrechnung 2 1.1 Laplace-Experimente................................. 2 1.2

Mehr

Lehrstuhl IV Stochastik & Analysis. Stochastik I. Wahrscheinlichkeitsrechnung. Skriptum nach einer Vorlesung von Hans-Peter Scheffler

Lehrstuhl IV Stochastik & Analysis. Stochastik I. Wahrscheinlichkeitsrechnung. Skriptum nach einer Vorlesung von Hans-Peter Scheffler Fachschaft Mathematik Uni Dortmund Lehrstuhl IV Stochastik & Analysis Stochastik I Wahrscheinlichkeitsrechnung Skriptum nach einer Vorlesung von Hans-Peter Scheffler Letzte Änderung: 8. November 00 Gesetzt

Mehr

3.8 Wahrscheinlichkeitsrechnung III

3.8 Wahrscheinlichkeitsrechnung III 3.8 Wahrscheinlichkeitsrechnung III Inhaltsverzeichnis ufallsgrössen Der Erwartungswert 3 3 Die Binomialverteilung 6 4 Die kumulierte Binomialverteilung 8 4. Die Tabelle im Fundamentum (oder Formeln und

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozialwissenschaftliche Methoden und Statistik I Universität Duisburg Essen Standort Duisburg Integrierter Diplomstudiengang Sozialwissenschaften Skript zum SMS I Tutorium Von Mark Lutter Stand: April

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik

MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik Seite 1 Vorstellung Organisation: Deutsche Aktuarvereinigung e.v. (DAV) berufsständische Vertretung der

Mehr

Stochastik Wahrscheinlichkeit

Stochastik Wahrscheinlichkeit Stochastik Wahrscheinlichkeit Dies ist ein Detail, das auf dem letzten 1 DM Schein abgebildet war. Es stellt die wichtigste Wahrscheinlichkeitsverteilung überhaut dar die Normalverteilung. Diese Verteilung

Mehr

Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript!

Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript! Diskrete Stochastik für Informatiker WS003/04 Diskrete Stochastik für die Informatik Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript! Bei Fragen, Anmerkungen oder Fehlern bitte

Mehr

Stochastik kompakt. - worauf es ankommt... Zürich 2007 1

Stochastik kompakt. - worauf es ankommt... Zürich 2007 1 Stochastik kompakt - worauf es ankommt... Zürich 2007 1 Ziel: Am Ende der Unterrichtssequenzen über Stochastik sollen die Schüler/innen Aufgaben aus folgenden Themenbereichen lösen können: 1. Umgang mit

Mehr

Wahrscheinlichkeit Klasse 8 7

Wahrscheinlichkeit Klasse 8 7 7 Wahrscheinlichkeit Klasse 8 Ereignisse Seite 8 a) Ω {Herz 7; Herz 8; Herz 9; Herz 0; Herz Unter; Herz Ober; Herz König; Herz Ass; Eichel 7; Eichel 8; Eichel 9; Eichel 0; Eichel Unter; Eichel Ober; Eichel

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Grundlagen der Wahrscheinlichkeitsrechnung KAPITEL 3 Kapitel 3 Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Einführung Statistik und Wahrscheinlichkeitsrechnung Lukas Meier Teilweise basierend auf Vorlesungsunterlagen von Marloes Maathuis, Hansruedi Künsch, Peter Bühlmann und Markus Kalisch. Fehler und Anregungen

Mehr

2 Informationstheorie

2 Informationstheorie 2 Informationstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundbegriffe Informatik (IT: Information

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Einführung in die Stochastik. Dr. Lothar Schüler

Einführung in die Stochastik. Dr. Lothar Schüler Einführung in die Stochastik für Studierende der Informatik im Bachelorstudiengang TU Braunschweig SS 2007 Dr. Lothar Schüler Institut für Mathematische Stochastik Technische Universität Braunschweig Pockelsstr.

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

Simulation mit modernen Tools - runde und spitze Berechnung von π -

Simulation mit modernen Tools - runde und spitze Berechnung von π - Simulation mit modernen Tools - runde und spitze Berechnung von π - Prof. Dr. rer. nat. Stefan Ritter Fakultät EIT 7. April 01 Gliederung 1. Wozu Simulation?. Moderne Tools zur Simulation 1. Maple, Geogebra

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Analog definiert man das Nichteintreten eines Ereignisses (Misserfolg) als:

Analog definiert man das Nichteintreten eines Ereignisses (Misserfolg) als: 9-9 Die befasst sich mit der Untersuchung, wie wahrscheinlich das Eintreten eines Falles aufgrund bestimmter Voraussetzungen stattfindet. Bis anhin haben wir immer logisch gefolgert: 'Wenn diese Voraussetzung

Mehr

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen rof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 14. April 2010 1/14 Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen Prof. G. Kemnitz Institut für Informatik, Technische

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit In einem Laden ist eine Alarmanlage eingebaut. Bei Einbruch gibt sie mit 99%-iger Wahrscheinlichkeit Alarm. Wenn in einer bestimmten Nacht kein Einbruch stattfindet, gibt sie

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik

Einführung in die Wahrscheinlichkeitsrechnung und Statistik Einführung in die Wahrscheinlichkeitsrechnung und Statistik Gunther H. Peichl Skriptum zur Vorlesung im SS 1999 Institut für Mathematik Karl Franzens Universität Graz ii Vorwort Im Alltag begegnen wir

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Daten und Zufall in der Jahrgangstufe 5

Daten und Zufall in der Jahrgangstufe 5 0 Vorbemerkungen Daten und Zufall in der Jahrgangstufe 5 0.1 Daten Der Austausch von Informationen und die Analyse empirischer Daten prägen unseren Alltag. Immer mehr Entscheidungen und Vorhersagen werden

Mehr

Einführung Statistik Weiterbildungs-Lehrgang 2015 2017. Markus Kalisch, Lukas Meier, Peter Bühlmann, Hansruedi Künsch und Alain Hauser

Einführung Statistik Weiterbildungs-Lehrgang 2015 2017. Markus Kalisch, Lukas Meier, Peter Bühlmann, Hansruedi Künsch und Alain Hauser Einführung Statistik Weiterbildungs-Lehrgang 2015 2017 Markus Kalisch, Lukas Meier, Peter Bühlmann, Hansruedi Künsch und Alain Hauser April 2015 Inhaltsverzeichnis 1 Einführung (Stahel, Kap. 1) 1 1.1

Mehr

Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten

Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten Dresden, 18.06.2012 Agenda Motivation Notwendigkeit einer Risikosimulation Grundlagen der Monte-Carlo-Simulation Konzept einer 4-Stufen-Risikosimulation

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 4 Seite 1 von 23 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 4 Seite 1 von 23 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 4 3 Aufgabe 8 3 Aufgabe 9 3 Aufgabe 30 3 Aufgabe 31 3 Aufgabe 3 4 Aufgabe 33 4 Aufgabe 34 4 Aufgabe 35 4 Aufgabe 36 4 Aufgabe 37 4 Aufgabe 38 5 Aufgabe 39

Mehr

Wahrscheinlichkeitsrechnung mit einem Tabellenkalkulationsprogramm - Eine Einführung -

Wahrscheinlichkeitsrechnung mit einem Tabellenkalkulationsprogramm - Eine Einführung - Informationstechnische Grundbildung (ITG): Wahrscheinlichkeitsrechnung mit Excel Seite 1 Wahrscheinlichkeitsrechnung mit einem Tabellenkalkulationsprogramm - Eine Einführung - Starte das Programm Excel.

Mehr

A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the wate Norbert Henze. Stochastik für Einsteiger

A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the wate Norbert Henze. Stochastik für Einsteiger A-PDF Merger DEMO : Purchase from wwwa-pdfcom to remove the wate Norbert Henze Stochastik für Einsteiger Aus dem Programm Mathematik für Einsteiger Algebra für Einsteiger von Jörg Bewersdorff Algorithmik

Mehr

Kombinatorik mit einer kurzen Einführung in die Wahrscheinlichkeitsrechnung

Kombinatorik mit einer kurzen Einführung in die Wahrscheinlichkeitsrechnung Materialien für TI-Nspire CX Handheld, TI-Nspire CX CAS Handheld TI-Nspire Software Renato Burkart, René Hugelshofer Kombinatorik mit einer kurzen Einführung in die Wahrscheinlichkeitsrechnung Für Gymnasien

Mehr

Einführung in die schließende Statistik - Von der Wahrscheinlichkeit zur Hypothese mit Beispielen in R und SPSS

Einführung in die schließende Statistik - Von der Wahrscheinlichkeit zur Hypothese mit Beispielen in R und SPSS Einführung in die schließende Statistik - Von der Wahrscheinlichkeit zur Hypothese mit Beispielen in R und SPSS Version 0.9 (7.5.204) Haiko Lüpsen Universität zu Köln Regionales Rechenzentrum (RRZK) Kontakt:

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

GRUNDWISSEN UND GRUNDVORSTELLUNGEN IM STOCHASTIKUNTERRICHT (11./12. SCHULSTUFE)

GRUNDWISSEN UND GRUNDVORSTELLUNGEN IM STOCHASTIKUNTERRICHT (11./12. SCHULSTUFE) MNI-Fonds für Unterrichts- und Schulentwicklung S Grundbildung und Standards GRUNDWISSEN UND GRUNDVORSTELLUNGEN IM STOCHASTIKUNTERRICHT (./. SCHULSTUFE) Mag. Monika Jarmer HAK des Fonds der Wr. Kaufmannschaft,

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

. Allgemeiner berechnen wir Wahrscheinlichkeiten nach der Formel p =

. Allgemeiner berechnen wir Wahrscheinlichkeiten nach der Formel p = 2 Stochastik Mit p(a bezeichnen wir die Wahrscheinlichkeit eines Ereignisses A. p = 1 bedeutet, dass das Ereignis sicher eintritt, p = 0, dass es niemals eintritt. Es gilt demnach immer 0 p 1. Werfen wir

Mehr

Von den Zufallszahlen und ihrem Gebrauch

Von den Zufallszahlen und ihrem Gebrauch Von den Zufallszahlen und ihrem Gebrauch Johann Baumeister und Tania Garfias Macedo (Kursleiter) unter Mitwirkung von Paul Dietze, Pauline Eberts, Lara Felten, Miriam Gerharz Tim Hahn, Kim Hellriegel,

Mehr

Notizen zu "Mathematische Grundlagen der Finanzwirtschaft"

Notizen zu Mathematische Grundlagen der Finanzwirtschaft Notizen zu "Mathematische Grundlagen der Finanzwirtschaft" PD Dr. habil. Thomas Kalmes Sommersemester 5 Version vom 5. Juli 5 Einleitung 2 Einleitung Ich kam zu der Überzeugung, dass mathematische Analysis

Mehr

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts!

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts! Frequentistische und Bayes'sche Statistik Karsten Kirchgessner In den Naturwissenschaften herrscht ein wahrer Glaubenskrieg, ob die frequentistische oder Bayes sche Statistik als Grundlage zur Auswertung

Mehr

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1)

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Name: Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Inhalt: Absolute und relative Häufigkeit Wahrscheinlichkeit Voraussagen mit Wahrscheinlichkeit

Mehr

Mathematische Methoden in den Wirtschaftswissenschaften. Grundkurs. Josef Leydold. Department für Statistik und Mathematik WU Wien SS 2006.

Mathematische Methoden in den Wirtschaftswissenschaften. Grundkurs. Josef Leydold. Department für Statistik und Mathematik WU Wien SS 2006. Mathematische Methoden in den Wirtschaftswissenschaften Grundkurs Josef Leydold Department für Statistik und Mathematik WU Wien SS 2006 Josef Leydold c 2006 Mathematische Methoden 1 / 356 Übersicht Josef

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Vorlesungsnotizen Einführung in die Stochastik Hanspeter Schmidli Mathematisches Institut der Universität zu Köln INHALTSVERZEICHNIS iii Inhaltsverzeichnis 1. Diskrete Wahrscheinlichkeitsräume 1 1.1.

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.

Mehr

6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen

6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen 6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen a) Natürliche Zahl Entspricht Bedeutung des Wortes ZAHL beim Schüler bis Kl. 5 Bedeutungen entwickeln sich durch entsprechende

Mehr

Wie viele Ankreuzmöglichkeiten gibt es insgesamt? Bei wie vielen dieser Möglichkeiten gibt es 8 Treffer?

Wie viele Ankreuzmöglichkeiten gibt es insgesamt? Bei wie vielen dieser Möglichkeiten gibt es 8 Treffer? Kombinatorik Beispiel : Multiple-Choice-Klausur 16 Fragen Je 4 Antwortalternativen ( eine ist richtig ) Zufälliges Ankreuzen? Wahrscheinlichkeit für mindestens 8 Treffer? Mögliche Lösungsstrategie : Wie

Mehr

Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik () Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de Gliederung Allgemeine Statistik. Deskriptive Statistik. Wahrscheinlichkeitstheorie.3

Mehr

Einführung in die Statistik für Biologen. Jörg Witte

Einführung in die Statistik für Biologen. Jörg Witte Einführung in die Statistik für Biologen Jörg Witte 1997 Inhaltsverzeichnis 1 Endliche Wahrscheinlichkeitstheorie 3 1.1 Grundbegriffe........................ 3 1.2 Zufallsgrößen und Verteilungsfunktionen.........

Mehr

Spielen ist etwas Heiteres die Mathematik des Glücksspiels

Spielen ist etwas Heiteres die Mathematik des Glücksspiels FORUM-Themenabend Michael Kleiber Timon Kleiber Spielen ist etwas Heiteres die Mathematik des Glücksspiels Rosmarin & Thymian, 01. März 2014 1 Das Ziegenproblem Marilyn vos Savant 1990 2 Das Ziegenproblem

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Einführung in die. Wahrscheinlichkeitstheorie und Statistik

Einführung in die. Wahrscheinlichkeitstheorie und Statistik Institut für Mathematische Stochastik Einführung in die Wahrscheinlichkeitstheorie und Statistik (Kurzskript zur Vorlesung Wintersemester 2014/15 von Prof. Dr. Norbert Gaffke Inhaltsverzeichnis 1 Wahrscheinlichkeitsräume

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Beschreibende Statistik und Wahrscheinlichkeitsrechnung

Beschreibende Statistik und Wahrscheinlichkeitsrechnung Didaktische FWU-DVD Beschreibende Statistik und Wahrscheinlichkeitsrechnung Eine Einführung mit interaktiven Übungen für Whiteboards Das Medieninstitut der Länder Zur Bedienung Die didaktische DVD startet

Mehr

Stochastik Boris Boor 2010

Stochastik Boris Boor 2010 Stochastik Boris Boor 010 Inhaltsverzeichnis S.1 Grundbegriffe... S.1.1 Ergebnisse und Ereignisse... S.1. Relative Häufigkeit und Wahrscheinlichkeit...4 S.1.3 Wahrscheinlichkeitsverteilung...5 S.1.4 Mehrstufige

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Kursreihe stochastische Simulationen Kurs 3

Kursreihe stochastische Simulationen Kurs 3 Schüler-SimuLab Kursreihe stochastische Simulationen Kurs 3 Erste stochastische Simulationen Stefan Hartmann Forschungszentrum caesar 18. Januar 2008 Ein paar einleitende Worte Im ersten Kurs haben wir

Mehr

Probestudium der Physik: Mathematische Grundlagen

Probestudium der Physik: Mathematische Grundlagen Probestudium der Physik: Mathematische Grundlagen Ludger Santen 1. Februar 2013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 1 Einführung Die Mathematik ist die Sprache der

Mehr

Der vierseitige DNA-Würfel

Der vierseitige DNA-Würfel Der vierseitige DN-Würfel enomische Datenanalyse 2. Kaitel In der letzten Vorlesung haben wir mit statistischen Untersuchungen an der humanen enomsequenz die Islands entdeckt. Normale enomsequenz meidet

Mehr

Jetzt lerne ich Stochastik für die Oberstufe

Jetzt lerne ich Stochastik für die Oberstufe Jetzt lerne ich Stochastik für die Oberstufe von Dr. rer. nat. Marco Schuchmann, Dipl.-Math. - 2 - - 3 - Vorwort In diesem Buch werden Anwendungen der Stochastik in der Oberstufe mit vielen Beispielen

Mehr

Über ein Kartenspiel: Siebeneinhalb

Über ein Kartenspiel: Siebeneinhalb Über ein Kartenspiel: Siebeneinhalb Paula Lagares Federico Perea Justo Puerto MaMaEuSch Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 Universität Sevilla Dieses

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

WAHRSCHEINLICHKEITSTHEORIE I und II. Vorlesungsskript

WAHRSCHEINLICHKEITSTHEORIE I und II. Vorlesungsskript WAHRSCHEINLICHKEITSTHEORIE I und II Wolfgang König TU Berlin und WIAS Berlin Vorlesungsskript SS 2005 und WS 2005/06 überarbeitet im WS 2008/09 kleine Korrekturen im März und Juli 2012 und im März 2013

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr