Erzwungene Schwingungen

Größe: px
Ab Seite anzeigen:

Download "Erzwungene Schwingungen"

Transkript

1 In diesem Experiment sollen Sie die grundlegenden Eigenschaften von harmonischen Schwingungen kennenlernen. Dabei ist der ausführliche theoretische Abschnitt nicht nur für diesen Versuch, sondern auch für Ihren weiteren fachlichen Werdegang nicht unwesentlich. 1 Vorbereitung 1.1 Realitätsbezug finden sie überall: Beispielsweise bei Kinderschaukeln, allen mechanischen Uhren (Sekundentakt) und Musikinstrumenten (Luftschwingungen). Für diese Geräte könnte der ein oder andere ein fehlendes Wissen über die zugrunde liegenden physikalischen Vorgänge allerdings mehr oder weniger verschmerzen. In der Technik ist das ganz anders: Töne sind nichts anderes als Schwingungen der Luft. Ein Hörgerät, Ihre Steroanlage und der Lautsprecher im Fernseher müssen genau 1

2 Rücktreibende Kraft Rücktreibende Kraft Abbildung 1: Rückstellende Kraft bei einem Pendel diese Schwingungen produzieren. Wenn Sie in einem Flugzeug sitzen, werden die Flügel durch die Luft zum Schwingen angeregt. Wenn die Flugzeugindustrie nicht über Wissen über mechanische Schwingungen verfügen würde, wären bereits einige Flügel in der Luft abgebrochen. Zum Glück kann dieses Unglück, sollte es doch passieren, über Radar entdeckt werden und der Mitarbeiter nimmt sein Handy aus der Tasche und ruft die Feuerwehr und die Presse an, so dass Sie die neuesten Informationen auf Ihrem Fernseher betrachten können. Jede dieser Informationskanäle funktioniert wieder über (diesmal elektromagnetische) Schwingungen. Und auch wenn Sie später kein Handy bauen möchten, so werden Sie dennoch beispielsweise Auto fahren. Ihnen ist sicher bereits aufgefallen, dass ein mittelteures, nicht mehr ganz neues Auto bei einer ganz bestimmten Geschwindigkeit starke Fahrgeräusche (von der Karosserie, nicht vom Motor) von sich gibt. Wenn Sie weiter beschleunigen, werden diese wieder leiser. Sie haben sicher auch bereits einmal erlebt, wie bei hohen Geschwindigkeiten eine Art dumpfes Knattern entsteht, wenn Sie das Fenster leicht geöffnet haben. Wenn Sie das Fenster ein wenig weiter öffnen oder schließen, hört das wieder auf. Hierbei handelt es sich um bei Schwingungen übliche Resonanzphänomene, die Sie nun genau beobachten werden. 1.2 Versuchsbeschreibung Allgemeine Gedanken Für eine Schwingung muss das schwingende Objekt je nach dessen Aufenthaltsort eine rückstellende Kraft erfahren, die es in Richtung der Ausgangsposition beschleunigt (Abb. 1). Die einfachste Art von Schwingungen sind harmonische Oszillationen 1, d.h. Schwingungen, bei denen die rückstellende Kraft direkt proportional zur Auslenkung ist, wie es zum Beispiel bei einer Feder der Fall ist. Wenn Sie bereits einmal mit verschiedenen Frequenzen an einem Treppengeländer gerüttelt haben, dann wissen Sie, dass sich Systeme, die prinzipiell zu Schwingungen in der Lage sind, einmal besser und einmal schlechter anschubsen 2 lassen. Weiterhin ist es Ihnen klar, dass ein System mit einer eingebauten 1 Fachbegriff für Schwingung 2 physikalisch: erregen 2

3 Bremse 3 je nach Dämpfung langsamer oder schneller zur Ruhe kommt. Falls das System zu stark gebremst wird, kommt es zu gar keiner Schwingung mehr. All diese Phänomene sollen in diesem Experiment genau beleuchtet werden Versuchsaufbau Als schwingendes System werden wir ein Drehpendel genauer: eine spitzengelagerte Kupferscheibe betrachten, das von einer Spiralfeder in der Ruhelage gehalten wird. Die Dämpfung übernimmt ein Elektromagnet, der als Wirbelstrombremse wirkt. Durch den Spulenstrom von bis zu (kurzzeitigen) 2 A können Sie die Dämpfung frei einstellen und messen. Durch einen Gleichstrommotor kann die Kupferscheibe über eine Schubstange zu erzwungenen Schwingungen erregt werden. Sie können die Geschwindigkeit des Motors (und dadurch die Erregerfrequenz) mit einer Gleichspannung zwischen 1, 7 V und max. 24 V einstellen. Die Grob- und Feinregulierung dieser Spannung wird durch angebrachte Potentiometer, die am Motor angebracht sind, vorgenommen und gemessen. Die Erregeramplitude können sie an der Schubstangenbefestigung einstellen: Will man die Amplitude verstellen, so braucht man nur die Verschraubung der Schubstange mit dem an der Feder befestigten Hebel zu lösen und die Schubstange in der Führung des Hebels zu verschieben. Verschieben nach oben gibt größere, verschieben nach unten kleinere Amplituden des Erregers. Die Stellung des Oszillators können Sie an einer feststehenden Winkelscheibe, die nach beiden Seiten in 20 Skalenteile unterteilt ist, ablesen. In der Ruhestellung steht der Zeiger senkrecht nach oben, d.h. auf Markierung Null. Die Ablesegenauigkeit beträgt etwa 0,1 Skalenteile. Um die Geschwindigkeit des schwingenden Körpers zu messen, betrachten wir zunächst die Kupferscheibe: sie hat einen Radius von 9, 45 cm. In den Umfang des Rades ist eine feine Rille eingearbeitet, in der der Faden eines Tachymeters geführt werden kann. Ein Tachymeter misst gleichzeitig Geschwindigkeit und Beschleunigung von Körpern, deren Bewegung mit Hilfe eines Fadens auf das Laufrad des Tachymeters übertragen wird. Es besteht aus einem Bewegungsaufnehmer und einer Messeinheit. Der Bewegungsaufnehmer enthält einen reibungsarmen Tachogenerator, der von einem Laufrad, über das der Messfaden läuft, angetrieben wird. Die Drehbewegung des Laufrades wird damit in eine zur Geschwindigkeit proportionale Spannung umgewandelt. Der Faden wird in der Rille des Drehpendels festgeklebt und der Bewegungsaufnehmer wird mit Hilfe von Stativmaterial so befestigt, dass der Faden tangential zur Metallscheibe verläuft. Die Messeinheit des Tachymeters besitzt einen Eingang für die Spannung des Bewegungsaufnehmers. Zur Registrierung von Geschwindigkeit und Drehzahl gibt es Anschlussbuchsen für einen Schreiber. Außerdem können Messungen der Geschwindigkeit und der Beschleunigung auf kalibrierten Skalen abgelesen werden. 3 man spricht hier von einem gedämpften System 3

4 1.3 Eigenrecherche Bevor Sie sich in den Rechnungen verirren, informieren Sie sich bitte über das Funktionsprinzip einer Wirbelstrombremse 4. Sie müssen sich für dieses Experiment konzentriert in die theoretischen Grundlagen einlesen. Nennen Sie bitte zum Einstieg die Bewegungsgleichung für freie 5 und gedämpfte 6 Schwingungen beim Drehpendel. Lösen Sie die Gleichung für gedämpfte Schwingungen allgemein und diskutieren Sie die Spezialfälle (Schwingfall, aperiodischer Grenzfall, Kriechfall 7 ) 8. Nennen Sie in Ihrer Ausarbeitung die Begriffe Dämpfungskonstante, Gütefaktor und Abklingzeit. Da wir es mit erregten Schwingungen zu tun haben, müssen Sie auch noch diesen komplizierteren Fall diskutieren: Nennen Sie die Bewegungsgleichung von erregten Schwingungen 9, zeichnen Sie die daraus resultierende Resonanzkurve für zwei verschiedene Dämpfungen 10 und definieren Sie in diesem Zusammenhang den Q-Faktor 11. Wie ist die Phasenbeziehung des Erregers und des Oszillators zueinander 12? 1.4 Bereitstellung von Formeln Gedämpfte Schwingungen Der zeitliche Verlauf von gedämpften Drehschwingungen kann auf mehrere Arten allgemein dargestellt werden. Wir entscheiden uns für die folgende Form: ϕ(t) = ϕ 0 e δt cos (ωt + α) mit ω = ω0 2 δ2 Hierbei ist δ der Abklingkoeffizient, ω 0 die Resonanzfrequenz des ungedämpften Systems, ϕ 0 die Amplitude der Schwingung vor der Dämpfung und α die Phase zum Startpunkt t = 0. Mit dem Verhältnis von zwei aufeinanderfolgenden Amplituden definiert man das logarithmische Dekrement Λ über ( ) ϕn Λ := ln. ϕ n+1 Λ ist ein Maß für die Dämpfung des Systems. Es gelten folgende Beziehungen: Λ = 1 ( ) m ln ϕn = T und τ ϕ n+m f 0 = f 1 + Λ2 4π 2, (1) wobei T := 1/f die Schwingungsdauer des gedämpften Systems, τ := 1/δ die Abklingzeit und f 0 := ω 0 2π ist. 4 [Mes04], S. 383 und [Tip94], S [Mes04], S. 85 f. und [Tip94], S [Mes04], S. 150 ff. und [Tip94], S. 401 ff. 7 Im Buch Tipler Physik heißen diese Fälle kritisch gedämpft und überdämpft 8 [Mes04], S. 150 ff. und [Tip94], S. 403 ff. 9 [Mes04], S. 154 und [Tip94], S [Mes04], S. 155 und [Tip94], S [Mes04], S. 157 und [Tip94], S [Mes04], S. 154 und [Tip94], S

5 1.4.2 Wir entscheiden uns hier für die folgende mathematische Darstellung des zeitlichen Verlaufs von erzwungenen Schwingungen: ϕ(t) = ϕ 0 (ω e, δ) sin (ω e t β) + ϕ a e δt sin (ωt + α) (2) Nach einer Einschwingzeit ist die durch den zweiten Term beschriebene gedämpfte Schwingung abgeklungen und es liegt eine Schwingung mit der Kreisfrequenz ω e des Erregers vor, für deren Amplitude gilt: const. ϕ 0 (ω e, δ) = (ω ). (3) 2 e ω (2δωe ) 2 Diese Gleichung für die Amplitudenresonanzkurven lässt sich in folgende Form umschreiben: ϕ 0 = f (f, δ) mit f = ω e ω 0 dabei stellt sich heraus, dass die Maxima dieser Resonanzkurven bei ( ) δ 2 fmax = 1 2 liegen. Bei relativ schwachen Dämpfungen (δ ω 0 ) ist f max 1 bzw. ω emax ω 0. Das bedeutet, dass das System bei kleiner Dämpfung genau dann maximale Amplitude hat, wenn der Erreger mit der Eigenfrequenz des Oszillators schwingt Geschwindigkeitsresonanzkurven Mit Hilfe von Gleichungen 2 und 3 kann man zeigen, dass die Geschwindigkeitsresonanzkurven durch die Gleichung ϕ 0 (f, δ) = f ω 0 const. ω 0 (1 f 2 ) 2 + ( 2δf ω 0 ) 2 beschrieben werden. Die Resonanzmaxima liegen hierbei unabhängig von der Dämpfung immer bei f = 1, d.h. bei ω e = ω 0. 2 Aufgaben 2.1 Messungen am freischwingenden System Frequenz Bestimmen Sie mit Hilfe einer Stoppuhr die Frequenz f des freischwingenden Kupferrades als Mittelwert aus dreimaliger Messung der Zeitdauer für jeweils 20 Schwingungsperioden. 5

6 I d [A] k T [s] k T [s] τ [s] ϕ 1 [Skt] ϕ 1+m [Skt] m Λ 1 Λ τ T Tabelle 1: Messergebnisse zur k-fachen Schwingungsdauer f T, zur Abklingzeit τ, zur ersten und (1 + m)-ten Amplitude ϕ 1 bzw. ϕ 1+m und daraus ermitteltes logarithmisches Dekrement Λ bei drei Dämpfungsströmen I d Dämpfung Infolge unvermeidlicher Dämpfung stimmt diese gemessene Frequenz f mit der Frequenz f 0 des ideal ungedämpften Systems nicht genau überein. Schätzen Sie mit Hilfe der Formeln 1 und geeigneter Messung ab, ob hier ein messbarer Unterschied zwischen f und f 0 vorliegt. 2.2 Messungen am freischwingenden gedämpften System Verschiedene Verhaltensmuster Messen Sie bei drei Dämpfungsströmen (I d = 0, 20 A; 0, 60 A und 1, 00 A) jeweils möglichst viele aufeinanderfolgende Amplituden ϕ n der abklingenden Schwingungen und nehmen Sie zu jedem I d auch die Schwingungsdauer T auf. Ermitteln Sie aus diesen Messungen Λ und τ und überprüfen Sie Gleichung 1 anhand Ihrer Eintragungen in Tabelle Aperiodischer Grenzfall Suchen Sie den Magnetstrom I d, bei dem die Dämpfung gerade den aperiodischen Grenzfall ergibt Geschwindigkeitsverlauf Nehmen Sie mit Hilfe des Tachymeters auf dem Schreiber den zeitlichen Verlauf der Geschwindigkeit des gedämpft schwingenden Rades auf und zwar für I d = 0 A; 0, 50 A; 1, 00 A; 1, 5 A und 2, 0 A. Welche Abklingzeit ergibt sich hier alleine aufgrund der Dämpfung durch das Tachymeter? 6

7 2.3 Messungen am fremderregten gedämpften System Eichung der Motorfrequenz Ermitteln Sie den Zusammenhang zwischen der Motorspannung U M und der Erregerfrequenz f e (Messung der Zeitdauer für jeweils 10 Umdrehungen bei 7 Motorspannungen im Bereich 2, 0 V U M 14, 0 V). Passen Sie an die Messwerte eine Gerade an, die es erlaubt, jedem Wert von U M den entsprechenden Wert von f e zuzuordnen Resonanzkurven Abbildung 2: Skizze zur Halbwertsbreite einer Funktion, Quelle: [Nor06] Nehmen Sie bei kleinster Erregeramplitude mit I d = 0, 2 A und I d = 0, 6 A Amplitudenresonanzkurven ϕ = f (f ) auf und vergleichen Sie die gefundenen Kurven hinsichtlich Resonanzüberhöhung ϕ max ϕ 0 ( ) mit ϕ 0 := lim ϕ, fe 0 Halbwertsbreite ( f : Bereich zwischen ϕ 1,2 = ϕ max / 2, siehe Abb. 2) und Lage des Maximums f max Geschwindigkeitsresonanz Untersuchen Sie mit Hilfe des Tachymeters und des Schreibers die Geschwindigkeitsresonanz im Frequenzbereich 0, 5 f 1, 5 bei den Dämpfungsstromstärken I d = 0 A; 0, 4 A; 0, 6 A und 1, 2 A. Stellen Sie dazu die maximale Erregeramplitude ein. Diskutieren Sie auch die hier resultierenden Kurven ϕ = f (f ) hinsichtlich ϕ 0 := lim ϕ, f 0 Halbwertsbreite und Lage des Maximums Phasenverschiebung Skizzieren Sie qualitativ die Phasenverschiebung zwischen Erreger und Resonator als Funktion von f für sehr schwache, mittlere und sehr starke Dämpfung. Literatur [Mes04] Meschede, Dieter: Gehrtsen Physik. Springer Verlag, 2004, ISBN

8 [Nor06] Nordmann, Arne: Halbwertsbreite einer Funktion, http: //commons.wikimedia.org/wiki/image:halbwertsbreite.png, Stand: , Lizenz: GFDL. [Tip94] Tipler, Paul A.: Physik. Spektrum Verlag, 1994, ISBN

A02 Schwingung Resonanz Dämpfung

A02 Schwingung Resonanz Dämpfung A Schwingung Resonanz Dämpfung (A) x t t A Schwingung Resonanz Dämpfung Ziele In diesem Versuch untersuchen Sie Schwingungsphänomene und deren Gesetzmäßigkeiten mit einem Drehschwingsystem ein Beispiel

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Drehpendel nach R.W. Pohl

Drehpendel nach R.W. Pohl Drehpendel nach R.W. Pohl Technische Daten: Eigenfrequenz: Erregerfrequenz: Motorspannung: Stromaufnahme: ca. 0,55 Hz 0,1... 1,3 Hz 24 V=, an den Prüfbuchsen 0...20 V max. 650 ma Wirbelstromdämpfung: 0...20

Mehr

Resonanzverhalten eines Masse-Feder Systems (M10)

Resonanzverhalten eines Masse-Feder Systems (M10) Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad

Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad Laborversuche zur Physik I Versuch I-03: Pohlsches Rad Versuchsleiter: Autoren: Kuschel Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 5.12.2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise 2 2.1 Inbetriebnahme...................................

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Versuch Erzwungene Schwingung

Versuch Erzwungene Schwingung Versuch Erzwungene Schwingung erneuert aus Studiengebühren Vorbereitung: Drehschwingung, Gedämpfte Schwingung, Erzwungene Schwingung, Phasenraumdiagramme, Wirbelstrombremse Literatur: Standard-Lehrbücher

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02 Schwingungen 1. ZIEL In diesem Versuch sollen Sie Schwingungen und ihre Gesetzmäßigkeiten untersuchen. Sie werden die Erdbeschleunigung messen und mit einem Foucault-Pendel die Drehung der Erde um ihre

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

Versuch M3b für Physiker Erzwungene Schwingung / Resonanz

Versuch M3b für Physiker Erzwungene Schwingung / Resonanz Versuch M3b für Physiker Erzwungene Schwingung / Resonanz I. Physikalisches Institut, Raum HS0 Stand: 3. April 04 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner angeben

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator

Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator I. Physikalisches Institut, Raum HS102 Stand: 23. Juni 2014 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner

Mehr

Versuch e - Lineares Pendel

Versuch e - Lineares Pendel UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Grundlagenpraktikum A für Bachelor of Nanoscience Versuch e - Lineares Pendel 23. überarbeitete Auflage 2011 Dr. Stephan

Mehr

Physikalisches Anfaengerpraktikum. Pohlsches Rad

Physikalisches Anfaengerpraktikum. Pohlsches Rad Physikalisches Anfaengerpraktikum Pohlsches Rad Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Mittwoch, 6. März 25 email: Marcel.Engelhardt@mytum.de Weisgerber@mytum.de ()Einführung

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

S4 Erzwungene Schwingung Protokoll

S4 Erzwungene Schwingung Protokoll Christian Müller Jan Philipp Dietrich S4 Erzwungene Schwingung Protokoll I. Freie Schwingung a) Erläuterung b) Bestimmung der Eigenkreisfrequenz c) Bestimmung des Dämpfungsmaß β II. Erzwungene Schwingung

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Der Pohlsche Resonator

Der Pohlsche Resonator Physikalisches Praktikum für das Hauptfach Physik Versuch 01 Der Pohlsche Resonator Sommersemester 005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

M 1a Freie und erzwungene Schwingungen

M 1a Freie und erzwungene Schwingungen M 1a Freie und erzwungene Schwingungen Aufgabenbeschreibung In dem Versuch sollen anhand von Drehschwingungen freie und erzwungene Schwingungen untersucht werden. Bei den freien Schwingungen sollen Begriffe

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Freie und erzwungene harmonische Schwingungen, Eigenfrequenz, Schwingungsdauer, Dämpfungsgrad,

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Pohlsches Pendel / Kreisel

Pohlsches Pendel / Kreisel Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Messprotokoll 13.9.1907, Partner Albert Einstein

Messprotokoll 13.9.1907, Partner Albert Einstein Messprotokoll 3.9.97, Partner Albert Einstein Aufgabe Eigenfrequenz des Drehpendels messen Dauer von 5 Schwingungen bei anfänglicher Auslenkung von 8 Skalenteilen: Dauer von 5 Schwingungen bei anfänglicher

Mehr

Versuch: Drehpendel. Labor Physik und Grundlagen der Elektrotechnik. Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer

Versuch: Drehpendel. Labor Physik und Grundlagen der Elektrotechnik. Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer Labor Physik und Grundlagen der Elektrotechnik Versuch: Drehpendel Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer Blankenbach / drehpendel.doc 1 Drehpendel Das Drehpendel nach R.W. Pohl ist

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Erzwungene mechanische Schwingungen. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Erzwungene mechanische Schwingungen. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Erzwungene mechanische Schwingungen Sebastian Finkel Sebastian Wilken Versuchsdurchführung:. Januar 006 0. Inhalt. Einleitung. Theoretischer Teil.. Ungedämpfter harmonischer

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

PS1. Schwingungen I Version vom 12. April 2016

PS1. Schwingungen I Version vom 12. April 2016 Schwingungen I Version vom 1. April 016 Inhaltsverzeichnis 1 Allgemeine Grundlagen 1.1 Begrie..................................... 1. Schwingungen.................................. 1.3 Freie gedämpfte

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Erzwungene Schwingung - das Pohl sche Drehpendel mit measure Dynamics. Material TEP

Erzwungene Schwingung - das Pohl sche Drehpendel mit measure Dynamics. Material TEP Erzwungene Schwingung - das Pohl sche TEP Verwandte Begriffe Winkelgeschwindigkeit, charakteristische Frequenz, Resonanzfrequenz, Drehpendel, Drehschwingung, Rückstellmoment, gedämpfte/ungedämpfte freie

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2 19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur

Mehr

Physikalisches Grundpraktikum V10 - Koppelschwingungen

Physikalisches Grundpraktikum V10 - Koppelschwingungen Aufgabenstellung: 1. Untersuchen Sie den Einfluss des Kopplungsgrades zweier gekoppelter physikalischer Pendel auf die Schwingungsdauern ihrer Fundamentalschwingungen. 2. Charakterisieren Sie die Schwebungsschwingung

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Versuch M2 für Nebenfächler Gekoppelte Pendel

Versuch M2 für Nebenfächler Gekoppelte Pendel Versuch M2 für Nebenfächler Gekoppelte Pendel I. Physikalisches Institut, Raum HS102 Stand: 9. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (links/mitte/rechts) angeben bitte Versuchspartner

Mehr

Versuch 1 Der Pohlsche Resonator

Versuch 1 Der Pohlsche Resonator Physikalisches A-Praktikum Versuch 1 Der Pohlsche Resonator Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 26.6.212 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische

Mehr

Fachhochschule Flensburg. Torsionsschwingungen

Fachhochschule Flensburg. Torsionsschwingungen Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl YS 2013-08 Mechanik Schwingungslehre Drehpendel nach Pohl LD Handblätter Physik P1.5.3.4 Erzwungene harmonische und chaotische Drehschwingungen Aufzeichnung und Auswertung mit CASSY Versuchsziele Aufnahme

Mehr

SCHWINGUNGEN. Aufgabe 1 Zeichnen Sie in Abbildung 1 qualitativ alle auf das Gewichtsstück wirkenden Kräfte ein.

SCHWINGUNGEN. Aufgabe 1 Zeichnen Sie in Abbildung 1 qualitativ alle auf das Gewichtsstück wirkenden Kräfte ein. SCHWINGUNGEN sind besondere Formen der Bewegung. Sie sind in der modernen Physik grundlegend für die Beschreibung vieler Phänomene. Wir werden diese Bewegung zuerst wieder darstellen in Graphen und die

Mehr

Die schwingende Saite Theoretische und experimentelle Betrachtungen

Die schwingende Saite Theoretische und experimentelle Betrachtungen Die schwingende Saite Theoretische und experimentelle Betrachtungen T ψ(z,t) 0 ψ(z,t) = t ρ z 0 Facharbeit von Vera Schnells, Stufe 1, Schuljahr 006/007 Beratungslehrer: Herr Thul I n h a l t s v e r z

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Periodendauer eines Fadenpendels 9/10

Periodendauer eines Fadenpendels 9/10 1. Bezeichnung des Materials Periodendauer eines Fadenpendels 2. Autor(en) 3. Doppeljahrgangsstufe / Fach 9/10 Physik 4. Rahmlehrplanbezug 5. Einsatz der Aufgabe im Unterricht Lernaufgabe Hauptsächliche

Mehr

Versuch M1 für Nebenfächler mathematisches Pendel

Versuch M1 für Nebenfächler mathematisches Pendel Versuch M1 für Nebenfächler mathematisches Pendel I. Physikalisches Institut, Raum HS126 Stand: 19. April 2016 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner

Mehr

Drehpendel. Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 2003 FB 2 ET / IT

Drehpendel. Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 2003 FB 2 ET / IT FB ET / IT Drehpendel Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 003 Erstellt von: G. Schley, B. Drollinger Mat.-Nr.: 90933, 91339 Datum: 9.04.003 G. Schley, B. Drollinger / 9.04.003-1

Mehr

Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen)

Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen) Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 17 Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen) Aufgaben 1. Bestimmen Sie die Frequenz f d, die Abklingkonstante

Mehr

Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31

Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Bitte Rückseite beachten! D-93053 Regensburg Physik Postfach: D-93040 Regensburg Prof. Dr. A. Penzkofer Telefon (0941) 943-2107

Mehr

Schwingung, Resonanz, Dämpfung

Schwingung, Resonanz, Dämpfung In diesem Versuch untersuchen Sie Schwingungen und ihre Gesetzmäßigkeiten mit einem Drehschwingssystem als ein Beispiel für die unzähligen Oszillatoren, die Ihnen in fast allen Gebieten der Physik begegnen

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Versuch M1: Feder- und Torsionsschwingungen

Versuch M1: Feder- und Torsionsschwingungen Versuch M1: Feder- und Torsionsschwingungen Aufgaben: Federschwingungen: 1 Bestimmen Sie durch Messung der Dehnung in Abhängigkeit von der Belastung die Richtgröße D (Federkonstante k) von zwei Schraubenfedern

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr

Muster für eine Ausarbeitung mit Protokoll für den Versuch M15 des Physikalischen Praktikums: Erzwungene Schwingungen (Pohlsches Rad)

Muster für eine Ausarbeitung mit Protokoll für den Versuch M15 des Physikalischen Praktikums: Erzwungene Schwingungen (Pohlsches Rad) Prof. Heinrich Reisinger Rüsselsheim im März 003 Muster für eine Ausarbeitung mit Protokoll für den Versuch M5 des Physikalischen Praktikums: Erzwungene Schwingungen (Pohlsches Rad) Vorbemerkungen Vorbemerkungen

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009,

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009, Universität Heidelberg Proseminar Analysis Leitung: PD Dr. Gudrun Thäter Wintersemester 2008/2009, 09.12.2008 Inhaltsverzeichnis 1 Einführung 2 ohne Reibung mit Reibung 3 4 Einführung Denition Eine Schwingung

Mehr

gp : Gekoppelte Pendel

gp : Gekoppelte Pendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch gp : Gekoppelte Pendel Dr. Stephan Giglberger Dr. Tobias Korn Manuel

Mehr

Kondensator und Spule

Kondensator und Spule Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

2010-03-08 Klausur 3 Kurs 12Ph3g Physik

2010-03-08 Klausur 3 Kurs 12Ph3g Physik 00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des

Mehr

Aus der Schwingungsdauer eines physikalischen Pendels.

Aus der Schwingungsdauer eines physikalischen Pendels. 2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es

Mehr

Serienschwingkreis (E16)

Serienschwingkreis (E16) Serienschwingkreis (E6) Ziel des Versuches Die Eigenschaften einer eihenschaltung von ohmschem Widerstand, Kondensator und Spule werden untersucht. Dabei werden sowohl freie als auch erzwungene Schwingungen

Mehr

Amplitude, Periode und Frequenz Lesetext, Lückentext, Arbeitsblatt

Amplitude, Periode und Frequenz Lesetext, Lückentext, Arbeitsblatt Lehrerinformation 1/7 Arbeitsauftrag In Partnerarbeiten sollen die Informationen zum Schall zusammengetragen werden und mithilfe des Arbeitsblattes sollen Lückentexte ausgefüllt, Experimente durchgeführt

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr