Statistics, Data Analysis, and Simulation SS 2017

Größe: px
Ab Seite anzeigen:

Download "Statistics, Data Analysis, and Simulation SS 2017"

Transkript

1 Mainz, 8. Mai 2017 Statistics, Data Analysis, and Simulation SS Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 18

2 Was wir bisher gelernt haben Stichproben (sampling) Mittelwert, Varianz und deren Unsicherheiten Konsistente und unverzerrte Schätzungen Multidimensionale Verteilungen Kovarianzmatrix Funktionen von Zufallsvariablen Transformation von Mittelwert und Varianz Fehlerfortpflanzung (error propagation) Faltung (folding) Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 18

3 Fehlerfortpflanzung der lineare Fall Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 18

4 Lineare Transformation x ist eine Zufallsvariable: y = a x + b damit gilt x = y b a und f y (y) = 1 a f x ( ) y b a E[y] = a E[x] + b y = a x + b V [y] = E [(a x + b (a x + b)) 2] = a 2 E [(x x ) 2] = a 2 V [x] Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

5 Zufallsvariable in zwei Dimensionen Einfaches Beispiel: z(x, y) = a x + b y Erwartungswert (expected value) von z: < z > = a x f (x, y) dx dy + b y f (x, y) dx dy = a < x > + b < y > unproblematisch Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

6 Zufallsvariable in zwei Dimensionen Varianz: σ 2 z = = z(x, y) = a x + b y ((a x + b y) (a < x > + b < y >)) 2 ((a x a < x >) + (b y b < y >)) 2 = a 2 (x < x >) 2 +b 2 (y < y >) 2 } {{ } } {{ } σx 2 σy 2 +2ab (x < x >)(y < y >) }{{}?? < (x < x >)(y < y >) >= cov(x, y) Kovarianz = σ xy = (x < x >)(y < y >) f (x, y) dx dy Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

7 Kovarianz-Matrix in n-dimensionen Die Kovarianz-Matrix ist eine symmetrische n n Matrix: V ij = σ 2 1 σ σ 1n σ 21 σ σ 2n σ n1 σ n2... σ 2 n Lineare Transformation: y = B x + a E [ y ] = B E [ x ] + a V [ y ] = B V [ x ] B T Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

8 Fehlerfortpflanzung in 2 Dimensionen Auswertung mit Mathematica In[3]:= Out[5]//MatrixForm= B a, b, c, d ; V Σ 1 2, Σ 12, Σ 12, Σ 2 2 ; B MatrixForm V MatrixForm a b c d Out[6]//MatrixForm= 2 Σ 1 Σ 12 Σ 12 2 Σ 2 In[10]:= Out[11]//MatrixForm= V2 B.V.Transpose B Expand; V2 MatrixForm a 2 Σ 1 2 b 2 Σ a b Σ 12 a c Σ 1 2 b d Σ 2 2 b c Σ 12 a d Σ 12 a c Σ 1 2 b d Σ 2 2 b c Σ 12 a d Σ 12 c 2 Σ 1 2 d 2 Σ c d Σ 12 Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

9 Funktionaldeterminante - Kugelkoordinaten Die Umrechnungsformeln von Kugelkoordinaten r, θ, ϕ in kartesische Koordinaten lauten: x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ Die Funktionaldeterminante lautet also: (x, y, z) (r, θ, ϕ) = sin θ cos ϕ r cos θ cos ϕ r sin θ sin ϕ sin θ sin ϕ r cos θ sin ϕ r sin θ cos ϕ cos θ r sin θ 0 = r 2 sin θ. Folglich ergibt sich für das Volumenelement dv : dv = (x, y, z) (r, θ, ϕ) dr dθ dϕ = r 2 sin θ dr dθ dϕ. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

10 Fehlerfortpflanzung Der nicht-lineare Fall y i = y i (x 1, x 2,... x n ) = y i ( x) ( ) x f y ( y) = f x ( x) J Jacobi-Determinante y J ij = y i x j B = Jacobi-Matrix y 1 / x 1 y 1 / x 2... y 1 / x n y 2 / x 1 y 2 / x 2... y 2 / x n y n / x 1 y n / x 2... y n / x n µy Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

11 Was wir bisher gelernt haben Stichproben (sampling) Mittelwert, Varianz und deren Unsicherheiten Konsistente und unverzerrte Schätzungen Multidimensionale Verteilungen Kovarianzmatrix Funktionen von Zufallsvariablen Transformation von Mittelwert und Varianz Fehlerfortpflanzung (error propagation) Faltung (folding) Ende of Kapitel 1. Grundlegende Konzepte - Fundamental concepts Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

12 press any key Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 18

13 2. Zufallszahlen 2.1 Warum Zufallszahlen: Simulationen Stichprobenentnahme Numerische Analysen Programmerstellung (Computer) Entscheidungsfindung Kryptographie Ästhetik Freizeitaktivitäten (Computerspiele) Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 18

14 2. Zufallszahlen 2.1 Warum Zufallszahlen: Simulationen Stichprobenentnahme Numerische Analysen Programmerstellung (Computer) Entscheidungsfindung Kryptographie Ästhetik Freizeitaktivitäten (Computerspiele) Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. JOHN VON NEUMANN (1951) Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

15 2.2 Zahlendarstellung Ganze, nicht negative Zahlen (integer) in Binärdarstellung: a = a (k 1) 2 k 1 + a (k 2) 2 k a (1) a (0) = = 0x0 = = = 0x8 = = = 0x1 = = = 0x9 = = = 0x2 = = = 0xA = = = 0x3 = = = 0xB = = = 0x4 = = = 0xC = = = 0x5 = = = 0xD = = = 0x6 = = = 0xE = = = 0x7 = = = 0xF = = = 0x2A = 052 Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

16 Darstellung ganzer Zahlen - Integer representation Wertebereich: 0 a 2 k 1 nibble 4 bit byte, char 8 bit short word 16 bit word, int 32 bit long word 64 bit Wertebereich (mit Vorzeichen): 2 k 1 a 2 k 1 1 nibble 4 bit byte, char 8 bit short word 16 bit word, int 32 bit Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

17 Darstellung ganzer Zahlen - Integer representation Wertebereich: 0 a 2 k 1 nibble 4 bit byte, char 8 bit short word 16 bit word, int 32 bit long word 64 bit Wertebereich (mit Vorzeichen): 2 k 1 a 2 k 1 1 nibble 4 bit byte, char 8 bit short word 16 bit word, int 32 bit Diese Einschränkungen müssen beim Entwurf von Zufallszahlengeneratoren berücksichtigt werden Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

18 Trivia: Das Jahr 2038 Problem Der standard Unix Datentyp time_t, der einen Zeitpunkt sekundengenau darstellt, ist als signed integer realisiert, typischerweise mit 32 Bits. 32 Bits bedeutet, dass ein Zeitraum von etwa 136 Jahren abgedeckt werden kann. Die früheste darstellbare Zeit ist Freitag, 13. Dezember 1901 und die späteste ist Dienstag, 19. Januar Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 18

19 Trivia: Das Jahr 2038 Problem Der standard Unix Datentyp time_t, der einen Zeitpunkt sekundengenau darstellt, ist als signed integer realisiert, typischerweise mit 32 Bits. 32 Bits bedeutet, dass ein Zeitraum von etwa 136 Jahren abgedeckt werden kann. Die früheste darstellbare Zeit ist Freitag, 13. Dezember 1901 und die späteste ist Dienstag, 19. Januar Eine Sekunde nach 03:14:07 UTC wird diese Darstellung überlaufen. Jahr 2038 Problem Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 18

20 Trivia: Das Jahr 2038 Problem Der standard Unix Datentyp time_t, der einen Zeitpunkt sekundengenau darstellt, ist als signed integer realisiert, typischerweise mit 32 Bits. 32 Bits bedeutet, dass ein Zeitraum von etwa 136 Jahren abgedeckt werden kann. Die früheste darstellbare Zeit ist Freitag, 13. Dezember 1901 und die späteste ist Dienstag, 19. Januar Eine Sekunde nach 03:14:07 UTC wird diese Darstellung überlaufen. Jahr 2038 Problem In den meisten modernen Betriebssystemen wurde time_t auf 64 Bits erweitert. Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 18

21 Trivia: Das Jahr 2038 Problem Der standard Unix Datentyp time_t, der einen Zeitpunkt sekundengenau darstellt, ist als signed integer realisiert, typischerweise mit 32 Bits. 32 Bits bedeutet, dass ein Zeitraum von etwa 136 Jahren abgedeckt werden kann. Die früheste darstellbare Zeit ist Freitag, 13. Dezember 1901 und die späteste ist Dienstag, 19. Januar Eine Sekunde nach 03:14:07 UTC wird diese Darstellung überlaufen. Jahr 2038 Problem In den meisten modernen Betriebssystemen wurde time_t auf 64 Bits erweitert. Diese Erweiterung erlaubt es, etwa 293 Milliarden Jahre in beide Zeitrichtungen darzustellen - insgesamt also etwa 40 Mal das derzeitige Alter des Universums. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

22 Die Gleitkommadarstellung sign exponent (8 bits) fraction (23 bits) = (bit index) 0 Die Darstellung reeller Zahlen in 32 Bit geschieht mittels eines 8 Bit Exponenten und einer 23 Bit Bruchzahl (fraction): Besondere Bedeutung ( 1) sign (1.b 1 b 2... b 23 ) 2 2 e 127 Denormalisierte Zahlen (subnormal numbers) Keine Zahl (NAN - not a number) Unendlich (infinity) Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

23 Die Gleitkommadarstellung sign exponent (8 bits) fraction (23 bits) = (bit index) 0 Einfache Genauigkeit Doppelte Genauigkeit single precision double precision width 32 bits 64 bits exponent 8-bit 11-bit fraction 23-bit 52-bit furthest from zero ± ± closest to zero ± ± denormalized ± ± gap ± ± Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 18

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Vordefinierte Datentypen Übersicht 1 Ganzzahlige Typen 2 Boolscher Typ 3 Gleitkommatypen 4 Referenztypen 5 void Typ 6 Implizite und explizite Typumwandlungen Ganzzahlige Typen Die

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

3. Datentypen, Ausdrücke und Operatoren

3. Datentypen, Ausdrücke und Operatoren 3. Datentypen, Ausdrücke und Operatoren Programm muß i.a. Daten zwischenspeichern Speicherplatz muß bereitgestellt werden, der ansprechbar, reserviert ist Ablegen & Wiederfinden in höheren Programmiersprachen

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Problem: Keine Integers in JavaCard. ToDo: Rechnen mit Bytes und Shorts

Problem: Keine Integers in JavaCard. ToDo: Rechnen mit Bytes und Shorts Kapitel 6: Arithmetik in JavaCard Problem: Keine Integers in JavaCard ToDo: Rechnen mit Bytes und Shorts Java SmartCards, Kap. 6 (1/20) Hex-Notation 1 Byte = 8 Bit, b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0101

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Darstellung von Zahlen Natürliche Zahlen: Darstellungsvarianten Darstellung als Text Üblich, wenn keine Berechnung stattfinden soll z.b. Die Regionalbahn 28023 fährt

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

2.5 Primitive Datentypen

2.5 Primitive Datentypen 2.5 Primitive Datentypen Wir unterscheiden 5 primitive Datentypen: ganze Zahlen -2, -1, -0, -1, -2,... reelle Zahlen 0.3, 0.3333..., π, 2.7 10 4 Zeichen a, b, c,... Zeichenreihen "Hello World", "TIFI",

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Mainz, 25. Juni 2013 Statistics, Data Analysis, and Simulation SS 2013 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler 8. Einführung in die Bayes-Statistik

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik Informatik I WS 2012/13 Tutorium zur Vorlesung 1. Alexander Zietlow zietlow@informatik.uni-tuebingen.de Wilhelm-Schickard-Institut für Informatik Eberhard Karls Universität Tübingen 11.02.2013 1. 2. 1.

Mehr

Die nummerierten Felder bitte mithilfe der Videos ausfüllen:

Die nummerierten Felder bitte mithilfe der Videos ausfüllen: 5 Koordinatensysteme Zoltán Zomotor Versionsstand: 6. August 2015, 21:43 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Erzeugung von Pseudozufallszahlen mit Computern

Erzeugung von Pseudozufallszahlen mit Computern Erzeugung von Pseudozufallszahlen mit Computern Basisgeneratoren und deren Einfluss auf die Qualität der Ergebnisse Lorenz Hauswald IKTP, TU Dresden 7 Dezember 2011 1 / 26 Gliederung Grundlagen 1 Grundlagen

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 8 Zufallszahlen Generatoren Anwendungen Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040

Mehr

Was ist Physik? Modell der Natur universell es war schon immer so

Was ist Physik? Modell der Natur universell es war schon immer so Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft

Mehr

Numerische Datentypen. Simon Weidmann

Numerische Datentypen. Simon Weidmann Numerische Datentypen Simon Weidmann 08.05.2014 1 Ganzzahlige Typen 1.1 Generelles Bei Datentypen muss man immer zwei elementare Eigenschaften unterscheiden: Zuerst gibt es den Wertebereich, zweitens die

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Thema 1 -- Fortsetzung. Computersystem, Informationsdarstellung

Thema 1 -- Fortsetzung. Computersystem, Informationsdarstellung Thema 1 -- Fortsetzung Computersystem, Informationsdarstellung Codierung! Bei der Codierung erfolgt eine eindeutige Zuordnung der Zeichen eines Zeichenvorrates (Urmenge, Quellalphabet) zu denjenigen eines

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Kapitel 2. Zahlensysteme

Kapitel 2. Zahlensysteme Kapitel 2 Zahlensysteme 13.08.12 K.Kraft D:\MCT_Vorlesung\Folien2013\Zahlensysteme_2\Zahlensysteme.odt 2-1 Zahlensysteme Definitionen Ziffern : Zeichen zur Darstellung von Zahlen Zahl : Eine Folge von

Mehr

Computergestütztes wissenschaftliches Rechnen SoSe 2004

Computergestütztes wissenschaftliches Rechnen SoSe 2004 Computergestütztes wissenschaftliches Rechnen SoSe 2004 Alexander K. Hartmann, Universität Göttingen 28. April 2004 2.4 Numerik 2.4.1 Zahlendarstellung Analogrechner (Rechenschieber, Op-Amp): Zahlen entsprechen

Mehr

Java - Zahlen, Wahrheitswerte und Zeichen. Leibniz Universität IT Services Anja Aue

Java - Zahlen, Wahrheitswerte und Zeichen. Leibniz Universität IT Services Anja Aue Java - Zahlen, Wahrheitswerte und Zeichen Leibniz Universität Anja Aue Kommentare Hilfe für den Entwickler. Wer hat wann welche Änderung vorgenommen? Warum werden diese Anweisungen hier ausgeführt? Bei

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

12 Die Normalverteilung

12 Die Normalverteilung 12 Die Normalverteilung Die Normalverteilung ist eine der wichtigsten Wahrscheinlichkeitsverteilungen in der Praxis, weil aufgrund des sogenannten zentralen Grenzwertsatzes in vielen Situationen angenommen

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Statistische Methoden der Datenanalyse Vorlesung im Sommersemester 2002 H. Kolanoski Humboldt-Universität zu Berlin Inhaltsverzeichnis Literaturverzeichnis iii 1 Grundlagen der Statistik 3 1.1 Wahrscheinlichkeit..................................

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

ÖNORM S Zählstatistische Aspekte bei Radioaktivitätsmessungen Teil 1: Messunsicherheiten, Erkennungs- und Nachweisgrenzen. Ausgabe:

ÖNORM S Zählstatistische Aspekte bei Radioaktivitätsmessungen Teil 1: Messunsicherheiten, Erkennungs- und Nachweisgrenzen. Ausgabe: ÖNORM S 550-1 Ausgabe: 00-1-01 Auch Normengruppen S3 und U1 Ersatz für Ausgabe 1995-10 und /AC1:1998-01 ICS 17.40 Zählstatistische Aspekte bei Radioaktivitätsmessungen Teil 1: Messunsicherheiten, Erkennungs-

Mehr

5 Optimale erwartungstreue Schätzer

5 Optimale erwartungstreue Schätzer 33 5 Optimale erwartungstreue Schätzer 5.1 Definition Seien X 1,..., X n reelle Zufallsvariablen, T T (X 1,..., X n ) reellwertige Statistik. T heißt linear : c 1,..., c n R mit T n c j X j 5.2 Satz Seien

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

2.1 Gemeinsame-, Rand- und bedingte Verteilungen

2.1 Gemeinsame-, Rand- und bedingte Verteilungen Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die

Mehr

9. Die Integralrechnung II

9. Die Integralrechnung II 9. Die Integralrechnung II 9.. Mehrdimensionale Bereichsintegrale Dimension n des Integrationsbereiches B Dimension des Definitionsbereiches D. (i) n = : Einfachintegrale (Int-B = Gerade ; db = d ) db.

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement 3 Darstellungsformen für Zahlen Informatik II SS 24 Dipl.-Inform. Michael Ebner. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement Warum 3 Darstellungsformen? Ziel:

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Zahldarstellung und Rundungsfehler Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Überblick 2 Darstellung ganzer Zahlen,

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Programmieren in C Einführung

Programmieren in C Einführung Programmieren in C Einführung Aufbau eines Programms Einfache Programme Datentypen und Vereinbarungen Das Entwicklungswerkzeug Seite Einfache Programme Kugeltank-Berechnung #include void main

Mehr

Microcontroller Kurs. 08.07.11 Microcontroller Kurs/Johannes Fuchs 1

Microcontroller Kurs. 08.07.11 Microcontroller Kurs/Johannes Fuchs 1 Microcontroller Kurs 08.07.11 Microcontroller Kurs/Johannes Fuchs 1 Was ist ein Microcontroller Wikipedia: A microcontroller (sometimes abbreviated µc, uc or MCU) is a small computer on a single integrated

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Java - Zahlen, Wahrheitswerte und Zeichen. Leibniz Universität IT Services Anja Aue

Java - Zahlen, Wahrheitswerte und Zeichen. Leibniz Universität IT Services Anja Aue Java - Zahlen, Wahrheitswerte und Zeichen Leibniz Universität IT Services Anja Aue Kommentare Hilfe für den Entwickler. Wer hat wann welche Änderung vorgenommen? Warum werden diese Anweisungen hier ausgeführt?

Mehr

Programmieren in C / C++ Grundlagen C 2

Programmieren in C / C++ Grundlagen C 2 Programmieren in C / C++ Grundlagen C 2 Hochschule Fulda FB AI Wintersemester 2016/17 http://c.rz.hs-fulda.de Peter Klingebiel, HS Fulda, FB AI Anweisung / Ausdruck 1 Programm setzt sich aus vielen Anweisungen

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean 01.11.05 1 Noch für heute: 01.11.05 3 primitie Datentypen in JAVA Primitie Datentypen Pseudocode Name Speichergröße Wertgrenzen boolean 1 Byte false true char 2 Byte 0 65535 byte 1 Byte 128 127 short 2

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

2 Repräsentation von elementaren Daten

2 Repräsentation von elementaren Daten 2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Statistik Workshop. 12. und 14. Januar Prof. Dr. Stefan Etschberger HSA

Statistik Workshop. 12. und 14. Januar Prof. Dr. Stefan Etschberger HSA Workshop Mini-Einführung und Auffrischung zu einigen Teilen der angewandten 12. und 14. Prof. Dr. Stefan Etschberger HSA Outline 1 : Einführung Fehler durch Gute und schlechte Grafiken Begriff Grundbegriffe

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

Primitive Datentypen und Felder (Arrays)

Primitive Datentypen und Felder (Arrays) Primitive Datentypen und Felder (rrays) Primitive Datentypen Java stellt (genau wie Haskell) primitive Datentypen für Boolesche Werte, Zeichen, ganze Zahlen und Gleitkommazahlen zur Verfügung. Der wichtigste

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten Operatoren, Ausdrücke und Anweisungen Kontrollstrukturen (Steuerfluss)

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr