3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

Größe: px
Ab Seite anzeigen:

Download "3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit"

Transkript

1 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53 a n b n a n + b n (mit a, b R n eine abelsche Gruppe (siehe Anhang A, mit der Nullspalte = (,..., T als neutralem Element und a = ( a,..., a n T als Inversem zu a, a + b = b + a, a + (b + c = (a + b + c, a + = + a = a, a + ( a = ( a + a =. (54 Die Multiplikation einer Spalte a R n mit einer reellen Zahl λ R wird erklärt durch a λa λ a λ. :=. R n. (55 a n λa n (Der Multiplikationspunkt wird meistens fortgelassen. Zusammen mit dieser äußeren Multiplikation R R n R n bildet die Gruppe (R n, + einen Vektorraum (siehe Anhang A über dem Körper R der reellen Zahlen, denn für λ, µ R und a, b R n gilt etwa λ(a + b = λa + λb, (λ + µa = λa + µa, etc. (56 Der Kürze halber sprechen wir vom Vektorraum R n. Bem.: In völlig analoger Weise bildet die Menge C n aller n-dimensionalen Spalten komplexer Zahlen einen Vektorraum über dem Körper C. Um Platz zu sparen, schreiben wir Spalten auch als Zeilen mit dem Transpositionszeichen T. 27

2 3.2 Lineare Unabhängigkeit Def.: Eine endliche Teilmenge b,..., b m } R n heißt linear abhängig, wenn sich durch eine Linearkombination x b x m b m ihrer Elemente auf nicht-triviale Weise (also so, daß die Koeffizienten x,..., x m R nicht alle gleich null sind die Null darstellen läßt, x b x m b m m x k b k = k= ( m k= x k >. (57 Ist dies nicht möglich, so heißt b,..., b m } linear unabhängig. Bsp. : Ein linear abhängiger Satz von Elementen des R 3 ist b =, b 2 =, b 3 = , (58 denn er ermöglicht eine nicht-triviale Darstellung der Null, Linear unabhängig dagegen ist der Satz b =, b 2 = 2b + 3b 2 + 4b 3 =. (59, b 3 = denn die Forderung x b + x 2 b 2 + x 3 b 3 = führt auf das Gleichungssystem x + x 2 + x 3 =, und dies ist nur lösbar durch x = x 2 = x 3 =., (6 x + x 2 =, (6 x =, (62 Satz : Der Satz b,..., b m } R n ist gewiß linear abhängig, wenn m > n ist. Bsp. 2: (, 2 T, (2, 3 T, (3, 4 T } R 2 ist linear abhängig. Tatsächlich gilt ( ( ( =. (

3 3.3 Dimension Def.: Unter der linearen Hülle des Satzes b,..., b m } R n versteht man die Menge aller Linearkombinationen seiner Elemente, also die unendliche Teilmenge [ b,..., b m ] := a = m k= x k b k x,..., x m R R n. (64 Satz 2: Die lineare Hülle jedes Satzes b,..., b m } R n ist ein Untervektorraum von R n. Bsp. 3: Die lineare Hülle U = [ ] b, b 2 R 3 des Satzes b, b 2 } =, (65 ist im Wesentlichen der Vektorraum R 2, denn es gilt [ ] x b, b 2 = a = x b + x 2 b 2 x 2 x, x 2 R. (66 Def.: Sei V R n ein Untervektorraum von R n. Der Satz b,..., b m } R n heißt ein Erzeugendensystem von V, wenn V = [ b,..., b m ]. Bsp. 4: In Bsp. 3 ist b, b 2 } ein Erzeugendensystem von U. Ein anderes Erzeugendensystem desselben Vektorraums U ist etwa a, a 2, a 3, a 4 } mit den Vektoren a = 2, 2 a 2 = 3, 3 a 3 = 4, 4 a 4 = 5. (67 Weitere Erzeugendensysteme von U sind a, a 2 }, a, a 3 },..., a 3, a 4 }. Wir betrachten das letzte Beispiel näher. Tatsächlich läßt sich jedes a = x b + x 2 b 2 U darstellen als x 3y + 4y 2 a x 2 = y a 3 + y 2 a 4 4y + 5y 2, (68 denn zu beliebig vorgegebenen Werten x und x 2 ist das Gleichungssystem x = 3y + 4y 2, x 2 = 4y + 5y 2 } (69 lösbar, mit den Lösungen y = 5x 4x 2 und y 2 = 4x 3x 2. 29

4 Def.: Das Erzeugendensystem b,..., b m } R n von V heißt eine Basis von V, wenn es linear unabhängig ist. Dann heißen die Vektoren b,..., b m Basisvektoren. Offenbar ist.,.,...,., (7 eine Basis des R n, die sog. Standardbasis. Satz 3/Def.: Jede Basis eines bestimmten Vektorraums V R n enthält dieselbe Zahl m von Basisvektoren. Diese Zahl heißt die Dimension von V, m = dim V. (7 Jeder linear unabhängige Satz aus m (= dim V Vektoren V ist eine Basis von V. Ist b,..., b m } eine Basis von V, so sind die Koeffizienten x k in der Darstellung a = m x k b k (72 k= eines gegebenen Vektors a V eindeutig bestimmt. Bsp. 5: R n selbst hat die Dimension n. In Bsp. 4 ist jedes der Erzeugendensysteme a, a 2 }, a, a 3 },..., a 3, a 4 } zugleich eine Basis von U, da in diesem Fall a i, a j } für i j jeweils linear unabhängig ist. Es gilt also dim U = 2 und das Erzeugendensystem a, a 2, a 3, a 4 } ist keine Basis von U. 3

5 3.4 Lineare Gleichungssysteme 3.4. Definition Ein System aus n linearen Gleichungen für m Unbekannte x,..., x m hat die Form a x + a 2 x a m x m = b, a 2 x + a 22 x a 2m x m = b 2,.... a n x + a n2 x a nm x m = b n. (73 Fassen wir die Koeffizienten a ik R der Variable x k (mit i =,..., n zur Spalte a k R n und die Koeffizienten b i zur Spalte b R n zusammen, so wird daraus m x k a k x a x m a m = b. (74 k= Das lineare Gleichungssystem heißt homogen, falls b =, andernfalls heißt es inhomogen. Unter der Lösungsmenge des Gleichungssystems versteht man die Menge L = (x,..., x m R m x a x m a m = b R m. (75 Das System (74 ist offenbar genau dann lösbar (d.h.: L, wenn gilt b [ a,..., a m ]. (76 Def.: Zwei lineare Gleichungssysteme heißen äquivalent, wenn ihre Lösungsmengen gleich sind Gaußscher Algorithmus Zur Bestimmung der vollständigen Lösungsmenge eines linearen Gleichungssystems bemerken wir: Satz 4: Die Lösungsmenge eines linearen Gleichungssystems ändert sich nicht durch: (a Vertauschen zweier Gleichungen; (b Multiplikation einer Gleichung mit einer reellen Zahl c ; (c Addition des c-fachen einer Gleichung zu einer anderen. Durch diese Operationen kann man jedes lineare Gleichungssystem auf eine Form bringen, aus der sich die Lösungsmenge direkt ablesen läßt. In dieser sog. Zeilenstufenform (ZSF gibt es in jeder Einzelgleichung ( Zeile mindestens eine Variable x k, die in allen nachfolgenden Gleichungen nicht mehr vorkommt. Dies sei an einem Beispiel erläutert. 3

6 Bsp. 6: Wir betrachten das Gleichungssystem x + 2x 2 + 3x 3 + 4x 4 = 5, ( 2x + 3x 2 + 4x 3 + 5x 4 = 2, (2 3x + 4x 2 + 5x 3 + 9x 4 = 7. (3 (77 Durch die Ersetzungen (2 (2 = 2 ( (2 und (3 (3 = 3 ( (3 wird daraus x + 2x 2 + 3x 3 + 4x 4 = 5, ( x 2 + 2x 3 + 3x 4 = 2, (2 2x 2 + 4x 3 + 3x 4 = 2. (3 (78 Schließlich ersetzen wir (3 (3 = (3 2 (2, um ZSF zu erzielen, x + 2x 2 + 3x 3 + 4x 4 = 5, ( x 2 + 2x 3 + 3x 4 = 2, (2 3x 4 = 2. (3 (79 Aus Gl. (3 folgt x 4 = 2 3, womit Gl. (2 lautet x 2 + 2x 3 =. (8 Es ist also etwa x 3 frei wählbar und x 2 = 2x 3 wird festgelegt. Mit Gl. ( ist dann auch x = x festgelegt, und wir erhalten die einparametrige Lösungsmenge 3 ( L = x , 2x 3 3, x 3, 3 2 x3 R R 4. (8 Die allgemeine Lösung des Gleichungssystems ist also 38 x = 3 + x 2 3. (82 2 Bem.: Offenbar ist die Zahl d der unabhängigen Parameter in der Lösungsmenge eines linearen Gleichungssystems (hier: d =, ein einziger Parameter x 3 gegeben durch d = m r, (83 wobei m die Anzahl der Unbekannten und r die Anzahl der in der ZSF verbleibenden Gleichungen ist. Jede dieser Gleichungen stellt nämlich eine unabhängige Bedingung an die Lösungsmenge dar, welche die Anzahl von deren Freiheitsgraden je um eins reduziert. 32

7 3.4.3 Allgemeines Lösungsverhalten Die Lösungsmenge eines linearen Gleichungssystems (n Gleichungen für m Unbekannte, m x k a k x a x m a m = b R n, (84 k= wird bestimmt durch die Dimension r der linearen Hülle des Satzes a,..., a m } r = dim [ a,..., a m ] minm, n}. (85 Wir bezeichnen r als Rang des Gleichungssystems (genauer: der Koeffizientenmatrix. r ist gerade die Anzahl der Gleichungen in der ZSF des Systems (sofern diese keinen Widerspruch enthält und das System daher nicht lösbar ist. In homogenen Fall b = ist das System immer lösbar und es gilt der Satz 5: Die Lösungsmenge eines homogenen linearen Gleichungssystems, L = (x,..., x m R m x a x m a m = R m, (86 bildet einen d-dimensionalen Untervektorraum des R m, wobei d = m r. (87 Es gibt also einen linear unbhängigen Satz b,..., b d } R m, sodaß gilt L = x = c b c d b d c,..., c d R. (88 Im Fall r = m, also d =, ist der Satz a,..., a m } linear unabhängig. Dann gibt es nur die triviale Lösung x =, und der Lösungsraum ist -dimensional, L = }. Für inhomogene Systeme mit b gilt der Satz 6: Die Lösungsmenge L eines lösbaren inhomogenen linearen Gleichungssystems ergibt sich durch Addition einer beliebigen Einzellösung x spez zur allgemeinen Lösung des entsprechenden homogenen Systems, L = x = x spez + c b c d b d c,..., c d R. (89 Diese Menge bildet im Gegensatz zu L keinen Vektorraum, denn im Fall b gilt immer / L. Das System ist genau dann unlösbar, L =, wenn b / [ a,..., a m ]. (In diesem Fall führt die Erstellung der ZSF auf einen Widerspruch. 33

8 3.5 Matrizen 3.5. Definition Def.: Eine (n m-matrix A ist ein rechteckiges Zahlenschema mit n Zeilen und m Spalten, a a 2... a m a 2 a a 2m A =.... (9 a n a n2... a nm Die Zahlen a ij K (hier steht K wahlweise entweder für den Körper R der reellen oder C der komplexen Zahlen heißen die Elemente von A. Dabei steht a ij in der i-ten Zeile und der j-ten Spalte von A. Man schreibt auch kurz A = (a ij. Die Menge aller (n m-matrizen von Zahlen K wird mit M(n m, K bezeichnet. Bem.: Bezüglich der elementweisen Addition und der äußeren ( skalaren Multiplikation A + B (a ij + (b ij := (a ij + b ij (9 λ A λ (a ij := (λa ij (92 bildet M(n m, K einen Vektorraum über dem Körper K Rang Def.: Die m Spalten einer (n m-matrix A, aufgefaßt als Elemente des R n, spannen als ihre lineare Hülle einen Untervektorraum des R n auf, den Spaltenraum von A. Auf analoge Weise wird der Zeilenraum von A als Unterraum des R m definiert. Die Dimensionen dieser Räume heißen Zeilen- bzw. Spaltenrang von A. Bem.: Zeilen- und Spaltenrang einer Matrix ändern sich nicht durch: (a Vertauschen zweier Zeilen; (b Multiplikation einer Zeile mit einer reellen Zahl c ; (c Addition des c-fachen einer Zeile zu einer anderen. Jede Matrix A kann durch solche Operationen auf Zeilenstufenform gebracht werden. Es ist leicht einzusehen, daß bei der resultierenden Matrix A Zeilen- und Spaltenrang übereinstimmen. Es gilt also der Satz 7: Zeilen- und Spaltenrang einer (n m-matrix A sind identisch. Ihr gemeinsamer Wert heißt der Rang von A. 34

9 3.5.3 Matrizenmultiplikation Def.: Unter dem Produkt A B der (n l-matrix A = (a ij mit der (l m-matrix B = (b jk versteht man die (n m-matrix C = (c ik mit den Elementen c ik := l a ij b jk. (93 j= Bsp. 7: ( = 2 ( = ( (94 Bem.: Das Produkt A B ist nur erklärt, wenn A ebensoviele Spalten wie B Zeilen hat! Insbesondere ist das Matrizenprodukt, selbst unter quadratischen (n n-matrizen (mit gleicher und einheitlicher Zeilen- und Spaltenzahl n nicht kommutativ. Bsp. 8: ( ( ( = ( 5 6 = 7 8 ( ( ( ( ( = ( 2 = 3 4 ( ( , (95. (96 Bem.: Die Spaltenvektoren x R n lassen sich natürlich als (n -Matrizen auffassen. Das lineares Gleichungssystem (74 läßt daher schreiben als A x = b. (97 Satz: Für A M(n k, K und B, C M(k m, K gilt das Distributivgesetz A ( ( ( λb + µc = λ A B + µ A C (λ, µ R. (98 Für A M(n k, K, B M(k l, K und C M(l m, K gilt das Assoziativgesetz A ( ( B C = A B C A B C. (99 35

10 3.5.4 Lineare Abbildungen Eine (n m-matrix A impliziert eine lineare Abbildung f : R n R m, x f(x := A x. (2 Diese ist tatsächlich linear, denn nach Gl. (98 gilt für beliebige λ, µ R und x, x 2 R n f(λx + µx 2 = A (λx + µx 2 = λ (A x + µ (A x 2 = λf(x + µf(x 2. (2 Def.: Bild bzw. Kern einer linearen Abbildung f : R n R m werden definiert als Bildf := y R m x R n : y = f(x R m, Kernf := x R n f(x = R n. (22 Bem.: Bildf ist die Menge aller y R m, für die das inhomogene Gleichungssystem A x = y (23 lösbar ist. Kernf ist die Lösungsmenge L des homogenen Systems A x =. Satz 8: Bildf und Kernf sind Untervektorräume von R m bzw. R n. Ihre Dimensionen, r = dim Bildf, s = dim Kernf, (24 auch Rang bzw. Defekt von f genannt, addieren sich zur Ausgangsdimension n, r ist der (Spalten- Rang der Matrix A. r + s = n. (25 Bsp. 9: Für die lineare Abbildung f : R 5 R 4, mit x 2 3 f(x = A x x 2 x 3 x ( a, a 2, a 3, a 4, a 5 x, (26 x 5 berechnen wir zunächst r. Es gilt Bildf = x a + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 x, x 2, x 3, x 4, x 5 R. (27 36

11 Wegen a 2 = a + a 4, a 3 = 2a a 4 und a 5 = 3a folgt also Bildf = y a + y 4 a 4 y, y 4 R (28 und, weil a, a 4 } offensichtlich linear unabhängig ist, schließlich Berechnung von s: Die Matrix A hat die ZSF A = r dim Bildf = 2. ( (2 Für die Lösungsmenge L des homogenen Gleichungssystems A x = gilt also s dim Kernf dim L = 5 2 = 3. (2 Tatsächlich finden wir r + s = dim R 5 = 5. Anmerkung: Das Ergebnis r = 2 hätten wir natürlich direkt aus der ZSF A ablesen können, da Zeilen- und Spaltenrang von A bzw. A gleich sind. 37

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14052018 (Teil 1) 7 Mai 2018 Steven Köhler mathe@stevenkoehlerde mathestevenkoehlerde 2 c 2018 Steven Köhler 7 Mai 2018 Matrizen

Mehr

2 Vektorräume und Gleichungssysteme

2 Vektorräume und Gleichungssysteme 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum Definition 21 Seien K = (K, +, ) ein Körper, V eine Menge und

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER 206 STEFAN GESCHKE Inhaltsverzeichnis Einleitung 3 Literatur 3. Lineare Gleichungssysteme

Mehr

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER 208 STEFAN GESCHKE Inhaltsverzeichnis Einleitung 3 Literatur 3. Lineare Gleichungssysteme

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

1 Matrizen und Vektoren

1 Matrizen und Vektoren Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Matrizen und Vektoren Definition 1.1 (Matrizen) Ein rechteckiges Zahlenschema aus m mal n Elementen eines Körpers

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Martin Gubisch Lineare Algebra I WS 27/28 Definition (a ij ) 1 j n 1 i n heiÿt eine m n-matrix mit Komponenten a ij K Dabei bezeichnet i den Zeilenindex und j den Spaltenindex

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

6 Lineare Algebra. 6.1 Einführung

6 Lineare Algebra. 6.1 Einführung 6 Lineare Algebra 6.1 Einführung Die lineare Algebra ist für die Wirtschaftswissenschaften von zentraler Bedeutung. Einerseits liefert sie die theoretischen und praktischen Grundlagen für das Lösen linearer

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

$Id: vektor.tex,v /01/15 13:36:04 hk Exp $

$Id: vektor.tex,v /01/15 13:36:04 hk Exp $ $Id: vektortex,v 35 28//5 3:36:4 hk Exp $ 9 Vektorräume Wir kommen jetzt zum wohl abstraktesten Kapitel dieses ganzen Semesters, der Theorie der sogenannten Vektorräume Normalerweise ist ein Vektor etwas

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Lineare Gleichungssysteme (LGS) 2 1.1 Grundlagen..................................................

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt.

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. 82 Kapitel III: Vektorräume und Lineare Abbildungen Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. Wir

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

m 2 m 3 m 5, m m 2

m 2 m 3 m 5, m m 2 Musterlösung zum 8. Blatt 7. Aufgabe: Seien die folgenden Vektoren im R 4 gegeben: 2m 5 + 2 2m 2 2m 7 + m 2 m 3 m 5 v = m 5, v 2 = m 2, v 3 = m 7 m 2 m 3 m 5 m 2 m 3 m 5, m 5 + m 2 m 7 2m + m 2 m 4 2m

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 32 8 Lineare Algebra: 1 Reelle Matrizen Grundbegriffe Definition

Mehr

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation;

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation; Kapitel 1 Matrizen und lineare Gleichungssysteme 11 Matrizenkalkül (Vektorraum M(n,m; Matrixmultiplikation; Transposition; Spalten- und Zeilenvektoren Matrizen sind im Prinzip schon bei der schematischen

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18. 18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018 HM II Tutorium 5 Lucas Kunz 22. Mai 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Wiederholung Lineare Gleichungsysteme................... 2 1.2 Wiederholung: Kern einer Abbildung..................... 3 1.3

Mehr

H. Stichtenoth WS 2005/06

H. Stichtenoth WS 2005/06 H. Stichtenoth WS 25/6 Lösungsvorschlag für das. Übungsblatt Aufgabe : Der gesuchte Unterraum U ist die lineare Hülle von v und v 2 (siehe Def. 5. und Bsp. 5.5b), d. h. U : Spanv,v 2 } v R : v λ v + λ

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 1 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

$Id: det.tex,v /01/13 14:27:14 hk Exp $ $Id: vektor.tex,v /01/16 12:23:17 hk Exp $

$Id: det.tex,v /01/13 14:27:14 hk Exp $ $Id: vektor.tex,v /01/16 12:23:17 hk Exp $ Mathematik für Physiker I, WS 26/27 Montag 6 $Id: dettex,v 26 27//3 4:27:4 hk Exp $ $Id: vektortex,v 3 27//6 2:23:7 hk Exp $ 8 Determinanten 83 Laplace Entwicklung In der letzten Sitzung haben wir die

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr