Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Größe: px
Ab Seite anzeigen:

Download "Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)"

Transkript

1 Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1

2 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher Signale: Synthesegleichung: Analysegleichung: + s(t) = S(f) e j2πft df + S(f) = s(t) e -j2πft dt Fourier-Reihe periodischer Signale (Periode T = 1/F): Fourier-Reihe: mit Koeffizienten: + s(t) = c k e j2πkft k= + c k = F s(t) e-j2πkft dt 2

3 (1) Fourier-Reihe: Periodische Funktion Frequenzdiskretes Spektrum Periodendauer T p (Zeit) Schrittweite F p = 1/T p (Frequenz) 3

4 (2) Vertauschungssatz: Zeitdiskrete Funktion Periodisches Spektrum Schrittweite T a (Zeit) Periodenlänge F a = 1/T a (Frequenz) 4

5 (1) + (2) Zeitdiskrete periodische Funktion Frequenzdiskretes periodisches Spektrum Periodendauer T p, Schrittweite T a (Zeit) Periodenlänge F a = 1/T a, Schrittweite F p = 1/T p (Frequenz) 5

6 s(t) periodisch wiederholt mit Periodendauer T p S(f) frequenzdiskret (Linienspektrum) mit Schrittweite F p = 1/T p s(t) diskret abgetastet mit Schrittweite (Abtastintervall) T a S(f) periodisch wiederholt mit Periodenlänge F a = 1/T a s(t) darstellbar als Folge von T p / T a = N Werten: S(f) darstellbar als Folge von F a / F p = N Werten: s n = s(t n ) mit t n = nt a S k = S(f k ) mit f k = kf p 6

7 FT Fourier-Reihe DFT 7

8 Diskrete Fourier-Transformation (DFT) periodischer, zeitdiskreter Signale s 0,...,s N-1 mit N Samples (N-DFT): N 1 DFT: S k = s n e -j2πkn/n für 0 k < N n=0 N 1 IDFT: s n = 1/N S k e j2πkn/n für 0 n < N k=0 Darstellung als Matrix-Vektor-Multiplikation: S = F s wobei s, S C N, F C N mit F k+1,n+1 = e -j2πkn/n (0 n,k < N) 8

9 Anschaulich: Eindeutige Darstellung des Signals als Superposition von Grundschwingung mit Frequenz F p und deren Oberschwingungen (ganzzahlig vielfache Frequenzen von F p ) Auch auf nicht-periodische, endliche (!) zeitdiskrete Signale anwendbar T p ist Dauer des Signals Aber: Leakage-Effekt, d.h. evtl. Verschmieren des Spektrums! 9

10 Aufgabe: Gegeben sei ein Rechteckimpuls auf dem Zeitintervall 0-20 ms Periodische Wiederholung des Impulses mit Frequenz von 10 Hz Zeitliche Abtastung des Signals mit Rate von 80 Hz Wie viele Samples N erhält man pro Zeitperiode? Berechnen Sie die Signalfolge s 0,...,s N-1 für jede Zeitperiode. Bestimmen Sie das Spektrum S 0,...,S N-1 mit der DFT. 10

11 Signalperiode ist T p = 1 / 10 Hz = 100 ms Zeitliche Abtastschrittweite ist T a = 1 / 80 Hz = 12.5 ms N = T p / T a = 100 ms / 12.5 ms = 8 Samples pro Zeitperiode Frequenzauflösung ist F p = 10 Hz Frequenzperiode ist F a = 80 Hz 11

12 Fragen zur Vertiefung: Warum genügt es, das linksseitige Frequenzspektrum zu betrachten (d.h. die ersten N/2+1 Werte S 0,..., S N/2 des diskreten Spektrums)? Wodurch ist die Frequenzauflösung des Spektrums festgelegt? Wie lässt sich die Frequenzauflösung des Spektrums erhöhen? Wie lässt sich ausgehend vom Spektrum die zeitliche Auflösung des Ursprungssignals erhöhen? 12

13 13

14 2. Die Fast Fourier Transform (FFT) Fast Fourier Transform (FFT) = Schnelle DFT-Algorithmen, d.h. bessere Laufzeit als Ο(N 2 ) Radix-2-FFT: FFT für N = 2 L (Cooley & Tukey, 1965) Rekursive Berechnung der DFT für gerade und ungerade Teilfolge Ο(N log(n)) Weitere Algorithmen für faktorzerlegbare N, Primzahlen N (Rader, 1989), einzelne Spektralkombonenten S k (Goertzel, 1958),... In Matlab: Kombination verschiedener Verfahren für beliebige N 14

15 2. Die Fast Fourier Transform (FFT) DFT in Matlab: S = fft(s, N) Signal s habe Periodendauer T p ( Länge ) und Abtastintervall T a s ist Vektor der Länge N = Signalsamples zu Zeitpunkten T a n (0 n < N) S ist Vektor der Länge N = Spektrumsamples der Frequenzen (1/T p ) k (0 k < N) Inverse DFT in Matlab analog: s = ifft(s, N) 15

16 3. Anwendungsbeispiele der DFT % Matlab Beispiel 1: DFT einer Funktion myfun(t) Ta = 1/50; Tp = 2; % Signalabtastung mit 50 Hz % Signaldauer ist 2 Sekunden N = Tp / Ta; % Anzahl der Samples (= 100) t = (0:N 1)*Ta; f = (0:N 1)/Tp; s = myfun(t); S = fft(s, N); % Zeitsamples % Frequenzsamples % Signalsamples % Berechne diskretes Spektrum % Plotte Signal und linksseitiges Frequenzspektrum plot(t, s); plot(f(1 : N/2+1), abs(s(1 : N/2+1))); 16

17 3. Anwendungsbeispiele der DFT % Matlab Beispiel 2: Filter und inverse DFT threshold = 0.1*max(abs(S)) % 10% des max. Wertes % Eliminiere Frequenzanteile mit zu kleiner Amplitude for i = 1 : length(s) end if (abs(s(i)) < threshold) end S(i) = 0; s = ifft(s, N); % Rekonstruiere s mit inverser DFT plot(t, s); % Plotte rekonstruiertes Signal 17

18 3. Anwendungsbeispiele der DFT % Matlab Beispiel 3: DFT einer WAV Datei [s, Fa, nbits] = wavread('datei.wav'); % Lade WAV N = length(s); S = fft(s, N); sound(s, Fa, nbits); % Anzahl an Samples % Berechne diskretes Spektrum % Spiele Sound ab Rückgabewerte von wavread: s ist Signalfolge s 0,..., S N der Länge N Fa ist Abtastfrequenz F a = 1/T a nbits ist die Bittiefe pro Sample 18

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Diskrete und Schnelle Fourier Transformation. Patrick Arenz

Diskrete und Schnelle Fourier Transformation. Patrick Arenz Diskrete und Schnelle Fourier Transformation Patrick Arenz 7. Januar 005 1 Diskrete Fourier Transformation Dieses Kapitel erläutert einige Merkmale der Diskreten Fourier Transformation DFT), der Schnellen

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Diskrete Fourier-Transformation

Diskrete Fourier-Transformation Universität Koblenz-Landau Institut für integrierte Naturwissenschaften Abteilung Physik Dozent: Dr. Merten Joost Seminar Digitale Signalverarbeitumg im Sommersemester 2005 Diskrete Fourier-Transformation

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Low Level Descriptoren. Anne Scheidler

Low Level Descriptoren. Anne Scheidler Low Level Descriptoren Anne Scheidler Aufbau des Vortrags LLD Kategorien Signaldarstellung Zeitbasierte Signaldarstellung und Merkmalsextraktion Transformation zwischen Signaldarstellungen Frequenzbasierte

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen

Mehr

Messung & Darstellung von Schallwellen

Messung & Darstellung von Schallwellen Messung Digitalisierung Darstellung Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Messung Digitalisierung Darstellung Überblick Messung

Mehr

Praktikum, NT 1: Spektrumsschätzung

Praktikum, NT 1: Spektrumsschätzung Praktikum, NT 1: Spektrumsschätzung Versuchsentwurf: M.Sc., Dipl. Ing. (FH) Marko Hennhöfer, FG Nachrichtentechnik Version vom 4. Dezember 2007 1 1 Einführung und Motivation 1.1 Anwendung In der Praxis

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

VAD - Voice Activity Detection -

VAD - Voice Activity Detection - VAD - - erstellt: Robert Schaar s63012 erstellt: Robert Schaar s63012 Mensch-Maschine-Robotik 1. Einleitung 2. Aufbau des Algorithmus 2.1. allgemeiner Aufbau 2.2. Fourier-Transformation 2.3. Short-Time

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Kapitel 3 Trigonometrische Interpolation

Kapitel 3 Trigonometrische Interpolation Kapitel 3 Trigonometrische Interpolation Einführung in die Fourier-Reihen Trigonometrische Interpolation Schnelle Fourier-Transformation (FFT) Zusammenfassung Numerische Mathematik II Herbsttrimester 212

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin

Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin 28.04.09 Übersicht Einleitung Problem: polynomiale Multiplikation Crashkurs Diskrete Fourier-Transformation DFT mit FFT

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

2 Perioden in 0.02 s 1 Periode in 0.01 s 100 Perioden in 1 s, Grundfrequenz = 100 Hz

2 Perioden in 0.02 s 1 Periode in 0.01 s 100 Perioden in 1 s, Grundfrequenz = 100 Hz 1. Die Abbildung in (a) zeigt einen synthetischen [i] Vokal. Was ist die Grundfrequenz davon? (Die Zeitachse ist in Sekunden). 2 Perioden in 0.02 s 1 Periode in 0.01 s 100 Perioden in 1 s, Grundfrequenz

Mehr

Mustererkennung. Termine: Montag 9:45-11:15, F138 Mittwoch 11:30-13:00, D108 Freitag 11:30-13:00, A210. Skript, Literatur, Anmeldung im Netz

Mustererkennung. Termine: Montag 9:45-11:15, F138 Mittwoch 11:30-13:00, D108 Freitag 11:30-13:00, A210. Skript, Literatur, Anmeldung im Netz Mustererkennung Termine: Montag 9:45-11:15, F138 Mittwoch 11:30-13:00, D108 Freitag 11:30-13:00, A210 Skript, Literatur, Anmeldung im Netz Mustererkennung Anwendungsbeispiele für Mustererkennung? Mustererkennung

Mehr

Mathematik, Signale und moderne Kommunikation

Mathematik, Signale und moderne Kommunikation Natur ab 4 - PH Baden Mathematik, Signale und moderne Kommunikation 1 monika.doerfler@univie.ac.at 29.4.2009 1 NuHAG, Universität Wien monika.doerfler@univie.ac.at Mathematik, Signale und moderne Kommunikation

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Kapitel 3: DFT und FFT

Kapitel 3: DFT und FFT ZHAW, DSV1, FS2009, Rumc, 3-1 Inhaltsverzeichnis Kapitel 3 DFT und FFT 3.1. EINLEITUNG... 1 3.2. DISKRETE FOURIERTRANSFORMATION (DFT)... 2 3.3. EIGENSCHAFTEN DER DFT... 2 3.4. VERWANDTSCHAFT DER DFT MIT

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v. Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral

Mehr

Vorlesung 2 Medizininformatik. Sommersemester 2017

Vorlesung 2 Medizininformatik. Sommersemester 2017 Vorlesung 2 Medizininformatik Zeitplan Medizininformatik () Vorlesung (2 SWS) Montags 8:30-10:00 Übung (1 SWS) 10:15-11:00 1. 24.4 1.5 2. 8.5 3. 15.5 4. 22.5 Computer Architecture Begrüssung, Review: Daten

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Approximation von Funktionen

Approximation von Funktionen von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät

Mehr

Digitalisierung und Kodierung

Digitalisierung und Kodierung Digitalisierung und Kodierung Digitale Medien liegen in digitaler Form vor Deshalb werden analoge Medien digitalisiert und geeignet kodiert Ziel der Digitalisierung: effiziente Berechnung wenig Verluste

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor SMV Versuch Erläuterungen zum Aliasing FB: EuI, Darmstadt, den 26.5 Elektrotechnik und Informationstechnik Rev., 9.5 Auf den folgenden Seiten sind einige typische Abtastsituationen zusammengestellt,

Mehr

Signale und Systeme Ergänzungen zu den Spektraltransformationen

Signale und Systeme Ergänzungen zu den Spektraltransformationen Signale und Systeme Ergänzungen zu den Spektraltransformationen Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute of Electrical

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Fouriertransformation

Fouriertransformation Fouriertransformation Radix2 fast fourier transform nach Cooley/Tukey 1 Inhaltsübersicht Mathematische Grundlagen: Komplexe Zahlen und Einheitswurzeln Die diskrete Fouriertransformation Der Radix2-Algorithmus

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen

Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen AG Qualität im Fachbereich Mathematik Universität Hannover, Welfengarten, D - 3067 Hannover Telephon: +49-5-762-3336

Mehr

Klatschen vs. Pfeifen

Klatschen vs. Pfeifen Klatschen vs. Pfeifen Verwendung akustischer Signale zur Steuerung elektrischer Systeme Referat für das Projektlabor 2006/07 TU Berlin von Christian Rudat am Mo, den 6. November 2006 1 Übersicht Theorie

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Spektra von periodischen Signalen. Resonanz. Jonathan Harrington

Spektra von periodischen Signalen. Resonanz. Jonathan Harrington Spektra von periodischen Signalen. Resonanz. Jonathan Harrington Spektrum von einem Zeitsignal Zeitsignal 1. Das Zeitsignal wird durch eine Fourier- Analyse in Sinusoiden zerlegt 2. Spektrum: die Abbildung

Mehr

AAC ADPCM. Kompressionsverfahren für Audio. Anzahl Zeichen MP3 Wahrscheinlichkeit. des Auftretens des Zeichens

AAC ADPCM. Kompressionsverfahren für Audio. Anzahl Zeichen MP3 Wahrscheinlichkeit. des Auftretens des Zeichens Entropie= durchschnittlicher Informationsgehalt pro Zeichen in einer Zeichenkette H = pilog2 p m p m i= 1 Anzahl Zeichen MP3 Wahrscheinlichkeit AAC ADPCM i i des Auftretens des Zeichens i Kompressionsverfahren

Mehr

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007 Lesen von Sonagrammen I: Grundlagen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. November 2007 Inhalt Das Sonagramm: Allgemeines Gewinnung des Sonagramms Zeitsignal Spektrum Spektrogramm

Mehr

Spektralanalyse

Spektralanalyse 4. Spektralanalyse Die Spektralanalyse ermittelt, welche Beiträge die einzelnen Frequenzen zu einem Signal liefern. Je nach Art des Zeitsignals wird der Frequenzgehalt durch die Fourier-Transformation,

Mehr

Digitale Signalverarbeitung, Vorlesung 12 - Schnelle Fouriertransformation (FFT)

Digitale Signalverarbeitung, Vorlesung 12 - Schnelle Fouriertransformation (FFT) Digitale Signalverarbeitung, Vorlesung 12 - Schnelle Fouriertransformation (FFT) 8. Februar 2016 Siehe Skript Digitale Signalverarbeitung, Abschnitt 10.2 Motivation und Anwendungen: Schnelle DFT-Berechnung

Mehr

Fast FOURIER-Transformation

Fast FOURIER-Transformation Fast FOURIER-Transformation Andy Böhme 8. Januar 2005 Inhaltsverzeichnis 1 Einleitung 2 2 FOURIER- Transformation 3 2.1 Das FOURIER- Integral....................... 3 2.2 Eigenschaften der FOURIER- Transformation...........

Mehr

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel) 4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales

Mehr

Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum. Jonathan Harrington

Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum. Jonathan Harrington Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum Jonathan Harrington Wie entsteht der Schall? 1. Ein Gegenstand bewegt sich und verursacht Luftdruckveränderungen. Luftmoleküle

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB]

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] Schnelle diskrete Fourier-Transformation (Fast Fourier Transform FFT) Darstellung der Methode: Skriptum Kap. 3.3 und 3.4. Die Berechnungen

Mehr

Dipl.-Ing. (TU) Jürgen Wemheuer

Dipl.-Ing. (TU) Jürgen Wemheuer Dipl.-Ing. (TU) Jürgen Wemheuer wemheuer@ewla.de http://ewla.de 1 Statt kontinuierlicher (Amplituden-)Werte einer stetigen Funktion sind nur diskontinuierliche, diskrete Werte möglich (begrenzter Wertevorrat):

Mehr

Prof. Dr. Tatjana Lange

Prof. Dr. Tatjana Lange Prof. Dr. Tatjana Lange Lehrgebiet: Regelungstechnik Laborübung 1: Thema: Einführrung in die digitale Regelung Übungsziele Veranschaulichung der Abtastung von bandbegrenzten Signalen und der Reproduktion

Mehr

11 Fourier-Analysis Grundlegende Begriffe

11 Fourier-Analysis Grundlegende Begriffe 11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung

Mehr

4. Übung für Übungsgruppen Musterlösung

4. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, FB Informatik der Universität Hamburg). Übung für Übungsgruppen Musterlösung (N. Stein, Institut für Angewandte Physik,

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Bild-Erfassung Digitalisierung Abtastung/Quantisierung

Bild-Erfassung Digitalisierung Abtastung/Quantisierung Multimediatechnik / Video Bild-Erfassung Digitalisierung Abtastung/Quantisierung Oliver Lietz Bild-Erfassung Abtastung / Digitalisierung Scanner: Zeilenweise Abtastung mit CCD Digitale Kamera: Flächenweise

Mehr

Musterlösung zur Aufgabe A1.1

Musterlösung zur Aufgabe A1.1 Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

Morphem und Allomorph. Jonathan Harrington

Morphem und Allomorph. Jonathan Harrington Morphem und Allomorph Jonathan Harrington Phonologie und Phonetik Kies kühn Kuh Skandal Lexikon /ki:s/ /ky:n/ /ku:/ /skandal/ Phonetische Regeln [c h i:s] [c h y)n] w [k= h u:] w [skandal] Die Eingaben

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 31. Oktober 2016 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

Frequenzanalyse in der Praxis

Frequenzanalyse in der Praxis Gitarrensaiten, Audio-Verstärker, Filter oder rotierende Wellen technisch gesehen, alles eines: Signalquellen. Und die besitzen beträchtlichen Informationsgehalt. Entschlüsselt wird dieser bei der oszilloskopischen

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

3. Basisbandtransformation durch Integerband-Abtastung

3. Basisbandtransformation durch Integerband-Abtastung Bearbeiten von Frequenzbändern 1. Analyse-Filterbank, Basisbandtransformation 2. Basisbandtransformation durch Modulation 3. Basisbandtransformation durch Integerband-Abtastung 1 1. Analyse-Filterbank

Mehr

Korrekt normierte FFT eines Zeitsignals A(t) und analytische Bildung des Spektrums F F T ( d dta(t)) (mittels Matlab)

Korrekt normierte FFT eines Zeitsignals A(t) und analytische Bildung des Spektrums F F T ( d dta(t)) (mittels Matlab) Korrekt normierte FFT eines Zeitsignals A(t) und analytische Bildung des Spektrums F F T ( d dta(t)) (mittels Matlab) Jan-Philip Gehrcke, 5. März 9 Abstract Bei der Untersuchung des Frequenzspektrums eines

Mehr

Die akustische Analyse von Sprachlauten.

Die akustische Analyse von Sprachlauten. Die akustische Analyse von Sprachlauten. Die Interpretation von Spektrogrammen. Jonathan Harrington IPDS, Kiel. Vom Zeitsignal zum Spektrum s t a m 1. Ein Teil vom Sprachsignal aussuchen: die Zeitauflösung

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr