Aufgabenblatt zum Seminar 09 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Größe: px
Ab Seite anzeigen:

Download "Aufgabenblatt zum Seminar 09 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)"

Transkript

1 Aufgabenblatt zum Seminar 09 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, Aufgaben 1. Im Folgenden nehmen wir an, dass die Lichtgeschwindigkeit c = ist. Sie und Ihren Hund benden sich zur Zeit t = 0 s bei x = 0 m. Ihr Hund entieht Ihnen in die +x-richtung mit v H = 1 m/s. Sie tauchen aus Ihren tiefschürfenden Gedanken zur Galileitransformation auf. Sie sehen Ihren Hund in der Distanz x H = 10 m. Sie keuchen ihm nach mit v I = 2 m/s nach. Zeichnen Sie das dazugehörige Minkowski-Diagramm und bestimmen Sie die Zeit und den Ort, zu der und an dem Sie überglücklich das Halsband des Hundes ergreifen können. 2. Ihr Uropa, der mit Ihnen bei x = 0 stand, bleibt an dieser Position. Geben Sie an, wieviel Zeit für Uropa, Sie und ihren Hund seit t = 0 s bis zum Ergreifen des üchtenden Tieres vergangen ist. 3. Ihre Uroma, die Sie und Ihre Lieben von Ferne und bezüglich der x-achse in Ruhe beobachtet, stellt durch Rückdatierung fest, dass Uropa genau als Sie ins Halsband des Hundes greifen einen fürchterlichen Niesanfall erleidet. Wie würde eine Schwalbe 1, die mit v S = 5 m/s den Punkt (0 m, 0 s) passiert, die obige Geschichte erzählen? Niest für die Schwalbe Uropa gleichzeitig, vor oder nach Ihrem Gri ans Halsband? Wie gross ist für die Schwalbe der Zeitunterschied zwischen den beiden Ereignissen? 4. Die Lichtgeschwindigkeit beträgt immer noch c =. Sie sitzen in einem Leuchtturm bei x = 0 m und beobachten zwei Öltanker, die sich entlang der x-achse bewegen. Der Erste hat die Geschwindigkeit v 1 = 5 m/s und passiert den Punkt (100 m, 0 s). Der Zweite fährt mit v 2 = 6 m/s und passiert den Punkt (120 m, 6 s). a) Mit welcher Geschwindigkeit nähert sich Tanker 2 Tanker 1, von Tanker 1 aus gemessen? b) Sie senden Tanker 2 zu Ihrer Zeit t = 0 per Licht den Befehl, dass die Geschwindigkeit auf v 2 = 5 m/s zu senken sei. i. Wenn bei t = 0 in Ihrem Bezugssystem alle Uhren aller Beteiligten auf null gestellt wurden (das geht, ist aber kompliziert), zu welcher Zeit t 2,1 hat Tanker 2 den Befehl erhalten? 1 macht allein noch keinen Sommer, leider!

2 KRM , Aufgabenblatt Nr ii. Tanker 2 antwortet 10 s in seiner Zeit später, dass der Befehl ausgeführt sei. Wann erhalten Sie diese Meldung? iii. Wann hat Tanker 1 (in seiner Zeit) den Befehl an Tanker 2 mitgehört und wann hat Tanker 1 die Quittung von Tanker 2, dass der Befehl ausgeführt sei, gehört? iv. Wie lange ist aus Sicht von Tanker 1 die Raktionszeit von Tanker 2? c) Wann passieren (Ihre Zeit und die Eigenzeiten der beiden Tanker) die Tanker Ihren Leuchtturm? d) Zeichnen Sie alles in ein Minkowski-Diagramm. 5. Die Lichtgeschwindigkeit sei immer noch c =. Sie lassen sich von einem Tata-Nano- Taxi (v Nano = 3 m/s) zur s = 3 km entfernten Disco fahren. Der Fahrer verlangt dafür 0.1 Einstein-Taler pro gefahrener Sekunde. Alternativ könnten Sie ein Porsche-Carrera- Taxi (v Carrera = 6 m/s) nehmen. Was wäre der angemessene Sekundenpreis, wenn gleiche Strecken (im Ruhesystem von Start und Ziel gemessen) gleich vergütet werden? Was wäre für beide Taxis der Kilometerpreis bezogen auf den Zähler des Autos, wenn die zu bezahlende Endsumme gleich bliebe? Was wäre für beide Taxen der Maximalpreis, wenn pro Kilometer abgerechnet wird und schwierige Verkehrsverhältnisse herrschen? 6. In der Relativitätstheorie kann eine eindimensionale Bewegung mit einem x, ct-diagramm dargestellt werden. Welche Winkel zur ct-achse haben ein Fahhrad mit 5m/s, ein Auto mit der in der Schweiz auf Autobahnen erlaubten Maximalgeschwindigkeit, die ISS und die Sonne auf ihrem Weg um das Zentrum unserer Galaxie? (Die Lichtgeschwindigkeit ist hier c = 0.3 Gm/s.) 7. µ-mesonen haben eine Lebensdauer von t 0 = 2 µs. Sie entstehen in der oberen Erdatmosphäre (h = 10 5 m). a) Berechnen Sie die aus der Sicht eines Beobachters auf der Erde notwendige Geschwindigkeit, damit die vom ruhenden Beobachter berechnete Flugzeit der bewegten µ-mesonen zur Erde gleich ihrer Lebensdauer ist. b) Berechnen Sie aus Sicht der µ-mesonen die Flugstrecke zur Erdoberäche. c) Sind diese beiden Betrachtungsweisen konsistent? 2 c Ulm University, Othmar Marti

3 3 KRM , Aufgabenblatt Nr (Im Seminar, 8 Min.) Sie iegen als Ingenieur des dritten Jahrtausends mit Ihrer Rakete durch die Weiten des Weltalls, und zwar mit einer Geschwindigkeit von v = m/s. Nehmen wir an, Sie legen für mich als einen auf der Erde zurückgebliebenen Beobachter die Strecke s = 1 Lj (die Einheit Lj steht für Lichtjahr) zurück. a) Wie viel Zeit ist für mich als ruhender Beobachter vergangen, bis Sie diese Strecke hinter sich gebracht haben? b) Wie viel Zeit ist für Sie im Inneren der Rakete vergangen, bis Sie diese Strecke hinter sich gebracht haben? c) Nehmen wir an, ich sah Ihre Rakete beim Start mit einer Länge von l = 10 m. Mit welcher Länge sehe ich Ihre Rakete während des Fluges. d) Wie lange ist für Sie als Reisende die zurückgelegte Strecke? 1 Lj = Pm (µg mg g kg Mg Gg Tg Pg Eg Zg Yg) Hinweis: Diese Aufgabe ist eine absolute Standardaufgabe, falls Relativitätstheorie geprüft werden soll. Alle Kandidaten sollten sie unbedingt beherrschen. c Ulm University, Othmar Marti 3

4 KRM , Aufgabenblatt Nr Lösungen 1. Das Minkowski-Diagramm sieht so aus Aus dem Diagramm liest man ab: t fangen = 22 s x fangen = 22 m 2. Für den Uropa ist die Zeit die aus dem Minkowski-Diagramm aus der vorherigen Aufgabe. Für den Hund haben wir t h = t fangen v2 H c 2 = 22 s Für Sie gilt t I = 11 s + 11 s ( 2 m/s ) 2 = 21, s ( 1 m/s ) 2 = 21, s 3. das Minkowski-Diagramm sieht für die Schwalbe so aus (im Ruhesystem der Uroma) 4 c Ulm University, Othmar Marti

5 5 KRM , Aufgabenblatt Nr Bei 1 niest Uropa, bei 2 greifen Sie ins Halsband. Bei 5 sieht die Schwalbe Uropa niesen, bei 6 sieht die Schwalbe, wie Sie ins Halsband greifen. Die rückdatierten Zeiten sind 3 und a) Um die Relativgeschwindigkeit des Tankers 2 gegen den Tanker 1 zu berechnen, muss vom Tanker 1 aus die Geschwindigkeit des Tankers 2 als Addition der Geschwindigkeiten des Tankers 2 und des Leuchtturms v 2,1 = v 2 + ( v 1 ) 1 + ( v 1)v 2 c 2 = 6 m/s + 5 m/s = m/s ( 6 m/s) 5 m/s 1 + () 2 b) Im Laborsystem bendet sich Tanker 2 zur Laborzeit 6 s bei x = 120 m. Mit der Geschwindigkeit v 2 = 6 m/s ist der Tanker zur Laborzeit t = 0 s bei x 2 (t = 0) = 120 m + 6 m/s 6 s = 156 m Wir berechnen nun die Zeit im Laborsystem, bis sich das Signal (Lichtgeschwindigkeit) und der Tanker 2 treen c t 0 = x 2 (t = 0) + v 2 t 0 t 0 = 156 m 6 m/s t 0 16 m/s t 0 = 156 m t 0 = 9.75 s c Ulm University, Othmar Marti 5

6 KRM , Aufgabenblatt Nr i. t 2,1 = t 0 ( v2 ) 2 t 2,1 = 9.75 s c ( ) 2 6 m/s = 9.75 s = 9.75 s = 9.75 s 0.8 = 7.8 s ii. Tanker 2 braucht in seinem System 10 s um zu antworten und die Geschwindigkeit zu verringern. Im Laborsystem dauert diese Zeitverzögerung t 2 = 10 s ( ) = 10 s v 2c = 12.5 s Der Tanker 2 bendet sich zum Zeitpunkt des Sendens zur Zeit 9.75 s s = s am Ort x = 156 m 6 m/s s = 22.5 m Für diese Distanz braucht das Licht Das Signal trit beim Leuchtturm bei t = 22.5 m = 2.25 s t = s s = 24.5 s iii. Den Befehl an Tanker 2 hört Tanker 1 in der Laborzeit c t 1 = x 1 (t = 0) + v 1 t 1 t 1 = 100 m 5 m/s t 1 15 m/s t 1 = 100 m t 0 = 6.66 s Diese Zeit muss noch in das Laborsystem des Tankers 1 umgerechnet werden t 1 = t 1 v2 1 c 2 = 6.66 s = 6.66 s = 5.77 s Die Quittung des Tankers 2 wurde im Laborsystem am Punkt P = (22.5 m, s) abgesandt. Das Signal trit, im Laborsystem auf Tanker m 5 m/s t 2 = 22.5 m (t s) 100 m 5 m/s t 2 = 22.5 m t m 22.5 s 100 m 5 m/s t 2 = 22.5 m t m m = 5 m/s t 2 t 2 = 29.5 s Im Inertialsystem des Tankers 1 ist die Zeitdauer t 2 = 29.5 s = s 6 c Ulm University, Othmar Marti

7 7 KRM , Aufgabenblatt Nr iv. Hier gibt es zwei Antworten. Erstens kann man die Zeitdierenz der beiden Signale nehmen t Reaktion = s 5.77 s = s Die zweite Möglichkeit ist, mit der bekannten Relativgeschwindigkeit die 10 s umzurechnen. 10 s ˆt Reaktion = ( ) = s m/s c) Tanker 1 passiert den Leuchtturm bei v 1 t LT,1 + x 1 (t = 0) = 0 t LT,1 = x 1(t = 0) v 1 = 100 m 5 m/s = 20 s Im Systems des Tankers ist die Zeit t LT,1 = 20 s v2 1 = 20 s = s c2 Bei Tanker 2 müssen die unterschiedlichen Geschwindigkeiten berücksichtigt werden. Der Tanker 2 bendet sich zum Zeitpunkt des Sendens zur Zeit 9.75 s s = s am Ort x = 22.5 m. Von dort aus bewegt er sich mit v 1 weiter 22.5 m+v 1 (t LT, s) = m 5 m/s t LT, m = 0 t LT,2 = s Im Inertialsystem des Tankers ist die Zeit t LT,2 = s (26.75 s s) = s d) c Ulm University, Othmar Marti 7

8 KRM , Aufgabenblatt Nr Im Laborsystem braucht das Nano-Taxi t Nano = 3 km 3 m/s = 1000 s Mit der Zeitdilatation dauert die Fahrt für den Fahrer t Nano = 1000 s Die Fahrzeit des Carrera-Taxis ist im Laborsystem Im Taxi vergeht die Zeit Preis t Carrera = 500 s ( ) 2 3 m/s = 953, 939 s t Carrera = 3 km 6 m/s = 500 s ( ) 2 6 m/s = 400 s P Carrera = 0.1 Einstein-Taler/s t Nano t Carrera = 0, Einstein-Taler/s Die Gefahrene Distanz für das Nano-Taxi in seinem Ruhesystem wäre ( ) 2 3 m/s s Nano = 3 km = 2861, 817 m Die Gefahrene Distanz für das Nano-Taxi in seinem Ruhesystem wäre ( ) 2 6 m/s s Carrera = 3 km = 2400 m Der Kilometerpreis wäre für das Nano-Taxi P Nano,km = 0.1 Einstein-Taler/s 953, 939 s 2, km = 33, 33 Einstein-Taler/km Der Kilometerpreis wäre für das Carrera-Taxi P Carrera,km = 0.1 Einstein-Taler/s 953, 939 s 2, 4 km = 39, 75 Einstein-Taler/km Der Maximalpreis wäre bei v 0 für das Nano-Taxi P Nano,km,max == 33, 33 Einstein-Taler/km 3km = 100 Einstein-Taler Der Maximalpreis wäre bei v 0 für das Carrera-Taxi P Carrera,km,max == 39, 75 Einstein-Taler/km 3km = 119, 24 Einstein-Taler 8 c Ulm University, Othmar Marti

9 9 KRM , Aufgabenblatt Nr tan α = v c 0 α 45 - Fahrrad:v = 5 m/s α = 9, Auto: v = 33, 3 m/s α = 6, ISS: v = 7702 m/s α = 1, Sonne: v = 220 km/s α = 4, a) Beobachter: v = v B, h = 10 5 m Flugzeit für Beobachter: t B = h/v B Zeit im bewegten Bezugssystem des Mesons Also t = t B (vb /c) 2 t = h (vb /c) v 2 =h B 1 v 2 B 1 c 2 t 2 h = 1 2 vb 2 c 2 t 2 h c = 1 = t2 2 vb 2 h + h2 = 1 ) (t 2 + h2 2 h 2 c 2 h 2 c 2 vb 2 = h 2 = h2 c 2 t 2 + h 2 /c 2 c 2 t 2 + h 2 v B = hc c2 t 2 + h 2 v B c = v B = m/s wenn c = 300 Mm/s b) Längenkontraktion: l = h v 2 B /c2 Mit dem vorigen Resultat l = h = v2 B c 2 =h hct c2 t 2 + h 2 h 2 c 2 c 2 (c 2 t 2 + h 2 ) = m wenn c = 300 Mm/s c) Ja. Für das Meson ist die Lebensdauer 2 µs, die Flugstrecke aber gering. Deshalb kommt es auf der Erdoberäche an. Für den ruhenden Beobachter ist die Flugstrecke lang, aber seine Zeit läuft viel schneller als die des Mesons. c Ulm University, Othmar Marti 9

10 KRM , Aufgabenblatt Nr Lösungsstrategie Bewegen sich zwei Bezugssysteme relativ zueinander, so nehmen Beobachter, die sich in unterschiedlich bewegten Systemen aufhalten, physikalische Grundgrössen wie Zeit, Raum und Masse unterschiedlich wahr. Diese Zusammenhänge gehören zu den Inhalten der Relativitätstheorie. Lösungsweg, explizit: In der speziellen Relativitätstheorie berechnet man diese Unterschiede der Wahrnehmung so: Zeitdilatation: t = t v2. c 2 Längenkontraktion: l = l v2. c 2 Massenzunahme: m = m. 1 v2 c 2 Dabei ist t = Zeitintervall in meinem System und l = Längenintervall in meinem System, sowie t = Zeitintervall im relativ zu mir bewegten System und l = Längenintervall im relativ zu mir bewegten System. Dazu ist ausserdem m = bewegte Masse im relativ zu mir bewegten System und m = dieselbe Masse in meinem System. Mit Bezug auf die Aufgabenstellung betrachte ich das System des im Weltraum iegenden Ingenieurs als bewegt und mein System als für mich ruhend. Wir wollen nun Zahlen einsetzen: Der Eektivität halber berechnen wir die Wurzel in diesen Formeln vorab einmal und setzen sie anschliessend in alle Lösungen zu den Aufgabenteilen (a), (b) und (c) ein: k = v2 c 2 T R (2 108 m/s) 2 (2, m/s) 2 T R 0, 745 a) Geschwindigkeit ist Strecke pro Zeit: v = s t = s. In meinem Bezugssystem t v iegen Sie mit v = m über eine Strecke von s = c 1Jahr. Damit wird Ihre s Flugzeit in meinem Bezugssystem t = s v = c 1 Jahr m/s = 2, m/s 1 Jahr m/s = 2, 998 Jahre T R 1, 499 Jahre 2 b) Für Sie vergeht aufgrund der Zeitdilatation während Ihres Fluges aber nur die Zeitspanne t = t v2 c 2 = t k = 1, 499 Jahre 0, 745 T R 1, 1168 Jahre c) Die Längenkontraktion führt dazu, dass ich Ihre Rakete mit verringerter Länge wahrnehme, nämlich mit l = l v2 c 2 = l k T R 10 m 0, 745 = 7, 45 m 10 c Ulm University, Othmar Marti

11 11 KRM , Aufgabenblatt Nr d) Die Strecke zum Ziel wird um den Faktor (v/c) 2 verkürzt. l F lug = lf lug (v/c) 2 = 1 Lj 0.2 Gm/s 0.3 Gm/s = 1 Lj 0.55 = Lj c Ulm University, Othmar Marti 11

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern. II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit

Mehr

y =y z =z (1) t = x = Gamma-Faktor

y =y z =z (1) t = x = Gamma-Faktor Gamma-Faktor Warum kann man eine Rakete nicht auf Lichtgeschwindigkeit beschleunigen? Diese Frage führt unmittelbar zur Speziellen Relativitätstheorie und zu den Lorentz- Transformationen. Die Lorentz-Transformationen

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Die SRT behandelt Ereignisse, die von einem Inertialsystem (IS) beobachtet werden und gemessen werden. Dabei handelt es sich um Bezugssyteme, in denen das erste Newton sche Axiom gilt. Die Erde ist strenggenommen

Mehr

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner 2012 Philipp Köhler Übersicht Newton sche Mechanik und Galileitransformation Elektrodynamik Äther und das Michelson Morley Experiment

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

RELATIVITÄTSTHEORIE. (Albert Einstein ) spezielle Relativitätstheorie - allgemeine Relativitätstheorie. Spezielle Relativitätstheorie

RELATIVITÄTSTHEORIE. (Albert Einstein ) spezielle Relativitätstheorie - allgemeine Relativitätstheorie. Spezielle Relativitätstheorie RELATIVITÄTSTHEORIE (Albert Einstein 1879-1955) spezielle Relativitätstheorie - allgemeine Relativitätstheorie Spezielle Relativitätstheorie (Albert Einstein 1905) Zeitdilatation - Längenkontraktion =

Mehr

Übungsblatt 10 Physik für Ingenieure 1

Übungsblatt 10 Physik für Ingenieure 1 Übungsblatt 10 Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 18. 12. 2001 1 Aufgaben für die Übungsstunden Spezielle Relativitätstheorie 1 1. Schliesse einen 6 m langen Stab in

Mehr

Minkowski-Geometrie in der Schule. Michael Bürker

Minkowski-Geometrie in der Schule. Michael Bürker Minkowski-Geometrie in der Schule Michael Bürker buerker@online.de Gliederung Weg-Zeit-Diagramme Grundprinzipien der speziellen Relativitätstheorie Drei Symmetrieprinzipien Der relativistische Faktor Lorentz-Kontraktion

Mehr

Lorentz-Transformation

Lorentz-Transformation Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas

Mehr

Übungsauftrag zur Kinematik - Lösungen

Übungsauftrag zur Kinematik - Lösungen Übungsauftrag zur Kinematik - Lösungen Aufgaben zu Bewegungsdiagrammen 1. Autofahrt Die Bewegung eines Autos lässt sich durch folgendes Diagramm beschreiben: (a) Beschreibe die Bewegung so genau wie möglich

Mehr

Musteraufgaben. Fach: Physik - Gleichförmige Bewegung Anzahl Aufgaben: 20. Aufgabe 1. Aufgabe 2. Aufgabe 3. Aufgabe 4

Musteraufgaben. Fach: Physik - Gleichförmige Bewegung Anzahl Aufgaben: 20. Aufgabe 1. Aufgabe 2. Aufgabe 3. Aufgabe 4 Musteraufgaben Fach: Physik - Gleichförmige Bewegung Anzahl Aufgaben: 20 Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)

Mehr

Aufgaben zu den Bewegungen

Aufgaben zu den Bewegungen Aufgaben zu den Bewegungen 1. Im Märchen Rapunzel wird das Mädchen von einer Zauberin in einen Turm eingesperrt, der ohne Tür war und nur oben ein kleines Fenster hatte. Wenn die Zauberin hinein wollte,

Mehr

Kapitel 2. Lorentz-Transformation

Kapitel 2. Lorentz-Transformation Kapitel 2 Lorentz-Transformation Die Galilei-Transformation aus Abschnitt 1.7 wurde durch eine Vielzahl von Experimenten erfolgreich überprüft und gehört zu den Grundlagen der klassischen Mechanik. Die

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik

Mehr

Zusammenfassung: Lichtgeschwindigkeit m/s per Definition! Das ist eigentlich Definition des Meters:

Zusammenfassung: Lichtgeschwindigkeit m/s per Definition! Das ist eigentlich Definition des Meters: Zusammenfassung: Lichtgeschwindigkeit c 299.792.458 m/s per Definition! Das ist eigentlich Definition des Meters: Einsteins Postulate: 1) Relativitätsprinzip: (Alle) IS sind für Beschreibung (aller) physikalischen

Mehr

Aufgabenblatt zum Seminar 06 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 06 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 6 PHYS7356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik Othmar Marti, (othmar.marti@uni-ulm.de 4. 11. 8 1 Aufgaben 1. Ein

Mehr

Zweisprachiger Wettbewerb Physik 1. Schuljahr

Zweisprachiger Wettbewerb Physik 1. Schuljahr Zweisprachiger Wettbewerb Physik 1. Schuljahr Lieber Schüler, liebe Schülerin, Der Wettbewerb besteht aus 20 Fragen. Sie sollten von den vorgegebenen Lösungsmöglichkeiten immer die einzige richtige Lösung

Mehr

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit

Mehr

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Handout zur Konstruktion von Raumzeit-Diagrammen mit GeoGebra Stefan Völker und Karl-Heinz Lotze, Jena Stefan Völker AG Fachdidaktik der Physik

Mehr

Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 0. 0. 009 1 Aufgaben

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E Schwerpunktssystem Schwerpunktssatz, Zwei-Körper Systeme:reduzierte Masse Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html 0. Dez. 06 ct

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen.

Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. 1 Optik 1.1 Brechung des Lichtes Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. α β 0 0 10 8 17 13 20

Mehr

Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Auf welche Stoffe wirkt die Magnetkraft?

Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Auf welche Stoffe wirkt die Magnetkraft? Auf welche Stoffe wirkt die Magnetkraft? Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Wie nennt man den Bereich, in dem die Magnetkraft wirkt? Der Bereich in dem die

Mehr

...auf der Spur Jesu. Auferweckung und Naturwissenschaft Passt die Relativitätstheorie in die Bibel? E =m c 2. m v 2 1 c 2.

...auf der Spur Jesu. Auferweckung und Naturwissenschaft Passt die Relativitätstheorie in die Bibel? E =m c 2. m v 2 1 c 2. ...auf der Spur Jesu Auferweckung und Naturwissenschaft Passt die Relativitätstheorie in die Bibel? E =m c 2 m t = m v 2 1 c 2 T = T 0 v 2 1 c 2 Vorwort Es geht in den nächsten 90 Minuten um die spezielle

Mehr

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) CURANDO Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 11. 005 Prüfungstermin 30. 11. 005, 13:15 bis 14:00 Name Vorname Matrikel-Nummer

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 11. 11. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

DIE GEBURT EINES NEUEN WELTBILDES

DIE GEBURT EINES NEUEN WELTBILDES Medienbegleitheft zur DVD 14213 DIE GEBURT EINES NEUEN WELTBILDES 100 Jahre Einsteins Relativitätstheorie Medienbegleitheft zur DVD 14213 20 Minuten, Produktionsjahr 2015 Inhaltsverzeichnis Voraussetzungen

Mehr

Philosophie der Physik II Relativitätstheorie

Philosophie der Physik II Relativitätstheorie Joachim Stiller Philosophie der Physik II Relativitätstheorie Copyright by Joachim Stiller Alle Rechte Vorbehalten Relativitätstheorie In diesem Thread soll es einmal um die Philosophie der Relativitätstheorie

Mehr

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt.

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Distanzen und Grössen im Planetenweg Arbeitsblatt 1 Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Anders gesagt: Der Massstab

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 2. KINEMATIK, DYNAMIK (I) 2.1 Gleichförmige Bewegung: Aufgabe (*) 4 a. Zeichnen Sie ein s-t-diagramm der gleichförmigen

Mehr

Messung der Astronomischen Einheit nach Ole Römer

Messung der Astronomischen Einheit nach Ole Römer Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Ole Römer Einleitung Misst man um die Zeit der Jupiteropposition

Mehr

Kosmologische Entfernungen Samstag, 07. März Das heißt, dass sich

Kosmologische Entfernungen Samstag, 07. März Das heißt, dass sich Reiner Guse Astro-Stammtisch Peine Kosmologische Entfernungen Samstag, 07. März 2015 Amateurastronomie in 360 Planetarium Wolfsburg 1. Die Expansion des Universums und ihre Folgen Hubble stellte 1929 fest,

Mehr

Arbeitsblatt Mathematik: Bewegungsaufgaben

Arbeitsblatt Mathematik: Bewegungsaufgaben Arbeitsblatt Mathematik: Bewegungsaufgaben Seite 1 von 12 Arbeitsblatt Mathematik: Bewegungsaufgaben Bewegungsaufgaben enthalten Angaben zu mindestens einem Objekt, das entlang einer Bahn bewegt wird bzw.

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

Einblicke in die spezielle Relativitätstheorie

Einblicke in die spezielle Relativitätstheorie Einblicke in die spezielle Relativitätstheorie M. Jakob Gymnasium Pegnitz 3. April 2015 Inhaltsverzeichnis 1 Grundaussagen der speziellen Relativitätstheorie 1.1 Notwendigkeit 1.2 Annahmen 1.3 Ergebnisse

Mehr

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Hypothese Nach der Thermal-Time-Theorie (ttt) ist die Gravitation keine Kraft zwischen zwei Massen, sondern eine Beschleunigung bzw. Kraft,

Mehr

8 Spezielle Relativitätstheorie

8 Spezielle Relativitätstheorie 8 Spezielle Relativitätstheorie Im Jahr 1905 veröffentlichte Albert Einstein seine berühmte spezielle Relativitätstheorie, in der er die Kenntnisse über die Struktur von Raum und Zeit revolutionierte.

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

1.5 Relativistische Kinematik

1.5 Relativistische Kinematik 1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das

Mehr

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. Kinematik von Punktmassen Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. a. Wie lange braucht der Ball bis ins Tor? Lsg.: a) 0,333s Aufgabe 2. Ein Basketball-Spieler

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften 12 Relativitätstheorie Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 06. Juli 2009 Die Relativitätstheorie besteht aus

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Einführung in die Spezielle Relativitätstheorie

Einführung in die Spezielle Relativitätstheorie Einführung in die Spezielle Relativitätstheorie Lara Kuhn 12.06.15 Dies ist eine Zusammenfassung des Vortrags, den ich in dem Semiar zur Elektrodynamik und Speziellen Relativitätstheorie von Professor

Mehr

Grundideen der allgemeinen Relativitätstheorie

Grundideen der allgemeinen Relativitätstheorie Grundideen der allgemeinen Relativitätstheorie David Moch La Villa 2006 Inhalt Newtons Physik und ihr Versagen Einsteins Lösung von Raum und Zeit: Die spezielle Relativitätstheorie Minkowskis Vereinigung

Mehr

Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen

Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Bewegt sich ein Körper geradlinig, dann kann mit einem Zeit-Ort-Diagramm dargestellt

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Albert Einstein s Relativitätstheorie für Laien

Albert Einstein s Relativitätstheorie für Laien Albert Einstein s Relativitätstheorie für Laien Ein Versuch der Veranschaulichung von Prof. Dr. Gerd Ganteför Fachbereich Physik Universität Konstanz 1879-1955 Albert Einstein mit 21 Diplom ETH mit 23

Mehr

Lineare Gleichungssysteme mit zwei Variablen, lineare Funktionen. Zeit-Weg-Diagramme, Textgleichungen

Lineare Gleichungssysteme mit zwei Variablen, lineare Funktionen. Zeit-Weg-Diagramme, Textgleichungen MATHEMATIK Unterrichtsfach Themenbereich/e Schulstufe (Klasse) Fachliche Vorkenntnisse Sprachliche Kompetenzen Zeitbedarf Material- und Medienbedarf Sozialform/en Methodische Tools Hinweise zur Durchführung

Mehr

60 h+ 9. = 0.01679 60min = 1.0074 min = 1min + 0.0074min = 1min + 0.0074 60s = 1min + 0.444s = 1:00.444

60 h+ 9. = 0.01679 60min = 1.0074 min = 1min + 0.0074min = 1min + 0.0074 60s = 1min + 0.444s = 1:00.444 Seiten 5 / 6 / 7 Berechnungen mit s, v und t Seiten 3 / 4 Umrechnen von Geschwindigkeit und Zeitangaben 1 km h 36 9 158 83 30.96 50 120 54 140.4 m s 10 2.5 43.89 23.06 16.67 8.6 13.89 33.33 15 39 :3.6

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Spezielle Relativitätstheorie. Schein oder Wirklichkeit

Spezielle Relativitätstheorie. Schein oder Wirklichkeit Spezielle Relatiitätstheorie Schein oder Wirklichkeit Spezielle Relatiitätstheorie im Widerspruch Es dauerte bekanntlich nahezu 40 Jahre bis zur ersten experimentellen Bestätigung der Speziellen Relatiitätstheorie.

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Prof. Dr. Werner Becker Max-Planck Institut für extraterrestrische Physik

Prof. Dr. Werner Becker Max-Planck Institut für extraterrestrische Physik Prof. Dr. Werner Becker Max-Planck Institut für extraterrestrische Physik Email: web@mpe.mpg.de Worüber wir heute sprechen wollen: Warum interessieren sich die Menschen für Astronomie? Welche Bedeutung

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 56 KINEMATIK, DYNAMIK (II) 2.16 Bungee-Sprung von der Brücke: Aufgabe (***) 57 Beim Sprung von der Europabrücke wird nach

Mehr

Naturwissenschaften, Teil Physik

Naturwissenschaften, Teil Physik Die Prüfung Naturwissenschaften dauert insgesamt 4 Stunden. Sie umfasst die drei gleichwertigen Teile Biologie, Chemie und Physik à je 80 Minuten: Kand.-Nr.: Note: Name, Vorname: Für die Korrigierenden

Mehr

Seite 4. Lösungen Mathematik 2 Dossier 9 In Bewegung 3.6 :3.6. Umrechnen von Geschwindigkeit und Zeitangaben

Seite 4. Lösungen Mathematik 2 Dossier 9 In Bewegung 3.6 :3.6. Umrechnen von Geschwindigkeit und Zeitangaben 1 km h 36 9 158 83 60 30.96 50 120 54 140.4 m s 10 2.5 43.89 23.06 16.67 8.6 13.89 33.33 15 39 3.6 :3.6 Seite 4 Umrechnen von Geschwindigkeit und Zeitangaben 2 a) 4:33:56.16 = 4 h 33min 56.16s = 4h + 33

Mehr

Albert Einstein. Leben und Werk

Albert Einstein. Leben und Werk Albert Einstein Leben und Werk Kindheit und Jugend Am 14.03.1879 wird Albert Einstein in Ulm (Donau) geboren. In München, wo seine Eltern eine Elektrotechnische Fabrik besitzen, geht er zur Schule. Als

Mehr

Die Physik Albert Einsteins im Schülerlabor. Dr. Thomas Trefzger Jörg Kühnel Universität Mainz

Die Physik Albert Einsteins im Schülerlabor. Dr. Thomas Trefzger Jörg Kühnel Universität Mainz Die Physik Albert Einsteins im Schülerlabor Dr. Thomas Trefzger Jörg Kühnel Universität Mainz Einsteinjahr 2005 KinderUni Wissenschaftsmarkt 2005, zweitägige Veranstaltung der Uni mit 20.000 Besuchern

Mehr

Signalgeschwindigkeit und Wahrnehmung

Signalgeschwindigkeit und Wahrnehmung Signalgeschwindigkeit und Wahrnehmung Udo Backhaus, Universität Duisburg-Essen 17. März 2005 Wenn man einen sich bewegenden Körper hört oder sieht, nimmt man ihn nicht so wahr, wie er im Moment der Wahrnehmung

Mehr

Die gleichförmige Bewegung (Schularbeitsbeispiele von 0974 bis 1095)

Die gleichförmige Bewegung (Schularbeitsbeispiele von 0974 bis 1095) Die gleichförmige Bewegung (Schularbeitsbeispiele von 0974 bis 1095) 1) Eine Kugel rollt gleichförmig und hat nach 7,2 s den Weg 10 m zurückgelegt. Nach welcher Zeit hat sie den Weg 135 m zurückgelegt?

Mehr

Mathematik Klasse 9b, AB 03 Lineare Funktionen 02 - Lösung

Mathematik Klasse 9b, AB 03 Lineare Funktionen 02 - Lösung Allgemeiner Hinweis: An einigen Stellen fehlen aus Platzgründen bei Gleichungsumformungen die Anzeige der Äquivalenzumformungen, wenn sie eindeutig sind. Also 2 x=10 x=5 statt 2x=10 :2 x=5. In der Arbeit

Mehr

Der Komet im Cocktailglas

Der Komet im Cocktailglas Der Komet im Cocktailglas Wie Astronomie unseren Alltag bestimmt Bearbeitet von Florian Freistetter 1. Auflage 2013. Buch. 224 S. Hardcover ISBN 978 3 446 43505 6 Format (B x L): 13,4 x 21,1 cm Gewicht:

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

Lösungsblatt Flugzeug bei Wind (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS2007/08)

Lösungsblatt Flugzeug bei Wind (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS2007/08) Lösungsblatt 8 Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS7/8) Wolfgang v. Soden (wolfgang.soden@uni-ulm.de) 11. 1. 7 43 Flugzeug bei Wind (P) Das Problem wird hier als ebenes Problem behandelt,

Mehr

Zweisprachiger Wettbewerb Physik 2. Schuljahr

Zweisprachiger Wettbewerb Physik 2. Schuljahr Zweisprachiger Wettbewerb Physik 2. Schuljahr Lieber Schüler, liebe Schülerin, Der Wettbewerb besteht aus 20 Fragen. Sie sollten von den vorgegebenen Lösungsmöglichkeiten immer die einzige richtige Lösung

Mehr

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Versuchsziel Geschwindigkeitsmessung mit Hilfe

Mehr

Grundlegende Aspekte der speziellen Relativitätstheorie

Grundlegende Aspekte der speziellen Relativitätstheorie Grundlegende Aspekte der speziellen Relativitätstheorie Theoretische Physik Universität Ulm 89069 Ulm Kolloquium für Physiklehrende Universität Ulm, 10. Feb. 2009 Inhalt Einleitung Lorentz-Transformation

Mehr

WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT?

WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT? WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT? Jürgen R. Reuter, DESY Science Café, DESY 28.11.2012 ALLTAG: (GPS-)NAVIGATION MIT IPHONE Smartphone enthält GPS- Empfänger Positionsbestimmung

Mehr

Leseprobe. Florian Freistetter. Der Komet im Cocktailglas. Wie Astronomie unseren Alltag bestimmt. ISBN (Buch): 978-3-446-43505-6

Leseprobe. Florian Freistetter. Der Komet im Cocktailglas. Wie Astronomie unseren Alltag bestimmt. ISBN (Buch): 978-3-446-43505-6 Leseprobe Florian Freistetter Der Komet im Cocktailglas Wie Astronomie unseren Alltag bestimmt ISBN (Buch): 978-3-446-43505-6 ISBN (E-Book): 978-3-446-43506-3 Weitere Informationen oder Bestellungen unter

Mehr

2 Gleichmässig beschleunigte Bewegung

2 Gleichmässig beschleunigte Bewegung 2 Gleichmässig beschleunigte Bewegung Ziele dieses Kapitels Du kennst die Definition der Grösse Beschleunigung. Du kannst die gleichmässig beschleunigte Bewegung im v-t- und s-t-diagramm darstellen. Du

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1 Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1. Zeichne die Graphen zu den folgenden Funktionen in ein Koordinatensystem, indem Du zuerst

Mehr

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung Rotverschiebung In der Astronomie wird die Rotverschiebung mit dem Buchstaben z bezeichnet. Mit ihrer Hilfe lassen sich z.b. Fluchtgeschwindigkeiten, Entfernungen und Daten aus früheren Epochen des Universum

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Das Konzept der Raumzeit-Krümmung

Das Konzept der Raumzeit-Krümmung Das Konzept der Raumzeit-Krümmung Franz Embacher Fakultät für Physik der Universität Wien Vortrag auf der Jahrestagung der Wiener Arbeitsgemeinschaft für Astronomie Wien, 14. November 2015 Das Konzept

Mehr

Mittel- und Oberstufe - MITTEL:

Mittel- und Oberstufe - MITTEL: Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder

Mehr

Spezielle Relativitätstheorie. Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion. Einsteins Gedanken-Experiment

Spezielle Relativitätstheorie. Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion. Einsteins Gedanken-Experiment Spezielle Relativitätstheorie Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion Vorlesung von Prof. Dr. Cornelis ( Kees ) Dullemond in Zusammenarbeit mit Elena Kozlikin, Benjamin

Mehr

Klausur Physik 1 (GPH1) am

Klausur Physik 1 (GPH1) am Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 7.3.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

Prof. Liedl Übungsblatt 4 zu PN1. Übungen zur Vorlesung PN1 Lösungsblatt 4 Besprochen am

Prof. Liedl Übungsblatt 4 zu PN1. Übungen zur Vorlesung PN1 Lösungsblatt 4 Besprochen am Aufgabe 1: Verschlafen Übungen zur Vorlesung PN1 Lösungsblatt 4 Besprochen am 13.11.2012 Um pünktlich in die Uni zu kommen fahren sie mit dem Auto. a Sie fahren aus der Tiefgarage und beschleunigen danach

Mehr

Technische Oberschule Stuttgart

Technische Oberschule Stuttgart Aufnahmeprüfung Physik 2010 Seite 1 von 9 Zu bearbeiten sind 4 der 6 Aufgaben innerhalb von 60 Minuten. Aufgabe 1 (Mechanik): Ein Bauer pflügt seinen Acker, dabei braucht der Traktor für eine Strecke von

Mehr

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676)

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" Empfehlenswerte Notizen: David Mermin (Cornell University, USA): "Physics 209: Introductory Notes on Relativity" www.lassp.cornell.edu/~cew2/p209/p209_home.html

Mehr

Aufgabe 34 (Mechanik, Drehbewegung) Die Spitze des Minutenzeigers einer Turmuhr hat die Geschwindigkeit 1,50 mms -1. Wie lang ist der Zeiger?

Aufgabe 34 (Mechanik, Drehbewegung) Die Spitze des Minutenzeigers einer Turmuhr hat die Geschwindigkeit 1,50 mms -1. Wie lang ist der Zeiger? zu 2.2 / IV. Wiederholung zur Drehbewegung (Rotation) Aufgabe 31 (Mechanik, Drehbewegung) Fach: Physik/ L. Wenzl Datum:. Der Erdradius beträgt etwa 6370 km. Mit welcher Geschwindigkeit bewegt sich ein

Mehr

Spezielle Relativitätstheorie (Einstein, 1905)

Spezielle Relativitätstheorie (Einstein, 1905) Spezielle Relativitätstheorie (Einstein, 1905) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 8. 7. 29 Aufgaben. In der Vorlesung

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name, Matrikelnummer: Physik 2 (GPh2) am 26.3.10 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung

Mehr

1. Probe - Klausur zur Vorlesung E1: Mechanik

1. Probe - Klausur zur Vorlesung E1: Mechanik Fakultät für Physik der LMU 27.12.2011 1. Probe - Klausur zur Vorlesung E1: Mechanik Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr. Frank Jäckel Name:... Vorname:... Matrikelnummer:...

Mehr

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 4. 06. 009 Aufgaben. Wie in

Mehr

MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8.

MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8. MSA Probearbeit www.mathementor.de Stand 22.5.09 1. Fassen Sie die Terme zusammen soweit es geht: x + 10 (4 2x) = (3x + 4)² (x² + 2x + 15) = 4a²b³ : 2a³bz = 5bz 25z² 2. Berechnen Sie: Ein Viertel des Doppelten

Mehr

21 Spezielle Relativitätstheorie

21 Spezielle Relativitätstheorie Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr