Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Größe: px
Ab Seite anzeigen:

Download "Final Exam. Friday June 4, 2008, 12:30, Magnus-HS"

Transkript

1 Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In each of items 1-4, 12 points can be achieved, and in each of items 5-8, 13 points can be achieved. Bitte geben Sie kurze Begründungen für Ihre Ergebnisse. Bei jeder der Aufgaben 1-4 können 12 Punkte, und bei jeder der Aufgaben 5-8 können 13 Punkte erreicht werden. 1. Let X and Y be independent and uniform on {1,..., 5}. Find a) the conditional distribution b) the conditional expectation of X given X Y = 1. X und Y seien unabhängig und uniform auf {1,...,5}. Geben Sie a) die bedingte Verteilung von X b) die bedingte Erwartung von X jeweils gegeben X Y = 1 an. 1

2 2. Let (T 1,T 2,...,) be a standard Poisson process on R +, and N t its number of points up to (and including) t. a) For k N, express the event {T k+1 > t} \ {T k > t} in terms of N t and k. b) For k N, let G k be Gamma(k)-distributed. Find P(G k+1 > t) P(G k > t). (Hint: You can answer this without any calculation.) Sei (T 1,T 2,...,) ein Standard-Poissonprozess auf R +, and N t die Anzahl seiner Punkte t. a) Drücken Sie für k N das Ereignis {T k+1 > t} \ {T k > t} mittels N t und k aus. b) Für k N sei G k Gamma(k)-verteilt. Bestimmen Sie P(G k+1 > t) P(G k > t). (Hinweis: Sie können dies ganz ohne Rechnung lösen.) 2

3 3. Let X = (X n ) be the nearest neighbour random walk on Z with upwards probability p = 3/4. a) For which number v is X n vn a martingale? b) Compute the expected value of the time T when X first hits state 10, given that X starts in state 0. Hint: What does the stopping theorem tell for this T? You may use without proof that (X T n ) is uniformly integrable. Sei X = (X n ) die Nächste-Nachbar-Irrfahrt auf Z mit W keit p = 3/4 für einen Schritt nach oben. a) Für welche Zahl v ist X n vn ein Martingal? b) Berechnen Sie den Erwartungswert der Zeit T, zu der X bei Start im Zustand 0 erstmals den Zustand 10 trifft. Hinweis: Was sagt der Stoppsatz für dieses T? Sie dürfen ohne Beweis verwenden, dass (X T n ) uniform integrierbar ist. 3

4 4. In the compound Poisson process Z t = i:t i t H i, t 0, let (T 1,T 2,...) be a standard Poisson process and let the H i have a normal distribution with mean 2 and variance 3. Compute the expectation and the variance of Z t. Im Compound Poisson Prozess Z t = i:t i t H i, t 0, sei (T 1,T 2,...) ein Standard-Poissonprozess, und jedes H i habe eine Normalverteilung mit Erwartungswert 2 und Varianz 3. Berechnen Sie Erwartungswert und Varianz von Z t. 4

5 5. Let (X n ) be a simple random walk on Z starting in 0. Which of the following are martingales, and why? a) X 2 n b) (3X n ) 2 9n c) n k=3 (X k 3 3X k 1 X k 2 )(X k X k 1 ) (X n ) sei die gewöhnliche Irrfahrt auf Z mit Start in 0. Welche der folgenden Prozesse sind Martingale, und warum? a) X 2 n b) (3X n ) 2 9n c) n k=3 (X k 3 3X k 1 X k 2 )(X k X k 1 ) 5

6 6. Let ξ n,i,n = 1,2,...,i = 1,2,..., be i.i.d N 0 -valued random variables with E[ξ 1,1 ] = 2. Define inductively X 0 := 1, X n+1 := X n i=1 ξ n,i. a) Find E[X n+1 (X 0,...,X n )]. b) Give an argument why ( Xn 2 ) converges a.s. to an integrable random variable X as n n. ξ n,i,n = 1,2,...,i = 1,2,..., seien u.i.v. N 0 -wertige Zufallsvariable mit E[ξ 1,1 ] = 2. Wir definieren induktiv X 0 := 1, X n+1 := X n i=1 ξ n,i. a) Finden Sie E[X n+1 (X 0,...,X n )]. b) Geben Sie ein Argument, warum ( Xn 2 ) für n fast sicher gegen eine n integrierbare Zufallsvariable X konvergiert. 6

7 7. True or false, and why? (Quote a result from the course or the exercises, or give a counterexample.) a) Every martingale converges a.s. b) Every L 1 -bounded martingale converges a.s. c) Every nonnegative martingale is uniformly integrable. d) Every L 1 -bounded martingale converges in L 1. e) Every L 2 -bounded martingale converges in L 1. Wahr oder falsch, und warum? (Erinnern Sie an ein Ergebnis aus der Vorlesung oder den Übungen, oder geben Sie ein Gegenbeispiel an.) a) Jedes Martingal konvergiert fast sicher. b) Jedes L 1 -beschränkte Martingal konvergiert fast sicher. c) Jedes nichtnegative Martingal ist uniform integrierbar. d) Jedes L 1 -beschränkte Martingal konvergiert in L 1. e) Jedes L 2 -beschränkte Martingal konvergiert in L 1. 7

8 8. Let X = (X t ) be a continuous time Markov chain on Z such that for every bounded f : Z R the function u t (x) := E x [f(x t )] obeys t u t(x) = 3 4 u t(x + 1) u t(x 1) u t (x). a) What is the Q-matrix of X? b) Describe briefly how to construct X from a Markov chain in discrete time and i.i.d. Exp(1)-distributed random variables. c) Assume that X 0 = 0. Is the following statement true or false (and why): With positive probability, for all t 0 > 0 there exists a t > t 0 such that X t = 0. Sei X = (X t ) eine Markovkette in stetiger Zeit auf Z, so dass für jedes beschränkte f : Z R die Funktion u t (x) := E x [f(x t )] die Gleichung t u t(x) = 3 4 u t(x + 1) u t(x 1) u t (x) erfüllt. a) Wie sieht die Q-Matrix von X aus? b) Beschreiben Sie kurz, wie man X aus einer Markovkette in diskreter Zeit und u.i.v. Exp(1)-verteilten Zufallsvariablen konstruieren kann. c) Angenommen X 0 = 0. Ist die folgende Aussage wahr oder falsch (und warum): Mit positiver Wahrscheinlichkeit gibt es für alle t 0 > 0 ein t > t 0 so, dass X t = 0. 8

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 008 Final Exam Friday June 4, 008, 1:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In each

Mehr

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010 Stochastic Processes SS 2010 Prof. Anton Wakolbinger Klausur am 16. Juli 2010 Vor- und Nachname: Matrikelnummer: Studiengang: Tutor(in): In der Klausur können 100 Punkte erreicht werden. Die Gesamtpunktezahl

Mehr

Übungsblatt 6. Analysis 1, HS14

Übungsblatt 6. Analysis 1, HS14 Übungsblatt 6 Analysis, HS4 Ausgabe Donnerstag, 6. Oktober. Abgabe Donnerstag, 23. Oktober. Bitte Lösungen bis spätestens 7 Uhr in den Briefkasten des jeweiligen Übungsleiters am J- oder K-Geschoss von

Mehr

Functional Analysis Final Test, Funktionalanalysis Endklausur,

Functional Analysis Final Test, Funktionalanalysis Endklausur, Spring term 2012 / Sommersemester 2012 Functional Analysis Final Test, 16.07.2012 Funktionalanalysis Endklausur, 16.07.2012 Name:/Name: Matriculation number:/matrikelnr.: Semester:/Fachsemester: Degree

Mehr

Unit 4. The Extension Principle. Fuzzy Logic I 123

Unit 4. The Extension Principle. Fuzzy Logic I 123 Unit 4 The Extension Principle Fuzzy Logic I 123 Images and Preimages of Functions Let f : X Y be a function and A be a subset of X. Then the image of A w.r.t. f is defined as follows: f(a) = {y Y there

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference Syntax Semantics Parametrized Distributions Inference in Exact Inference Approximate Inference enumeration variable elimination stochastic simulation Markov Chain Monte Carlo (MCMC) 1 Includes many slides

Mehr

Level 2 German, 2015

Level 2 German, 2015 91126 911260 2SUPERVISOR S Level 2 German, 2015 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 2.00 p.m. Friday 4 December 2015 Credits: Five

Mehr

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs Ralf Zimmer, LMU Institut für Informatik, Lehrstuhl für Praktische

Mehr

D-BAUG Informatik I. Exercise session: week 1 HS 2018

D-BAUG Informatik I. Exercise session: week 1 HS 2018 1 D-BAUG Informatik I Exercise session: week 1 HS 2018 Java Tutorials 2 Questions? expert.ethz.ch 3 Common questions and issues. expert.ethz.ch 4 Need help with expert? Mixed expressions Type Conversions

Mehr

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesnt start automatically Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten Click here if your download doesn"t start automatically Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten Ein Stern in dunkler

Mehr

Globale Symmetrie von stochastischen Teilchenbewegungen mit lokal symmetrischer Interaktion

Globale Symmetrie von stochastischen Teilchenbewegungen mit lokal symmetrischer Interaktion Research Collection Doctoral Thesis Globale Symmetrie von stochastischen Teilchenbewegungen mit lokal symmetrischer Interaktion Author(s): Barner, Andreas Publication Date: 1983 Permanent Link: https://doi.org/10.3929/ethz-a-000294972

Mehr

Level 2 German, 2013

Level 2 German, 2013 91126 911260 2SUPERVISOR S Level 2 German, 2013 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 9.30 am Monday 11 November 2013 Credits: Five

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Mock Exam Behavioral Finance

Mock Exam Behavioral Finance Mock Exam Behavioral Finance For the following 4 questions you have 60 minutes. You may receive up to 60 points, i.e. on average you should spend about 1 minute per point. Please note: You may use a pocket

Mehr

Fachbereich 5 Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fachbereich 5 Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach 1 Universität Siegen Fachbereich 5 Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Klausur International Financial Markets Sommersemester 2010 (2. Prüfungstermin) Bearbeitungszeit: 60 Minuten

Mehr

Level 1 German, 2014

Level 1 German, 2014 90886 908860 1SUPERVISOR S Level 1 German, 2014 90886 Demonstrate understanding of a variety of German texts on areas of most immediate relevance 9.30 am Wednesday 26 November 2014 Credits: Five Achievement

Mehr

Abschlussklausur des Kurses Portfoliomanagement

Abschlussklausur des Kurses Portfoliomanagement Universität Hohenheim Wintersemester 2010/2011 Lehrstuhl für Bankwirtschaft und Finanzdienstleistungen Kurs Portfoliomanagement Seite 1 von 3 19.01.2011 Abschlussklausur des Kurses Portfoliomanagement

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

On Euler s attempt to compute logarithms by interpolation

On Euler s attempt to compute logarithms by interpolation Euler p. 1/1 On Euler s attempt to compute logarithms by interpolation Walter Gautschi wxg@cs.purdue.edu Purdue University Leonhard Euler 1707 1783 Euler p. 2/1 Euler p. 3/1 From Euler s letter to Daniel

Mehr

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach 1 Universität Siegen Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Klausur Monetäre Außenwirtschaftstheorie und politik / International Macro Wintersemester 2011-12 (2. Prüfungstermin) Bearbeitungszeit:

Mehr

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 18. September Englisch. Schreiben

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 18. September Englisch. Schreiben Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 18. September 2015 Englisch (B2) Schreiben Hinweise zum Beantworten der Fragen Sehr geehrte Kandidatin, sehr geehrter Kandidat!

Mehr

Algorithms & Datastructures Midterm Test 1

Algorithms & Datastructures Midterm Test 1 Algorithms & Datastructures Midterm Test 1 Wolfgang Pausch Heiko Studt René Thiemann Tomas Vitvar

Mehr

EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN

EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN DOWNLOAD EBOOK : EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE

Mehr

Grade 12: Qualifikationsphase. My Abitur

Grade 12: Qualifikationsphase. My Abitur Grade 12: Qualifikationsphase My Abitur Qualifikationsphase Note 1 Punkte Prozente Note 1 15 14 13 85 % 100 % Note 2 12 11 10 70 % 84 % Note 3 9 8 7 55 % 69 % Note 4 6 5 4 40 % 54 % Note 5 3 2 1 20 % 39

Mehr

A Classification of Partial Boolean Clones

A Classification of Partial Boolean Clones A Classification of Partial Boolean Clones DIETLINDE LAU, KARSTEN SCHÖLZEL Universität Rostock, Institut für Mathematik 25th May 2010 c 2010 UNIVERSITÄT ROSTOCK MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT,

Mehr

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach 1 Universität Siegen Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Klausur Monetäre Außenwirtschaftstheorie und politik / International Macro Wintersemester 2011-12 (1. Prüfungstermin) Bearbeitungszeit:

Mehr

Number of Maximal Partial Clones

Number of Maximal Partial Clones Number of Maximal Partial Clones KARSTEN SCHÖLZEL Universität Rostoc, Institut für Mathemati 26th May 2010 c 2010 UNIVERSITÄT ROSTOCK MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT, INSTITUT FÜR MATHEMATIK

Mehr

Organische Chemie IV: Organische Photochemie

Organische Chemie IV: Organische Photochemie Organische Chemie IV: Organische Photochemie Wintersemester 2008/09 Technische Universität München Klausur am 12.02.2009 Name, Vorname... Matrikel-Nr.... (Druckbuchstaben) geboren am... in...... (Eigenhändige

Mehr

CALCULATING KPI QUANTITY-INDEPENDENT ROUTE TIME

CALCULATING KPI QUANTITY-INDEPENDENT ROUTE TIME CALCULATING KPI QUANTITY-INDEPENDENT ROUTE TIME Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann die Fläche nicht eingefärbt

Mehr

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ]. Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. Problem 1 (15 points) a) (1 point) A system description

Mehr

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Word-CRM-Upload-Button. User manual

Word-CRM-Upload-Button. User manual Word-CRM-Upload-Button User manual Word-CRM-Upload for MS CRM 2011 Content 1. Preface... 3 2. Installation... 4 2.1. Requirements... 4 2.1.1. Clients... 4 2.2. Installation guidelines... 5 2.2.1. Client...

Mehr

Übung 3: VHDL Darstellungen (Blockdiagramme)

Übung 3: VHDL Darstellungen (Blockdiagramme) Übung 3: VHDL Darstellungen (Blockdiagramme) Aufgabe 1 Multiplexer in VHDL. (a) Analysieren Sie den VHDL Code und zeichnen Sie den entsprechenden Schaltplan (mit Multiplexer). (b) Beschreiben Sie zwei

Mehr

VORANSICHT. Halloween zählt zu den beliebtesten. A spooky and special holiday Eine Lerntheke zu Halloween auf zwei Niveaus (Klassen 8/9)

VORANSICHT. Halloween zählt zu den beliebtesten. A spooky and special holiday Eine Lerntheke zu Halloween auf zwei Niveaus (Klassen 8/9) IV Exploringlifeandculture 12 Halloween(Kl.8/9) 1 von28 A spooky and special holiday Eine Lerntheke zu Halloween auf zwei Niveaus (Klassen 8/9) EinBeitragvonKonstanzeZander,Westerengel Halloween zählt

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 4. Zufallsgrösse X Literatur Kapitel 4 * Storrer: Kapitel (37.2)-(37.8), (38.2)-(38.3), (38.5), (40.2)-(40.5) * Stahel: Kapitel 4, 5 und 6 (ohne

Mehr

Microsoft Outlook Das Handbuch (German Edition)

Microsoft Outlook Das Handbuch (German Edition) Microsoft Outlook 2010 - Das Handbuch (German Edition) Thomas Joos Click here if your download doesn"t start automatically Microsoft Outlook 2010 - Das Handbuch (German Edition) Thomas Joos Microsoft Outlook

Mehr

1. A number has 6 in the tenths place, 4 in the ones place, and 5 in the hundredths place. Write the number.

1. A number has 6 in the tenths place, 4 in the ones place, and 5 in the hundredths place. Write the number. Englische Übungen zu Dezimalzahlen Bemerkung: Im Englischen schreibt man einen Punkt als Komma ( decimal point ). 1. A number has 6 in the tenths place, 4 in the ones place, and 5 in the hundredths place.

Mehr

Level 1 German, 2012

Level 1 German, 2012 90886 908860 1SUPERVISOR S Level 1 German, 2012 90886 Demonstrate understanding of a variety of German texts on areas of most immediate relevance 9.30 am Tuesday 13 November 2012 Credits: Five Achievement

Mehr

Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition)

Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition) Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition) Reinhold Ruthe Click here if your download doesn"t start automatically Handbuch der therapeutischen

Mehr

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number.

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number. Magic Figures Introduction: This lesson builds on ideas from Magic Squares. Students are introduced to a wider collection of Magic Figures and consider constraints on the Magic Number associated with such

Mehr

Abgabetermin: 5. Mai 2017, Uhr

Abgabetermin: 5. Mai 2017, Uhr Übungsblatt Nr. 1 26. April 2017 1. Sei F k, k K, eine Familie von σ-algebren, wobei K eine beliebige Menge ist. Zeigen Sie, daß F d = k K F k ebenfalls eine σ-algebra ist! Beweisen Sie, daß die Vereinigung

Mehr

Nachklausur zur Vorlesung Vertiefung Theoretische Informatik Wintersemester 2014

Nachklausur zur Vorlesung Vertiefung Theoretische Informatik Wintersemester 2014 Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender AG Formale Methoden und Theoretische Informatik Fachbereich Informatik Universität Koblenz-Landau Nachklausur zur Vorlesung Vertiefung

Mehr

There are 10 weeks this summer vacation the weeks beginning: June 23, June 30, July 7, July 14, July 21, Jul 28, Aug 4, Aug 11, Aug 18, Aug 25

There are 10 weeks this summer vacation the weeks beginning: June 23, June 30, July 7, July 14, July 21, Jul 28, Aug 4, Aug 11, Aug 18, Aug 25 Name: AP Deutsch Sommerpaket 2014 The AP German exam is designed to test your language proficiency your ability to use the German language to speak, listen, read and write. All the grammar concepts and

Mehr

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n 4. Bayes Spiele Definition eines Bayes Spiels G B (n, S 1,..., S n, T 1,..., T n, p, u 1,..., u n ) n Spieler 1,..., n S i Strategiemenge für Spieler i, S S 1... S n T i Typmenge für Spieler i, T T 1...

Mehr

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016 to to May 2016 to What is Programming? All computers are stupid. All computers are deterministic. You have to tell the computer what to do. You can tell the computer in any (programming) language) you

Mehr

Übersetzen des Quelltexts in ausführbaren Maschinen-Code Translation of source code into executable machine code

Übersetzen des Quelltexts in ausführbaren Maschinen-Code Translation of source code into executable machine code Informatik II D-BAUG Self-Assessment, 2. März 2017 Lösung Name, Vorname:............................................................. Legi-Nummer:.............................................................

Mehr

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume Theorie des Algorithmischen Lernens Sommersemester 2006 Teil 2.2: Lernen formaler Sprachen: Hypothesenräume Version 1.1 Gliederung der LV Teil 1: Motivation 1. Was ist Lernen 2. Das Szenario der Induktiven

Mehr

RECHNUNGSWESEN. KOSTENBEWUßTE UND ERGEBNISORIENTIERTE BETRIEBSFüHRUNG. BY MARTIN GERMROTH

RECHNUNGSWESEN. KOSTENBEWUßTE UND ERGEBNISORIENTIERTE BETRIEBSFüHRUNG. BY MARTIN GERMROTH RECHNUNGSWESEN. KOSTENBEWUßTE UND ERGEBNISORIENTIERTE BETRIEBSFüHRUNG. BY MARTIN GERMROTH DOWNLOAD EBOOK : RECHNUNGSWESEN. KOSTENBEWUßTE UND Click link bellow and free register to download ebook: RECHNUNGSWESEN.

Mehr

Was heißt Denken?: Vorlesung Wintersemester 1951/52. [Was bedeutet das alles?] (Reclams Universal-Bibliothek) (German Edition)

Was heißt Denken?: Vorlesung Wintersemester 1951/52. [Was bedeutet das alles?] (Reclams Universal-Bibliothek) (German Edition) Was heißt Denken?: Vorlesung Wintersemester 1951/52. [Was bedeutet das alles?] (Reclams Universal-Bibliothek) (German Edition) Martin Heidegger Click here if your download doesn"t start automatically Was

Mehr

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB Read Online and Download Ebook PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB DOWNLOAD EBOOK : PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: Click link bellow

Mehr

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part XI) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

A linear-regression analysis resulted in the following coefficients for the available training data

A linear-regression analysis resulted in the following coefficients for the available training data Machine Learning Name: Vorname: Prof. Dr.-Ing. Klaus Berberich Matrikel: Aufgabe 1 2 3 4 Punkte % % (Bonus) % (Gesamt) Problem 1 (5 Points) A linear-regression analysis resulted in the following coefficients

Mehr

Übung 7 Beispiel 3 Daniel Herold

Übung 7 Beispiel 3 Daniel Herold Übung 7 Beispiel 3 Daniel Herold Given an integer J, consider the following uniform partition of (0, ): 0 = y 0 < y < < y J+ =, y j = j J +, j = 0...J + Based on this partition, a domain decomposition

Mehr

Deutsch 1 Kapitel 6: Meine Sachen items in a house, pronouns, adjectives, prepositions. Name: Seite

Deutsch 1 Kapitel 6: Meine Sachen items in a house, pronouns, adjectives, prepositions. Name: Seite 1. Label 10 things in the room with the correct gender (die, der, das) 2. Find the nine words related to household furnishing in the puzzle below. 3. Find the missing pieces of furniture. 4. The movers

Mehr

Research Collection. Backward stochastic differential equations with super-quadratic growth. Doctoral Thesis. ETH Library. Author(s): Bao, Xiaobo

Research Collection. Backward stochastic differential equations with super-quadratic growth. Doctoral Thesis. ETH Library. Author(s): Bao, Xiaobo Research Collection Doctoral Thesis Backward stochastic differential equations with super-quadratic growth Author(s): Bao, Xiaobo Publication Date: 2009 Permanent Link: https://doi.org/10.3929/ethz-a-005955736

Mehr

Detailauswertung für Evaluation Wintersemester 2016/17 (Fakultät für Informatik und Mathematik) Lehrevaluation

Detailauswertung für Evaluation Wintersemester 2016/17 (Fakultät für Informatik und Mathematik) Lehrevaluation Detailauswertung für Evaluation Wintersemester 2016/17 (Fakultät für Informatik und Mathematik) Lehrevaluation In diesem Dokument sind alle abgegebenen Bewertungen aufgeführt. Persönliche Angaben In welchem

Mehr

Kreditpunke-Klausuren für Volkswirte, Betriebswirte, Handelslehrer und Wirtschaftsinformatiker, BA, MA

Kreditpunke-Klausuren für Volkswirte, Betriebswirte, Handelslehrer und Wirtschaftsinformatiker, BA, MA Wirtschaftswissenschaftlicher Prüfungsausschuß der Georg-August-Universität Göttingen Diplomprüfung Kreditpunke-Klausuren für Volkswirte, Betriebswirte, Handelslehrer und Wirtschaftsinformatiker, BA, MA

Mehr

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6 Unit 1 Motivation and Basics of Classical Logic Fuzzy Logic I 6 Motivation In our everyday life, we use vague, qualitative, imprecise linguistic terms like small, hot, around two o clock Even very complex

Mehr

Hausaufgabe 1-4. Name: If homework late, explanation: Last class homework is being accepted: If correction late, explanation: Student Self-Grading

Hausaufgabe 1-4. Name: If homework late, explanation: Last class homework is being accepted: If correction late, explanation: Student Self-Grading Hausaufgabe 1-4 To Be Filled Out By Instructor Inspected Self-Grade Accepted Lateness of Homework Accepted Instructor s Grade: Name: To Be Filled Out By Student (White Fields Only) Class # due: 1-4 Turned

Mehr

Privatverkauf von Immobilien - Erfolgreich ohne Makler (German Edition)

Privatverkauf von Immobilien - Erfolgreich ohne Makler (German Edition) Privatverkauf von Immobilien - Erfolgreich ohne Makler (German Edition) Edgar Freiherr Click here if your download doesn"t start automatically Privatverkauf von Immobilien - Erfolgreich ohne Makler (German

Mehr

Weather forecast in Accra

Weather forecast in Accra Weather forecast in Accra Thursday Friday Saturday Sunday 30 C 31 C 29 C 28 C f = 9 5 c + 32 Temperature in Fahrenheit Temperature in Celsius 2 Converting Celsius to Fahrenheit f = 9 5 c + 32 tempc = 21

Mehr

Hausaufgabe 6-7. To be filled out by student: If homework late, what are the reasons: If correction late, what are the reasons:

Hausaufgabe 6-7. To be filled out by student: If homework late, what are the reasons: If correction late, what are the reasons: Hausaufgabe 6-7 Homework due: 6-8 Last day of acceptance of homework: 6-4 Correction due: 6-10 Last day of acceptance of correction: 7-1 To be filled out by student: If homework late, what are the reasons:

Mehr

Wer bin ich - und wenn ja wie viele?: Eine philosophische Reise. Click here if your download doesn"t start automatically

Wer bin ich - und wenn ja wie viele?: Eine philosophische Reise. Click here if your download doesnt start automatically Wer bin ich - und wenn ja wie viele?: Eine philosophische Reise Click here if your download doesn"t start automatically Wer bin ich - und wenn ja wie viele?: Eine philosophische Reise Wer bin ich - und

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Reguläre Ausdrücke und reguläre Grammatiken Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Regular expressions (1) Let Σ be an alphabet. The

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/cover_sheet.tex. p./26 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types 3. Geometry 4. Interpolation Approach Function

Mehr

Wie man heute die Liebe fürs Leben findet

Wie man heute die Liebe fürs Leben findet Wie man heute die Liebe fürs Leben findet Sherrie Schneider Ellen Fein Click here if your download doesn"t start automatically Wie man heute die Liebe fürs Leben findet Sherrie Schneider Ellen Fein Wie

Mehr

Challenges for the future between extern and intern evaluation

Challenges for the future between extern and intern evaluation Evaluation of schools in switzerland Challenges for the future between extern and intern evaluation Michael Frais Schulentwicklung in the Kanton Zürich between internal evaluation and external evaluation

Mehr

Adverbialsätze im Deutschen. Analyse und produktiver Umgang (Unterrichtsentwurf Deutsch, 9. Klasse) (German Edition)

Adverbialsätze im Deutschen. Analyse und produktiver Umgang (Unterrichtsentwurf Deutsch, 9. Klasse) (German Edition) Adverbialsätze im Deutschen. Analyse und produktiver Umgang (Unterrichtsentwurf Deutsch, 9. Klasse) (German Edition) Gunnar Norda Click here if your download doesn"t start automatically Adverbialsätze

Mehr

Wirtschaftskrise ohne Ende?: US-Immobilienkrise Globale Finanzkrise Europäische Schuldenkrise (German Edition)

Wirtschaftskrise ohne Ende?: US-Immobilienkrise Globale Finanzkrise Europäische Schuldenkrise (German Edition) Wirtschaftskrise ohne Ende?: US-Immobilienkrise Globale Finanzkrise Europäische Schuldenkrise (German Edition) Aymo Brunetti Click here if your download doesn"t start automatically Wirtschaftskrise ohne

Mehr

Machine Learning and Data Mining Summer 2015 Exercise Sheet 11

Machine Learning and Data Mining Summer 2015 Exercise Sheet 11 Ludwig-Maximilians-Universitaet Muenchen 0.06.205 Institute for Informatics Prof. Dr. Volker Tresp Gregor Jossé Johannes Niedermayer Machine Learning and Data Mining Summer 205 Exercise Sheet Presentation

Mehr

KAPITEL 1. Martingale

KAPITEL 1. Martingale KAPITEL 1 Martingale 1.1. Stochastische Prozesse Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Das heißt, Ω ist eine Menge, F ist eine σ-algebra auf Ω, und P ein Wahrscheinlichkeitsmaß auf (Ω, F ). Zuerst

Mehr

Level 2 German, 2016

Level 2 German, 2016 91126 911260 2SUPERVISOR S Level 2 German, 2016 91126 Demonstrate understanding of a variety of written and / or visual German texts on familiar matters 2.00 p.m. Tuesday 29 November 2016 Credits: Five

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, 1D-Example home/lehre/vl-mhs-1-e/folien/vorlesung/3_fem_intro/cover_sheet.tex page 1 of 25. p.1/25 Table of contents 1D Example - Finite Element Method 1. 1D Setup Geometry 2. Governing

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/folien/vorlesung/4_fem_isopara/cover_sheet.tex page of 25. p./25 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types

Mehr

aus Doktorarbeiten Anna Lena Birkmeyer Oktober 2016

aus Doktorarbeiten Anna Lena Birkmeyer Oktober 2016 aus Doktorarbeiten Anna Lena Birkmeyer Fachbereich Mathematik TU Kaiserslautern Oktober 2016 In der der Arbeit: The mathematical modeling and optimization of... is a wide field of research [4,15,19,35,61,62,66,76,86]

Mehr

Mercedes OM 636: Handbuch und Ersatzteilkatalog (German Edition)

Mercedes OM 636: Handbuch und Ersatzteilkatalog (German Edition) Mercedes OM 636: Handbuch und Ersatzteilkatalog (German Edition) Mercedes-Benz Click here if your download doesn"t start automatically Mercedes OM 636: Handbuch und Ersatzteilkatalog (German Edition) Mercedes-Benz

Mehr

p^db=`oj===pìééçêíáåñçêã~íáçå=

p^db=`oj===pìééçêíáåñçêã~íáçå= p^db=`oj===pìééçêíáåñçêã~íáçå= Error: "Could not connect to the SQL Server Instance" or "Failed to open a connection to the database." When you attempt to launch ACT! by Sage or ACT by Sage Premium for

Mehr

Konkret - der Ratgeber: Die besten Tipps zu Internet, Handy und Co. (German Edition)

Konkret - der Ratgeber: Die besten Tipps zu Internet, Handy und Co. (German Edition) Konkret - der Ratgeber: Die besten Tipps zu Internet, Handy und Co. (German Edition) Kenny Lang, Marvin Wolf, Elke Weiss Click here if your download doesn"t start automatically Konkret - der Ratgeber:

Mehr

Die UN-Kinderrechtskonvention. Darstellung der Bedeutung (German Edition)

Die UN-Kinderrechtskonvention. Darstellung der Bedeutung (German Edition) Die UN-Kinderrechtskonvention. Darstellung der Bedeutung (German Edition) Daniela Friedrich Click here if your download doesn"t start automatically Die UN-Kinderrechtskonvention. Darstellung der Bedeutung

Mehr

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 19. September Englisch. Schreiben

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 19. September Englisch. Schreiben Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 19. September 2017 Englisch (B2) Schreiben Hinweise zum Beantworten der Fragen Sehr geehrte Kandidatin, sehr geehrter Kandidat!

Mehr

Seeking for n! Derivatives

Seeking for n! Derivatives Seeking for n! Derivatives $,000$ Reward A remarkable determinant (,0) (,) (0,0) (0,) (,0) (,0) (,) (,) (0,0) (0,) (0,) General definition Δ μ (X, Y ) = det x p i j yq i n j i,j= As a starter... n! dim

Mehr

KTdCW Artificial Intelligence 2016/17 Practical Exercises - PART A

KTdCW Artificial Intelligence 2016/17 Practical Exercises - PART A KTdCW Artificial Intelligence 2016/17 Practical Exercises - PART A Franz Wotawa Technische Universität Graz, Institute for Software Technology, Inffeldgasse 16b/2, A-8010 Graz, Austria, wotawa@ist.tugraz.at,

Mehr

ν = z Hy, S = HPH + R, W = PH S 1 Q 1 = P 1 + H R 1 H. independent of x Interpret N ( z; Hx, R ) N ( x; y, P ) as a joint density: ) ( ) )!

ν = z Hy, S = HPH + R, W = PH S 1 Q 1 = P 1 + H R 1 H. independent of x Interpret N ( z; Hx, R ) N ( x; y, P ) as a joint density: ) ( ) )! = N ( z; Hy, S independent of x N ( z; Hx, R N ( x; y, P N ( x; y + Wν, P WSW N ( x; Q(P 1 y + H R 1 z, Q ν = z Hy, S = HPH + R, W = PH S 1 Q 1 = P 1 + H R 1 H. Interpret N ( z; Hx, R N ( x; y, P as a

Mehr

Algorithms for graph visualization

Algorithms for graph visualization Algorithms for graph visualization Project - Orthogonal Grid Layout with Small Area W INTER SEMESTER 2013/2014 Martin No llenburg KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Computational Models

Computational Models - University of Applied Sciences - Computational Models - CSCI 331 - Friedhelm Seutter Institut für Angewandte Informatik Part I Automata and Languages 0. Introduction, Alphabets, Strings, and Languages

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 13, 25.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Die letzte Vorlesung über Grundlegende

Mehr

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB Read Online and Download Ebook PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB DOWNLOAD EBOOK : PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: Click link bellow

Mehr

Die Zukunft der Zeitung

Die Zukunft der Zeitung Die Zukunft der Zeitung Reading a newspaper Reading & Writing Level A2 www.lingoda.com 1 Die Zukunft der Zeitung Leitfaden/Outline Inhalt/Content Für viele Zeitungen in Deutschland erweist sich das Internet

Mehr

Web-basierte Geoinformation im Planungsprozess , VU, 2013W; TU Wien, IFIP

Web-basierte Geoinformation im Planungsprozess , VU, 2013W; TU Wien, IFIP Group exercise: Web maps EPSG: 3857 and EPSG: 4326 are used in the Your first online map example. What does EPSG mean, and what do the numbers mean? Find the South Pole on http://openstreetmap.org/. Are

Mehr

Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER spektrum) (German Edition)

Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER spektrum) (German Edition) Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER spektrum) (German Edition) Ulrich Schaffer Click here if your download doesn"t start automatically Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER

Mehr

Harry gefangen in der Zeit Begleitmaterialien

Harry gefangen in der Zeit Begleitmaterialien Episode 015 - A very strange date Focus: how to express the exact date, the year and the names of the months Grammar: ordinal numbers, expressing dates, the pronoun es It's the 31 st of April, but April

Mehr

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena http://www.im.uni-jena.de Contents I. Learning Objectives II. III. IV. Recap

Mehr

My Reading-Log. Eine Hilfe beim Lesen von englischen Ganzschriften in der Schule. Hinweise zur technischen Umsetzung:

My Reading-Log. Eine Hilfe beim Lesen von englischen Ganzschriften in der Schule. Hinweise zur technischen Umsetzung: Eine Hilfe beim Lesen von englischen Ganzschriften in der Schule Hinweise zur technischen Umsetzung: Die Tagebuch-Seiten werden in der vorgebenen Reihenfolge beidseitig auf A4 Papier gedruckt. Das vierte

Mehr

Paper Reference. Paper Reference(s) 4375/01 London Examinations IGCSE German Paper 1: Listening

Paper Reference. Paper Reference(s) 4375/01 London Examinations IGCSE German Paper 1: Listening Centre No. Paper Reference Surname Initial(s) Candidate No. 4 3 7 5 0 1 Signature Paper Reference(s) 4375/01 London Examinations IGCSE German Paper 1: Listening Monday 30th October 2006 Afternoon Time:

Mehr

Martin Luther. Click here if your download doesn"t start automatically

Martin Luther. Click here if your download doesnt start automatically Die schönsten Kirchenlieder von Luther (Vollständige Ausgabe): Gesammelte Gedichte: Ach Gott, vom Himmel sieh darein + Nun bitten wir den Heiligen Geist... der Unweisen Mund... (German Edition) Martin

Mehr

Retake Exam Künstliche Intelligenz 2

Retake Exam Künstliche Intelligenz 2 Name: Birth Date: Matriculation Number: Field of Study: Retake Exam Künstliche Intelligenz 2 Feb. 19., 2018 To be used for grading, do not write here prob. Sum total 0 reached Exam Grade: Bonus Points:

Mehr

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe D-MATH Algebra I HS 2015 Prof. Richard Pink Musterlösung 3 Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe 1. Sei K ein Körper. Zeige, dass K[X 2, X 3 ] K[X] ein Integritätsbereich,

Mehr