Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1

Größe: px
Ab Seite anzeigen:

Download "Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1"

Transkript

1 I.1 Grundbegriffe der newtonschen Mechanik 11 I.1.3 c Konservative Kräfte Definition: Ein zeitunabhängiges Kraftfeld F ( r) wird konservativ genannt, wenn es ein Skalarfeld (3) V ( r) gibt, das F ( r) = V ( r) (I.10) erfüllt. V ( r) wird als Potential oder auch potentielle Energie bezeichnet. In Gl. (I.10) bezeichnet der Nabla-Operator, angewan auf eine skalare Funktion auf R 3, den Gradienten dieser Funktion. Für konservative Kraftfelder hängt die durch die Kraft zwischen zwei Punkten verrichtete Arbeit nicht vom Weg ab. Beweis: Das Resultat folgt aus W = r2 r 1 F ( x) d x = r2 r 1 [ V ( x) ] d x = [ V ( r2 ) V ( r 1 ) ] (I.11) unter Verwendung der Tatsache, dass V ( r) eine Stammfunktion von V ( r) ist. Bemerkung: Offensichtlich ist V ( r) nur bis auf eine additive Konstante eindeutig. Die Letztere wird oft so gewählt, dass das Potential im Unendlichen verschwindet. Behauptung: Sei ein Kraftfeld F ( r), definiert auf einem einfach zusammenhängenden Gebiet G von R 3. (4) Dann ist F ( r) genau dann konservativ, wenn seine Rotation in jedem Punkt von G verschwindet: F ( r) = V ( r) F ( r) = 0 r G. (I.12) Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität [ V ( r) ] = 0, die sich z.b. komponentenweise beweisen lässt: die i-te Komponente (in einem kartesischen Koordinatensystem) des Terms auf der linken Seite ist ɛ ijk j k V ( r), mit ɛ ijk dem Levi-Civita-Symbol und l die Ableitung nach dem Komponenten x l des Ortsvektors. Dabei ist ɛ ijk antisymmetrisch unter dem Austausch von j und k, während die zweite Ableitung j k symmetrisch ist, so dass die Summe über alle Werte dieser Indizes Null ergibt. Zum Beweis, dass ein rotationsfreies Kraftfeld F ( r) sich als (das Negative des) Gradienten eines skalaren Potentials V ( r) schreiben lässt, soll man zunächst einen beliebigen Punkt r 0 in G wählen und V durch r V ( r) = F ( r ) d r r 0 für jeden r G definieren. Das Integral auf der rechten Seite der obigen Formel ist eindeutig definiert, wenn Wegintegrale F d x von r0 nach r unabhängig vom gewählten Weg sind. Betrachte man zwei unterschiedliche Wege C 1, C 2 in G, die von r 0 nach r führen. Dann definiert C 1 C 2 C 2 r r 0 C 1 C 1 C 2 (3) D.h. eine zahlenwertige Funktion des Ortsvektors r. (4) Ein Gebiet wird als einfach zusammenhängend bezeichnet, wenn sich jeder geschlossene Weg im Gebiet stetig zu einem Punkt zusammenziehen lässt, ohne das Gebiet zu verlassen. Zum Beispiel ist eine Ebene (R 2 ) einfach zusammenhängend, während R 2 ohne einen Punkt nicht mehr einfach zusammenhängend ist.

2 12 Newtonsche Mechanik C 2 trivial einen Weg C 2 (mit gleicher Kurve und umgekehrter Parametrisierung) von r nach r 0, und somit einen geschlossenen Weg C 1 C 2 mit Anfangs- und Endpunkt in r 0. Aus dem Satz von Stokes folgt für das Wegintegral der Kraft entlang C 1 C 2 F ( r ) d r [ = F ( r ) ] d 2 S = 0, C 1 C 2 S wobei S die durch die Kurve C 1 C 2 abgeschlossene Fläche bezeichnet, während die letzte Gleichung aus der Annahme F = 0 folgt, die in jedem Punkt von S gilt (dank der Annahme eines einfach zusammenhängenden Gebiets). Andererseits gilt F ( r ) d r = C 1 C 2 F ( r ) d r C 1 F ( r ) d r, C 2 woraus die gesuchte Unabhängigkeit des Wegintegrals vom Weg folgt. I.2 Newtonsche Gesetze Basierend auf den in Abschn. I.1 eingeführten Begriffen, insbesondere auf der Existenz absoluter Raum und Zeit, können die dynamischen Gesetze, welche die Wirkung von Kräften auf mechanische Systeme bestimmen, angegeben werden. Dabei besagen diese Gesetze aber nichts über die mathematische Form der Kräfte: diese hängen von der Situation ab und sollen durch zusätzliche Theorien oder Modelle präzisiert werden. I.2.1 Erstes newtonsches Gesetz Das erste newtonsche Gesetz das auch erstes Axiom, lex prima oder Trägheitsgesetz genannt wird besagt die Existenz von bevorzugten Bezugssystemen, in denen der Bewegungszustand eines Körpers sich nicht ändert, so lange keine Kraft auf ihn ausgeübt wird: Erstes newtonsches Gesetz Es gibt besondere Bezugssysteme, sog. Inertialsysteme, in denen ein Massenpunkt, der keiner Kraft unterliegt, in seinem Zustand der Ruhe oder gleichförmigen geradlinigen Bewegung beharrt. (I.13) Anders gesagt bleibt in Inertialsystemen die Geschwindigkeit x(t) eines kräftefreien Massenpunktes konstant, d.h. seine Beschleunigung x(t) verschwindet. Eigentlich wurde dieses Prinzip schon durch Galilei (b) formuliert, weshalb es auch seinen Namen trägt. Dazu ist der obige Ausdruck des Gesetzes in der Tat nicht die ursprüngliche Formulierung, denn es gab bei Newton keinen Bezug auf Inertialsysteme. Das Gesetz setzt die Existenz eines kräftefreien Zustands implizit voraus. In der Praxis ist dies eine Idealisierung, denn kein Körper kann von der (anziehenden) Schwerkraft der anderen Körper im Universum isoliert werden. Was aber praktisch realisierbar ist zumindest in sehr guter Näherung, ist dass die Resultierende der auf ein System wirkenden Kräfte verschwindet, was sich dann als äquivalent zur Abwesenheit von Kräfte herausstellt. Auf Inertialsysteme wird in Abschn. I.3 genauer eingegangen; als solches gilt für Experimente auf der Erde ein Bezugssystem, das sich relativ zu Fixsternen, oder besser weit entfernten Galaxien oder Quasars, nicht bewegt. (b) G. Galilei,

3 I.2 Newtonsche Gesetze 13 I.2.2 Zweites newtonsches Gesetz Das zweite newtonsche Gesetz auch zweites Axiom, lex secunda oder Bewegungsgesetz genannt beschreibt die Änderung der Bewegung eines Körpers mit Impuls p(t) unter dem Einfluss einer Gesamtkraft F : Zweites newtonsches Gesetz In Inertialsystemen gilt d p(t) p(t) = F. (I.14a) In dieser Bewegungsgleichung kann der Impuls p(t) durch die Masse m und die Geschwindigkeit v(t) des Körpers ausgedrückt werden. Wenn die Masse in der Bewegung konstant bleibt, so kann sie aus der Zeitableitung herausgezogen werden. Dann wird Gl. (I.14a) zu m d2 x(t) 2 = m d v(t) = m a(t) = F. (I.14b) Das heißt, die Beschleunigung des Körpers ist proportional zur Kraft, welche die Bewegung beeinflusst, und antiproportional zur Masse m. Das erste Gesetz ist ein Spezialfall des zweiten mit F = 0. Die Masse m in der Bewegungsgleichung (I.14b) ist die sog. träge Masse des Massenpunktes, die ein Maß für die Trägheit des letzteren gegenüber Änderungen seines Bewegungszustands darstellt. Bei der trägen Masse handelt es sich um eine universale Eigenschaft des Körpers, welche die gleiche bleibt, egal welchen Kräften er unterliegt. Im zweiten Gesetz wird implizit vorausgesetzt, dass die Kraft F auf einen Körper möglicherweise von seiner Position x und seiner Geschwindigkeit x abhängen kann, sowie von der Zeit t, nicht aber von höheren Ableitungen. Dank der letzteren Bemerkung stellt die vektorielle Bewegungsgleichung (I.14b) ein System gewöhnlicher Differentialgleichungen zweiter Ordnung dar. Wenn die mathematische Form der Kraft F = F ( t, x(t), x(t) ) sowie Anfangsbedingungen x(t 0 ), x(t 0 ) gegeben sind, mit t 0 irgend eine Referenzzeit, dann hat dieses System eine eindeutige Lösung x(t). Physikalisch bedeutet diese Eindeutigkeit der Lösung, dass die Kenntnis des Bewegungszustands ( x(t 0 ), x(t 0 ) ) zu einem beliebigen gegebenen Zeitpunkt ausreicht, um den Bewegungszustand ( x(t), x(t) ) zu irgendeinem anderen Zeitpunkt t vollständig festzustellen. Dementsprechend ist die newtonsche Mechanik völlig deterministisch. Beispiel: Massenpunkt im homogenen Schwerefeld mit Luftreibung Betrachtet sei die Bewegung eines Massenpunktes mit Masse m unter dem Einfluss der Schwerkraft und einer Reibungskraft. Die Resultierende der auf ihn wirkenden Kraft lautet F = F S + F R, (I.15a) wobei das Superpositionsprinzip für Kräfte (I.20) benutzt wurde. Dabei ist die Schwerkraft F S = m S g, (I.15b) wobei die Schwerebeschleunigung g prinzipiell nach unten gerichtet ist (5) obwohl das im Folgenden keine Rolle spielt, während m S die schwere Masse des Körpers bezeichnet. Experimentell ist die letztere proportional zur trägen Masse, m S m, wie sich im berühmten Ergebnis im Vakuum fallen alle Körper gleich widerspiegelt. Mit der Wahl m S = m gilt g 9, 8 m s 2 auf der Erdoberfläche. (5) Definitionsgemäß definiert die lokale Richtung der Schwerebeschleunigung die sog. Vertikale in einem Punkt.

4 14 Newtonsche Mechanik Hier werden zwei Annahmen gemacht, und zwar dass träge und schwere Masse erstens die gleiche Dimension M haben, und sich somit mit der gleichen Einheit quantifizieren lassen, und zweitens denselben numerischen Wert haben, was wiederum den Wert der Schwerkraftbeschleunigung g festlegt. Für die Reibungskraft wird die Form der Stokesschen (c) Reibung F R = α R v angenommen, mit α R einer positiven Konstanten. Unter diesen Voraussetzungen lautet die Bewegungsgleichung (I.14b) (I.15c) m d2 x(t) 2 = m g α R v(t), d.h., mit α R /m d v(t) + v(t) = g. (I.16) Somit ergibt sich eine lineare inhomogene gewöhnliche Differentialgleichung erster Ordnung. Ihre Lösung erfolgt wie üblich. Zuerst wird die allgemeine Lösung v h der assoziierten homogenen Differentialgleichung gesucht, und zwar d v h (t) + v h (t) = 0 v h (t) = C e t mit C R 3 beliebig. Zweitens ist eine spezielle Lösung v s der homogenen Differentialgleichung gebraucht: d v s (t) + v s (t) = g. Zum Beispiel kann die stationäre Lösung v s (t) = 1 g genommen werden. Mit deren Hilfe kann als dritter Schritt die allgemeine Lösung der inhomogenen Differentialgleichung als Summe aus v h (t) und v s (t) geschrieben werden: v(t) = v h (t) + v s (t) = C e t + 1 g. Dabei soll noch die Integrationskonstante C festgestellt werden, was unter Berücksichtigung der Anfangsbedingung (hier bei t = t 0 ) erfolgt. Aus der letzteren Gleichung folgt was schließlich zur Lösung v 0 v(t=t 0 ) = C e t g C = v 0 e t 0 et 0 g, v(t) = v 0 e (t t 0 ) + 1 e (t t 0 ) g (I.17) führt. Physikalisch findet man, dass der Einfluss der Anfangsgeschwindigkeit v 0 wegen der Reibungs- (c) G. G. Stokes,

5 I.2 Newtonsche Gesetze 15 kraft auf einer Zeitskala τ R γ 1 R exponentiell klein wird. Dies führt zu einem stationären Endzustand, der unabhängig von der Anfangsbedingung ist. Wenn nötig kann man auch die Bahnkurve des Massenpunktes über x(t) = x 0 + t t 0 v(t ) bestimmen, wobei x 0 x(t=t 0 ) die Anfangsbedingung bei t = t 0 bezeichnet, und zwar x(t) = x e (t t 0 ) v 0 + (t t 0 ) + e γr(t t0) 1 g. γ 2 R (I.18) I.2.3 Drittes newtonsches Gesetz Das dritte newtonsche Gesetz auch bekannt als drittes Axiom, lex tertia, Reaktionsprinzip oder actio und reactio verknüpft diejenigen Kräfte, welche zwei Körper aufeinander ausüben: Drittes Newton sches Gesetz Die von zwei Massenpunkten aufeinander ausgeübten Kräfte haben den gleichen Betrag aber entgegengesetzte Richtungen. (I.19a) Wenn die zwei Körper jeweils durch 1 und 2 gekennzeichnet werden, mit F 2 1 bzw. F 1 2 der auf den ersten durch den zweiten bzw. auf 2 durch 1 ausgeübten Kraft, dann gilt F 2 1 = F 1 2. (I.19b) Wie in der Bemerkung in I.5.1 a weiter diskutiert wird, schließt dieses Gesetz implizit die Existenz von Drei-Körper-Kräften aus. Laut dem dritten Gesetz ist die Reaktion von Körper 2 auf Körper 1 instantan, wenn Körper 1 eine Kraft auf Körper 2 ausübt. Dies wird in der Relativitätstheorie nicht mehr möglich sein, wenn die Körper sich nicht berühren. I.2.4 Viertes Newton sches Gesetz Als viertes newtonsches Gesetz, oder lex quarta, wird oft das Superpositionsprinzip für Kräfte hinzugefügt, das in I.1.3 schon dargelegt wurde: Viertes Newton sches Gesetz Wirken auf einen Massenpunkt mehrere Kräfte F 1,..., F k, so addieren sich diese vektoriell. (I.20a) Das heißt, die resultierende Kraft auf den Massenpunkt ist F = k F k. i=1 (I.20b) Es ist dann diese resultierende Kraft, die in der mathematischen Formulierung des zweiten Gesetzes (I.14) auftritt.

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Newton sche Mechanik

Newton sche Mechanik KAPITEL I Newton sche Mechanik Die am meisten intuitive, und historisch die erste, Formulierung der Mechanik ist diejenige von Isaac Newton. (a) Die nach ihm genannten Beschreibung beruht einerseits auf

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

6 Dynamik der Translation

6 Dynamik der Translation 6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

Theoretische Physik I. Nicolas Borghini

Theoretische Physik I. Nicolas Borghini Theoretische Physik I Nicolas Borghini Version vom 9. Februar 2017 Nicolas Borghini Universität Bielefeld, Fakultät für Physik Homepage: http://www.physik.uni-bielefeld.de/~borghini/ Email: borghini at

Mehr

KAPITEL I. Newtonsche Mechanik. I.1 Grundbegriffe der newtonschen Mechanik. I.1.1 Raumzeit der newtonschen Mechanik

KAPITEL I. Newtonsche Mechanik. I.1 Grundbegriffe der newtonschen Mechanik. I.1.1 Raumzeit der newtonschen Mechanik KAPITEL I Newtonsche Mechanik Hier wird eine Einleitung kommen, wenn das Kapitel zu Ende ist. I.1 Grundbegriffe der newtonschen Mechanik Die Mechanik beschäftigt sich mit der Bewegung von physikalischen

Mehr

Theoretische Physik I und II

Theoretische Physik I und II Theoretische Physik I und II gelesen von Dr. F. Spanier Sommersemester 2009 L A TEX von Maximilian Michel 22. April 2009 Inhaltsverzeichnis I. Theoretische Physik 1 Mechanik 4 1. Historische Einführung

Mehr

3. Vorlesung Wintersemester

3. Vorlesung Wintersemester 3. Vorlesung Wintersemester 1 Parameterdarstellung von Kurven Wir haben gesehen, dass man die Bewegung von Punktteilchen durch einen zeitabhängigen Ortsvektor darstellen kann. Genauso kann man aber auch

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

I.3 Inertialsysteme. Galilei-Transformationen

I.3 Inertialsysteme. Galilei-Transformationen I.3 Inertialsysteme. Galilei-Transformationen 17 I.3 Inertialsysteme. Galilei-Transformationen Das erste und das zweite Newton sche Gesetz beruhen auf der Existenz von besonderen Bezugssystemen, nämlich

Mehr

Theoretische Physik I. Nicolas Borghini

Theoretische Physik I. Nicolas Borghini Theoretische Physik I Nicolas Borghini Version vom 15. Februar 2016 Nicolas Borghini Universität Bielefeld, Fakultät für Physik Homepage: http://www.physik.uni-bielefeld.de/~borghini/ Email: borghini at

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

2.2 Dynamik von Massenpunkten

2.2 Dynamik von Massenpunkten - 36-2.2 Dynamik von Massenpunkten Die Dynamik befasst sich mit der Bewegung, welche von Kräften erzeugt und geändert wird. 2.2.1 Definitionen Die wichtigsten Grundbegriffe der Dynamik sind die Masse,

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

4. Veranstaltung. 16. November 2012

4. Veranstaltung. 16. November 2012 4. Veranstaltung 16. November 2012 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Prinzip von Elektromotor und Generator Motor Generator Elektrischer Strom Elektrischer Strom Magnetkraft

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

IX.2 Multipolentwicklung

IX.2 Multipolentwicklung IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren?

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? V4 Vektorfelder Vektorfelder haben oft Struktur: quellfrei, wirbelfrei Quellfeld Wirbelfeld Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? Zunächst brauchen wir

Mehr

Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion

Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Newton (1642-1727) in Philosophiae Naturalis Principia Mathematica, publiziert in 1687. Immer

Mehr

Magnetostatik. B( r) = 0

Magnetostatik. B( r) = 0 KAPITEL III Magnetostatik Die Magnetostatik ist die Lehre der magnetischen Felder, die von zeitlich konstanten elektrischen Strömen herrühren. Im entsprechenden stationären Regime vereinfachen sich die

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 28. September 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 28. September 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 28. September 2009 Inhaltsverzeichnis 3.5 Die Newton schen Prinzipien............................. 3.1 3.5.1

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

Länge der Feder (unbelastet): l 0 = 15 cm; Aus dem hookeschen Gesetz errechnet man die Ausdehnung s:

Länge der Feder (unbelastet): l 0 = 15 cm; Aus dem hookeschen Gesetz errechnet man die Ausdehnung s: Die Federkonstante ist für jede Feder eine charakteristische Größe und beschreibt den Härtegrad der Feder. Je größer bzw. kleiner die Federkonstante ist, desto härter bzw. weicher ist die Feder. RECHENBEISPIEL:

Mehr

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10. 10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b)

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b) 38 Newton sche Mechanik I.6.3 Kepler-Problem Die Newton sche Gravitationskraft zwischen zwei Massenpunkten mit Massen m 1, m 2 ist eine konservative Zentralkraft, gegeben durch mit dem Potential F ( x

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Ann-Kathrin Straub, Christoph Raab, Markus Perner 22.03.2010 1 Klassische Mechanik des Massenpunktes

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Grundlagen der Lagrange-Mechanik

Grundlagen der Lagrange-Mechanik Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder

Mehr

Dieses Buch enthält eine kurze Einführung in die relativistische

Dieses Buch enthält eine kurze Einführung in die relativistische Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Universität für Bodenkultur

Universität für Bodenkultur Baustatik Übungen Kolloquiumsvorbereitung Universität für Bodenkultur Department für Bautechnik und Naturgefahren Wien, am 15. Oktober 2004 DI Dr. techn. Roman Geier Theoretischer Teil: Ziele / Allgemeine

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

V12 Beschleunigte Bewegungen

V12 Beschleunigte Bewegungen Aufgabenstellung: 1. Ermitteln Sie die Fallbeschleunigung g aus Rollexperimenten auf der Rollbahn. 2. Zeigen Sie, dass für die Bewegung eines Wagens auf der geneigten Ebene der Energieerhaltungssatz gilt.

Mehr

MECHANIK I. Kinematik Dynamik

MECHANIK I. Kinematik Dynamik MECHANIK I Kinematik Dynamik Mechanik iki Versuche Luftkissenbahn Fallschnur Mechanik iki Kinematik Kinematik beschreibt Ablauf einer Bewegungeg Bewegung sei definiert relativ zu Bezugssystem Koordinatensystem

Mehr

5. Veranstaltung. 28. November 2014

5. Veranstaltung. 28. November 2014 5. Veranstaltung 28. November 2014 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Was ist "Wärme"? Was ist "Temperatur"? Energie-Bilanz von Wärme- und Kältemaschinen Warum ist ein Verbrennungsmotor

Mehr

Physik A3. 2. Mechanik

Physik A3. 2. Mechanik Physik A3 Prof. Dieter Suter WS 02 / 03 2. Mechanik 2.1 Kinematik 2.1.1 Grundbegriffe Die Mechanik ist der klassischste Teil der Physik, sie umfasst diejenigen Aspekte die schon am längsten untersucht

Mehr

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus. II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

VIII.2 Bestimmung des Potentials aus der Poisson-Gleichung

VIII.2 Bestimmung des Potentials aus der Poisson-Gleichung 13 Elektrostatik III.2 Bestimmung des Potentials aus der Poisson-Gleichung Im III.1.3 wurde das elektrostatische Potential erzeugt durch eine Ladungsverteilung (III.12a mithilfe des Gauß schen Gesetzes

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpunktes 3 1.1 Gleichförmig beschleunigte Bewegungen................

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

Newtonsche Mechanik: Anwendungen

Newtonsche Mechanik: Anwendungen KAPITEL II Newtonsche Mechanik: Anwendungen Hier wird eine Einleitung kommen, wenn das Kapitel zu Ende ist. II.1 Mehrteilchensysteme Die in Abschn. I.2 eingeführten newtonschen Gesetze bzw. der in I.2.5

Mehr

Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion

Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Newton (1642-1727) in Philosophiae Naturalis Principia Mathematica, publiziert in 1687. Immer

Mehr

Rechenmethoden der Physik I (WS )

Rechenmethoden der Physik I (WS ) Rechenmethoden der Physik I (WS 2009-2010) Vektoren Allgemeines: Kartesische Koordinaten. Komponenten, Vektoraddition, Einheitsvektoren Skalarprodukt: geometrische Bedeutung, Orthogonalität, Kronecker-Delta

Mehr

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 1 Prof Dr Alexander Shnirman Blatt 7 Dr Boris Narozhny, Dr Holger Schmi 25521 1 Die

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010

Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 WS 2009/2010 Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 Nachname, Vorname... Matrikel-Nr.:... Studiengang:... Aufgabe 1 2 3 4 5 6 7 8 9 Summe maximale 5

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Die SRT behandelt Ereignisse, die von einem Inertialsystem (IS) beobachtet werden und gemessen werden. Dabei handelt es sich um Bezugssyteme, in denen das erste Newton sche Axiom gilt. Die Erde ist strenggenommen

Mehr

Ferienkurs Theoretische Mechanik. Lagrangeformalismus

Ferienkurs Theoretische Mechanik. Lagrangeformalismus Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........

Mehr

1/15. Das n-körper Problem. Numerische Mathematik 1 WS 2011/12

1/15. Das n-körper Problem. Numerische Mathematik 1 WS 2011/12 1/15 Das n-körper Problem Numerische Mathematik 1 WS 2011/12 Ziel 2/15 Beschreibung der Bewegung von n N Punktmassen im luftleeren Raum (hier R 2 ), wobei jede Masse auf jede andere Masse eine gewisse

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Hochschule Düsseldorf University of Applied Sciences. 03. November 2016 HSD. Physik. Newton s Gesetze

Hochschule Düsseldorf University of Applied Sciences. 03. November 2016 HSD. Physik. Newton s Gesetze Physik Newton s Gesetze http://de.wikipedia.org/wiki/philosophiae_naturalis_principia_mathematica Philosophiae Naturalis Principia Mathematica Mathematische Prinzipien der Naturphilosophie Im Sprachgebrauch

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche R. Mahnke (Univ. Rostock), J. Kaupužs (Lettische Univ. Riga) 3. Mai 24 Zusammenfassung Ziel dieses Kommentars ist es, die Newtonschen

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr