Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Größe: px
Ab Seite anzeigen:

Download "Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11"

Transkript

1 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab / Octave Allpass-Transformation

2 Filterentwurf mit Matlab bzw. Octave Beispiel für Toleranzschema: ω d = π/8, ω s = π/6, 2 log( δ d ) =, 2 log(δ s ) = 4 Entwurf eines Butterworth-Filters: wd = /8; ws = /6; dd = ; ds = 4; [n,wc] = buttord(wd,ws,dd,ds); n [b,a] = butter(n,wc); Ergebnis: Filtergrad n = 8 Koeffizienten des Zählerpolynoms a und des Nennerpolynoms b 2

3 Beispiel Butterworth-Tiefpass.2..8 Impulsantwort: L = 2; [x,t] = impz(b,a,l); stem(t,x);

4 Beispiel Butterworth-Tiefpass Pol-Nullstellendiagramm:.5 zplane(b,a); Genauigkeitsprobleme bei Nullstellenberechnung mit mehrfachen Nullstellen!

5 Beispiel Butterworth-Tiefpass.5 Pol-Nullstellendiagramm mit korrigierten Nullstellen (8) Darstellung von Betrags- und Phasengang: FREQRES = 24; freqz(b,a,freqres); 5

6 Beispiel Butterworth-Tiefpass - Frequenzgänge Frequency Pass band (db) Stop band (db) Phase (degrees) 6

7 Beispiel Tschebyscheff-Tiefpass Typ [n, wc] = chebord(wd,ws,dd,ds); n [b, a] = cheby(n,dd,wc); Filtergrad n = Impulsantwort:

8 Beispiel Tschebyscheff-Tiefpass Typ.5 Pol-Nullstellendiagramm

9 Beispiel Tschebyscheff-Tiefpass Typ - Frequenzgänge Frequency Pass band (db) Stop band (db) Phase (degrees) 9

10 Beispiel Tschebyscheff-Tiefpass Typ 2 [n, wc] = cheb2ord(wd,ws,dd,ds); n [b, a] = cheby2(n,ds,wc); Filtergrad n = Impulsantwort:

11 Beispiel Tschebyscheff-Tiefpass Typ 2.5 Pol-Nullstellendiagramm.5.5.5

12 Beispiel Tschebyscheff-Tiefpass Typ 2 - Frequenzgänge Pass band (db) Stop band (db) Phase (degrees) Frequency 2

13 Beispiel Cauer-Tiefpass [n,wc] = ellipord(wd,ws,dd,ds); n [b,a] = ellip(n,dd,ds,wc); Filtergrad n = Impulsantwort:

14 Beispiel Cauer-Tiefpass.5 Pol-Nullstellendiagramm

15 Beispiel Cauer-Tiefpass - Frequenzgänge Frequency Pass band (db) Stop band (db) Phase (degrees) 5

16 Entwurf von FIR-Filtern Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten 6

17 Grundidee: Filterentwurf mit Fensterfunktion Vorgabe eines Wunschfrequenzgangs Berechnung einer Impulsantwort durch inverse Fouriertransformation Begrenzung auf endliche Länge durch Multiplikation mit Fensterfunktion Problem bei Unstetigkeiten des Wunschfrequenzgangs: Gibbs-Effekt: Überschwingen bleibt bei Rechteckfenster bei ca % Verbesserung: Verwendung besserer Fensterfunktionen 7

18 Filterentwurf mit Fensterfunktion Für Filterentwurf häufig verwendete Fensterfunktion: ) I (α ( 2nM )2 Kaiser-Fenster w K (n) = mit M/2 n M/2 I (α) α =,.8 α =.6.4 α = 3.2 α =

19 Filterentwurf mit Fensterfunktion Vorgehensweise zum Entwurf eines Tiefpassfilters: Vorgabe eines Toleranzschemas Bestimmung der benötigten Filterlänge Bestimmung von α wp = /8; ws = /6; delta =.; [n, w, alpha, ftype] = kaiserord([wp,ws],[,],[delta,delta]); a = fir(n,w,kaiser(n+,alpha),ftype); Hier: α = , L = n + = 8 9

20 Beispiel Tiefpass mit Kaiser-Fenster

21 Beispiel Tiefpass mit Kaiser-Fenster Pol-Nullstellendiagramm:.5 r = roots(a); zplane(r);

22 Beispiel Tiefpass mit Kaiser-Fenster 6.5 Pass band (db) Frequency Stop band (db) Phase (degrees) 22

23 Ansatz: Filter mit Tschebyscheff-Approximation Bestmögliche Ausnutzung des Toleranzschemas Numerische Optimierung der Positionen der Maxima und Minima: Remez-Exchange, Parks-McClellan wp = /8; ws = /6; d =.5; d2 =.; D = (.539*log(d)*log(d)+.74*log(d)-.476) *log(d2) -.266*log(d)*log(d)-.594*log(d)-.4278; n=ceil(2*d/(ws-wp)); a=remez(n,[ wp ws ],[ ],[ d/d2]); Hier: L = n + = 72 23

24 Beispiel Filter mit Tschebyscheff-Approximation

25 Beispiel Filter mit Tschebyscheff-Approximation Pol-Nullstellendiagramm:.5 r=roots(a); zplane(r(2:n));

26 Beispiel Filter mit Tschebyscheff-Approximation Pass band (db) Stop band (db) Phase (degrees) Frequency 26

27 Grundidee: Allpass-Transformation Entwurf eines IIR-Filters H p (z) mit bekanntem Verfahren Abbildung des Frequenzgangs durch Transformation der Frequenzvariablen Transformation durch Substitution ζ = f(z) in H p (ζ) Bedingung: Einheitskreis muss auf sich selbst abgebildet werden! f(e jω )! = f(z) muss der Übertragungsfunktion eines Allpasses entsprechen Neue Übertragungsfunktion: H(z) = H p (f(z)) bzw. H(e jω ) = H p (e jg(ω) ) mit g(ω) = arg ( f(e jω ) ) 27

28 Allpass-Transformation Realisierungsmöglichkeit: Ersetzen jedes Verzögerungselements z durch einen stabilen Allpass A(z) = f(z) g(ω) = arg ( A(e jω ) ) Achtung: In der Regel bei rekursiven Systemen nicht direkt anwendbar wegen verzögerungsfreier Schleifen! Neue Übertragungsfunktion muss berechnet und realisiert werden 28

29 Allpass-Transformation - Beispiel-Filter H p (z) = z z b H p(e jω ) = b2 2b cos ω mit b =, 9: Hp ω 29

30 Allpass-Transformation - Beispiel-Allpässe ) A (z) = z g (ω) = π + ω 9 H p H H ω 3

31 Allpass-Transformation - Beispiel-Allpässe 2) Allpass. Ordnung: A 2 (z) = az + z a a sin ω g 2 (ω) = ω + 2 arctan a cos ω mit a < X(z) a z Y (z) a 3

32 Allpass-Transformation - Beispiel-Allpässe g2(ω) ω Verzerrung der Frequenzachse für verschiedene Werte von a 32

33 Allpass-Transformation - Beispiel H ω Resultierende Frequenzgänge 33

34 Allpass-Transformation - Beispiel 3) Allpass 2. Ordnung: A 3 (z) = ρ2 z 2 2ρ cos ϕz + z 2 2ρ cos ϕz + ρ 2 mit ρ < 7 6 ϕ = π/ g3(ω) ω 34

35 Allpass-Transformation - Beispiel g 3 (ω) = 2ω + 2 arctan 7 6 2ρ sin ϕ sin ω ρ 2 sin 2ω 2ρ cos ϕ cos ω + ρ 2 cos 2ω ϕ = π/ g3(ω) ω 35

36 Allpass-Transformation - Beispiel ϕ = π/ H ω 36

37 Allpass-Transformation - Beispiel ϕ = π/ H ω 37

38 Allpass-Transformation - Beispiel 4) Allpass 2. Ordnung: A 4 (z) = ρ2 z 2 2ρ cos ϕz + z 2 2ρ cos ϕz + ρ 2 mit ρ < ϕ = π/ g4(ω) ω 38

39 Allpass-Transformation - Beispiel g 4 (ω) = π + 2ω + 2 arctan 4 3 2ρ sin ϕ sin ω ρ 2 sin 2ω 2ρ cos ϕ cos ω + ρ 2 cos 2ω ϕ = 3π/ g4(ω) ω 39

40 Allpass-Transformation - Beispiel ϕ = π/ H ω 4

41 Allpass-Transformation - Beispiel ϕ = 3π/ H ω 4

42 Allpass-Transformation - Beispiel Butterworth.8.6 Hp ω Betragsfrequenzgang Butterworthfilter Ordnung 8 42

43 Allpass-Transformation - Beispiel Butterworth.8 ϕ = π/ H ω Betragsfrequenzgang resultierender Bandpass 43

44 Allpass-Transformation - Beispiel Butterworth.8 ϕ = 3π/ H ω Betragsfrequenzgang resultierender Bandpass 44

45 Allpass-Transformation Tiefpass-Bandpass-Transformation mit Allpass 2. Ordnung: Vorgaben aus Toleranzschema: Eckfrequenzen Übergangsbereichsbreiten max. Abweichung im Durchlassbereich Sperrdämpfung(en) Wahl geeigneter Parameter ρ, ϕ, ω c Übertragung in Toleranzschema für Tiefpass-Entwurf 45

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 6 Analoge Filter 3 6. Motivation..................................

Mehr

Versuch 5: Filterentwurf

Versuch 5: Filterentwurf Ziele In diesem Versuch lernen Sie den Entwurf digitaler Filter, ausgehend von der Festlegung eines Toleranzschemas für den Verlauf der spektralen Charakteristik des Filters, kennen. Es können Filtercharakteristiken

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter 6. Aktive Filter Filterschaltungen sind Schaltungen mit einer frequenzabhängigen Übertragungsfunktion. Man unterscheidet zwischen Tief, Hoch und Bandpässen sowie Sperrfiltern. Diesen Filtern ist gemeinsam,

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang

Mehr

SV1: Aktive RC-Filter

SV1: Aktive RC-Filter Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung. September 6 Fachpraktikum Signalverarbeitung SV: Aktive RC-Filter Einführung In diesem Versuch wird ein aktives

Mehr

Kapitel 5: FIR- und IIR-Filterentwurf

Kapitel 5: FIR- und IIR-Filterentwurf ZHW, DSV 1, 2005/01, Rur 5-1 Kapitel 5: FIR- und IIR-Filterentwurf Inhaltsverzeichnis 5.1. EINLEITUNG...2 5.2. FREQUENZGANG...3 5.3. FILTERSPEZIFIKATION...5 5.4. FIR-FILTER...6 5.4.1. TYPISIERUNG...6 5.4.2.

Mehr

TEIL I: Analoge Filter

TEIL I: Analoge Filter TEIL I: Analoge Filter Version vom. April 24 Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Analoge und digitale Filter Literatur: L. D. Paarmann, Design And Analysis of Analog Filters: A Signal Processing

Mehr

Methoden der Biosignalverarbeitung

Methoden der Biosignalverarbeitung Vorlesung SS 2012 Methoden der Biosignalverarbeitung Filterdesign Dipl. Math. Michael Wand Prof. Dr. Tanja Schultz 1 / 103 Unser Vorlesungsplan Thema dieser Vorlesung: Theorie der digitalen Filterung,

Mehr

Der Tiefpass Betreuer: Daniel Triebs

Der Tiefpass Betreuer: Daniel Triebs Der Tiefpass Betreuer: Daniel Triebs 1 Gliederung Definiton: Filter Ideale Tiefpass Tiefpass 1.Ordnung Frequenzgänge Grundarten des Filters Filterentwurf Tiefpass 2.Ordnung 2 Definition: Filter 3 Filter

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Übungsaufgaben zur Lehrveranstaltung Analoge und digitale Filter Filter. Ordnung. Betrachtet wird ein

Mehr

Filterentwurf. Patrick Seiler. Präsentation im Rahmen des Projektlabors der TU Berlin im Sommersemester 2009

Filterentwurf. Patrick Seiler. Präsentation im Rahmen des Projektlabors der TU Berlin im Sommersemester 2009 Filterentwurf Patrick Seiler Präsentation im Rahmen des Projektlabors der TU Berlin im Sommersemester 2009 7. Mai 2009 1 Gliederung 1. Was sind Filter? 2. Grundlagen: Charakteristika/Kenngrößen 3. Filterentwurf

Mehr

MATLAB Signal Processing Toolbox Inhaltsverzeichnis

MATLAB Signal Processing Toolbox Inhaltsverzeichnis Inhaltsverzeichnis Signal Processing Toolbox 1 Was ist Digitale Signalverarbeitung? 2 Inhalt 3 Aufbereitung der Messdaten 4 Interpolation 6 Approximation 7 Interpolation und Approximation 8 Anpassung der

Mehr

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13 FB ET/IT Filterentwurf WS 2/3 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung ein mathematisches Formelwerk Wichtige Hinweise: Ausführungen,

Mehr

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Lösung zur Modulklausur SS 201 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

TEIL I: Analoge Filter

TEIL I: Analoge Filter TEIL I: Analoge Filter Version vom 11. Juli 212 Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Analoge und digitale Filter 1 Literatur: L. D. Paarmann, Design And Analysis of Analog Filters: A Signal Processing

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)

Mehr

Entwurf von IIR-Filtern

Entwurf von IIR-Filtern Kapitel Entwurf von IIR-Filtern. Einleitung.. Darstellung von IIR-Filtern im Zeitbereich y[n] = b 0 x[n] + b x[n ] + b 2 x[n 2] +... + b M x[n M].) a y[n ] a 2 y[n 2]... a N y[n N] = M N b k x[n k] a m

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Aktiver Tiefpass mit Operationsverstärker

Aktiver Tiefpass mit Operationsverstärker Aktiver Tiefpass mit Operationsverstärker Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 17.3.2003 Samuel Benz Inhaltsverzeichnis

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch R. Brigola, TH Nürnberg Georg Simon Ohm, 2014 Mathematica - Notebooks als Bonusmaterial zum Lehrbuch [1] Rolf Brigola Fourier-Analysis und Distributionen, Eine Einführung mit Anwendungen, edition swk,

Mehr

Frequenzselektive Messungen

Frequenzselektive Messungen Mathias Arbeiter 31. Mai 2006 Betreuer: Herr Bojarski Frequenzselektive Messungen Aktive Filter und PEG Inhaltsverzeichnis 1 Aktive Filter 3 1.1 Tiefpass.............................................. 3

Mehr

Inverse Tschebyscheff Tiefpassfilter

Inverse Tschebyscheff Tiefpassfilter Inverse Tschebyscheff Tiefpassfilter Inverse Tschebyscheff-Tiefpassfilter (Tschebyscheff Typ-) werden dort verwendet wo eine hohe Flankensteilheit bei maximal flachem mplitudengang im Durchlassbereich

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

7. Filter. Aufgabe von Filtern

7. Filter. Aufgabe von Filtern . Filter Aufgabe von Filtern Amplitude Sperren einer Frequenz oder eines Frequenzbereichs Durchlassen einer Frequenz oder eines Frequenzbereichs möglichst kleine Phasenänderung Phase Phasenverschiebung

Mehr

Versuch: Digitale Filter

Versuch: Digitale Filter Versuch: Digitale Filter Diese Unterlagen dienen zum einen als Versuchsunterlagen für den Versuch: Digitale Filter". Sie enthalten aber auch in komprimierter Form alles Wissenswerte zu diesem Thema und

Mehr

Übungsaufgaben Analoge und digitale Filter EI/DSV/Dr. Metz Arbeitsstand: /adf.doc

Übungsaufgaben Analoge und digitale Filter EI/DSV/Dr. Metz Arbeitsstand: /adf.doc Übungsaufgaben Analoge und digitale Filter EI/DSV/Dr Metz Arbeitsstand: 537 /adfdoc Seminarthema Kettenbruch Partialbruchentwicklung als Verfahren zur Schaltungsanalyse und - synthese Aufgabe Gegeben sind

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

IX Filterschaltungen

IX Filterschaltungen Praktische Elektronik 9-1 Hans-Hellmuth Cuno IX Filterschaltungen IX.1 Aktive RC-Filter Es gibt in der Elektronik viele Einsatzfälle für die Filterung von Frequenzen. Im Radiofrequenzbereich werden dazu

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Hausaufgabe im Fach Grundlagen der analogen Schaltungstechnik GaST (WS 04/5) Bearbeiter Matr.-Nr. Emailadresse Aufgabe

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass In diesem Versuch geht es darum, die Kennlinien von Hoch- und Tiefpässen aufzunehmen. Die Übertragungsfunktion aller Blindwiderstände in Vierpolen hängt von der Frequenz ab, so daß bestimmte Frequenzen

Mehr

Analoge aktive Filter

Analoge aktive Filter ZHAW, EK, HS009, Seite Analoge aktive Filter. Allgemeine Bemerkungen. Theoretische Grundlagen der Tiefpassfilter 3. Tiefpass-Hochpass-Transformation 4. Realisierung von Tief- und Hochpassfiltern 5. Realisierung

Mehr

Taschenbuch der Elektrotechnik

Taschenbuch der Elektrotechnik Taschenbuch der Elektrotechnik Grundlagen und Elektronik von Ralf Kories, Heinz Schmidt-Walter überarbeitet Taschenbuch der Elektrotechnik Kories / Schmidt-Walter schnell und portofrei erhältlich bei beck-shop.de

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

PRAKTIKUMSVERSUCH M/S 2

PRAKTIKUMSVERSUCH M/S 2 Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme PRAKTIKUMSVERSUCH M/S 2 Betreuer: Dipl.-Ing. Burkhard Hensel Dr.-Ing. Alexander Dementjev ALLGEMEINE BEMERKUNGEN

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Labor für Informationstechnik. Lineare Verzerrung

Labor für Informationstechnik. Lineare Verzerrung Labor für Informationstechnik Prof. Dr. Ing. Lilia Lajmi Dipl. Ing. Thomas Müller Lineare Verzerrung Gruppennummer: Teilnehmer Name Vorname Matrikelnummer 1 2 3 Ostfalia Hochschule für angewandte Wissenschaften

Mehr

Die sogenannten FIR-Filter wurden im dritten Teil dieser. Digitale Signalverarbeitung. ist keine Hexerei. Grundlagen. Dr.

Die sogenannten FIR-Filter wurden im dritten Teil dieser. Digitale Signalverarbeitung. ist keine Hexerei. Grundlagen. Dr. Dr. Lothar Wenzel ist keine Hexerei Teil 4: Digitale Filter mit Rückkopplung Bei digitalen Filtern mit Rückkopplung dürfen im Gegensatz zu rückkopplungsfreien Filtern auch die ermittelten Signale wieder

Mehr

FIR-Filter mit dem Fenster-Verfahren

FIR-Filter mit dem Fenster-Verfahren 1 FIR-Filter mit dem Fenster-Verfahren Tiefpass 1 Hochpass 1 -π -Ωg Ωg π Ω -π - Ωg Ωg π Bandpass 1 Bandsperre 1 Ω π Ω 2 Ω π Ω 1 Ω 1 Ω π Ω 2 Ω 1 Ω π Ω 2 1 Ω 2 idealen Frequenzgänge der vier grundlegenden

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Antialiasing-Filter. Die erforderliche Dämpfung des Antialiasingfilters bei der halben Abtastfrequenz errechnet sich nach (bei N-Bit ADU): f f.

Antialiasing-Filter. Die erforderliche Dämpfung des Antialiasingfilters bei der halben Abtastfrequenz errechnet sich nach (bei N-Bit ADU): f f. ntialiasing-filter Bei der btastung eines auf f < fb bandbeenzten Messsignal ergibt sich, wie später gezeigt wird, für das abgetastete ignal eine periodische Wiederholung des Basisspektrums. m Überlappungen

Mehr

Linearphasiges Filterdesign und die daraus resultierenden Latenzen

Linearphasiges Filterdesign und die daraus resultierenden Latenzen und die daraus resultierenden Latenzen Anselm Goertz Jochen Kleber Michael Makarski Rainer Thaden Funktionen des Lautsprechercontrollers Schutzfunktionen Endstufenlimiter, Peaklimiter und Thermolimiter

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Projekt 8: Terz-Band-Equalizer

Projekt 8: Terz-Band-Equalizer Institut für Eletronische Musik und Akustik Algorithmen in Akustik und Computermusik1, UE Projekt 8: Terz-Band-Equalizer Name: Michael Neffe Matr.Nr.: 9730540 Studienkennzahl: F-750 Betreuer: Piotr Majdak

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Laborprotokoll SSY. Anwendung von Systemen: Filter

Laborprotokoll SSY. Anwendung von Systemen: Filter Laborprotokoll SSY Anwendung von Systemen: Filter Daniel Schrenk, Andreas Unterweger, ITS 2004 SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Seite 1 von 15 1. Einleitung Ziel der Übung Bei dieser Übung

Mehr

c~åüüçåüëåüìäé==açêíãìåç= FB Informations- und Elektrotechnik FVT - GP

c~åüüçåüëåüìäé==açêíãìåç= FB Informations- und Elektrotechnik FVT - GP c~åüüçåüëåüìäé==açêíãìåç= FB Informations- nd Elektrotechnik FVT - GP Versch Oszilloskop II WS 4/5. Von einem Fnktionsgenerator ist der zeitliche Verlaf der Asgangsspannng bei Leerlaf nd Leistngsanpassng

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Praktikum für Nachrichtentechnik Versuch 7: Digitale Filter

Praktikum für Nachrichtentechnik Versuch 7: Digitale Filter Praktikum für Nachrichtentechnik Versuch 7: Digitale Filter Betreuer: M.Sc. Marc-André Jung Stand: 3. November 2015 Skript erarbeitet von: Jung, Weiß, Franzen Inhaltsverzeichnis 1 Einleitung 4 2 Signale

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1 Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe System zur digitalen Signalverarbeitung: Signal- Quelle AAF ADC DAC RCF DSP Po rt Po rt Signal- Ziel Das Bild zeigt ein allgemeines System zur

Mehr

Analog- und Digitalelektronik

Analog- und Digitalelektronik Willkommen zur Prüfung: Analog- und Digitalelektronik Name: Vorname: Matrikelnummer: Allgemeine Hinweise: Diese Klausur umfasst 7 n. Sie haben 90 Minuten Zeit, um die folgenden Aufgaben zu bearbeiten.

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters? Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Anti-Aliasing-Filter Aktive Filter mit der Software AktivFilter 3 entwerfen ein Beispiel

Anti-Aliasing-Filter Aktive Filter mit der Software AktivFilter 3 entwerfen ein Beispiel Anti-Aliasing-Filter Aktive Filter mit der Software AktivFilter 3 entwerfen ein Beispiel SoftwareDidaktik 2009, www.softwaredidaktik.de 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis...2 2 Aufgabe...3 3 Spezifikation...3

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 6 146 2. Teil Ziele der Filteranwendung Signal-Trennung (z.b. EKG eines Kindes im Mutterleib, Spektralanalyse) Signal-Restauration (z.b. unscharfes

Mehr

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch R. Brigola, TH Nürnberg Georg Simon Ohm, 2014 Mathematica - Notebooks als Bonusmaterial zum Lehrbuch [1] Rolf Brigola Fourier-Analysis und Distributionen, Eine Einführung mit Anwendungen, edition swk,

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

UNIVERSITÄT HANNOVER DIGITALE FILTER VERSUCHSLEITER VERSUCHSTAG ENDTESTAT

UNIVERSITÄT HANNOVER DIGITALE FILTER VERSUCHSLEITER VERSUCHSTAG ENDTESTAT INSTITUT FÜR INFORMATIONSVERARBEITUNG (TNT) UNIVERSITÄT HANNOVER LABORATORIUM FÜR NACHRICHTENVERARBEITUNG DIGITALE FILTER NAME MATR.-NR. GRUPPE VERSUCHSLEITER VERSUCHSTAG ENDTESTAT 1 Inhaltsverzeichnis

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Arbeit zum Seminar Digitale Signalverarbeitung Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Thomas Wilbert thowil@uni-koblenz.de 29.06.2005 Zusammenfassung Dieses Dokument befasst sich mit der

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

INSTITUT FÜR TECHNISCHE ELEKTRONIK

INSTITUT FÜR TECHNISCHE ELEKTRONIK INSTITUT FÜR TECHNISCHE ELEKTRONIK der Rheinisch-Westfälischen Technischen Hochschule Aachen Prof. Dr.-Ing. Bernhard Hill Korrespondenzen zur Laplacetransformation F(s) f(t) s s + α s + β ε(t) α e - α

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Bestimmung des Frequenz- und Phasenganges eines Hochpaßfilters 1. und 2. Ordnung sowie Messen der Grenzfrequenz. Verhalten als Differenzierglied.

Bestimmung des Frequenz- und Phasenganges eines Hochpaßfilters 1. und 2. Ordnung sowie Messen der Grenzfrequenz. Verhalten als Differenzierglied. 5. Versuch Aktive HochpaßiIter. und. Ordnung (Durchührung Seite I-7 ) ) Filter. Ordnung Bestimmung des Frequenz- und Phasenganges eines Hochpaßilters. und. Ordnung sowie Messen der Grenzrequenz. Verhalten

Mehr

A. Formelsammlung Aktive Filter

A. Formelsammlung Aktive Filter A. Formelsammlung Aktive Filter Tiefpass-Schaltungen Grundglied. Ordnung u ( gegeben G( s u ω Abgleich: ω + s ( gegeben ω ω ω π f ω ω π f Sallen-Key Tiefpass.Ordnung (Einfach-itkopplung, SK (Einsetzbar

Mehr

Seminar-Praktikum Nachrichtentechnik. Nachrichtentechnische Systeme. Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

Seminar-Praktikum Nachrichtentechnik. Nachrichtentechnische Systeme. Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden. Seminar-Praktikum Nachrichtentechnik Seminarversuch 4 Digitale Filter Fachgebiet: Nachrichtentechnische Systeme Name: Matr-Nr: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin

Mehr

Übung 6: Fast Fourier Transformation

Übung 6: Fast Fourier Transformation Computational Physics 1, Seminar 6, Fast Fourier Transformation 1 Übung 6: Fast Fourier Transformation Aufgabe 1 Fourierfilterung von Bildern: Erstellen Sie ein Programm, welches ein Bild einliest, dieses

Mehr

3.3.1 Digitale Filter

3.3.1 Digitale Filter Leseprobe Digitale Signalverarbeitung Abschnitt aus Algorithmische Bausteine 3.3.1 Digitale Filter In den folgenden Abschnitten sollen die digitalen Filter im Gegensatz zum Abschnitt Grundlagen der DSV

Mehr