Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation

Größe: px
Ab Seite anzeigen:

Download "Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation"

Transkript

1 Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete Multiplikation mit Booth-Algorithmus Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

2 Schulalgorithmus zur Multiplikation 2 B A Partielle Summe * Resultat Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

3 Einfacher Multiplizierer 3 5 B A 5 5 Bit Addierer 5 5 Bit Addierer 5 5 Bit Addierer 5 5 Bit Addierer 5 Resultat Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

4 Ad: Einfacher Multiplizierer 4 n n Multiplikation: Eingabe: zwei n Bit Vektoren Ausgabe: 2 n Bit-Vektor benützt n 1 seriell geschaltete Addierer Annahme CLA Adder Zeit: O(n logn) Platz: O(n 2 ) Gatter, Fläche O(n 2 logn) Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

5 Sequentielle Version 5 Shiften C P A n n 1 n n n n Bit Addierer n B Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

6 Sequentieller Algorithmus 6 1. Obere Hälfte P der partiellen Summe mit initialisieren 2. Erster Operand ins B Register 3. Zweiter Operand ins A Register (untere Hälfte der partiellen Summe) 4. Für jeden der n Multiplikationsschritte: (a) LSB von A gleich 1, dann Addiere B zu P (ansonsten ) (b) Shiebe (C,P,A) nach rechts (C ist Carry des Addierers) 5. Result findet sich in (P,A) Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

7 Sequentielle Multiplikation von 7 und 5 7 C P A 11 Schreibe 7 = nach B und 5 = 11 2 nach A A = 1 also Addiere B = Shiften (A gebraucht, fällt also raus) + A 1 = also Addiere Shiften (A 1 gebraucht, fällt also raus) A 2 = 1 also Addiere B = Shiften, Resultat ist = 35 Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

8 Probleme mit Vorzeichen 8 Multiplikation von 3 und 7 gibt natürlich 21 4-Bit Zweierkomplement: , als unsigned 4-Bit Zahlen sind das 13 bzw. 9 Multiplikation von 13 und 9 ergibt Bit Zweierkomplement: , Multiplikation gibt es mit oder ohne Vorzeichen (signed oder unsigned)! Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

9 Einfache Multiplikation mit Vorzeichen 9 1. Konvertierung der beiden Operanden in positive Zahlen 2. Speichern der urspünglichen Vorzeichen 3. Unsigned Multiplikation der Konvertierten Zahlen 4. Berechnung des Resultats-Vorzeichen aus gespeicherten Vorzeichen (negativ gdw. ursprüngliche Operanden hatten komplementäres Vorzeichen) 5. eventuell Negation des Ergebnisses bei negativem Resultats-Vorzeichen Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

10 Booth Recoding 1 Erste Beobachtung: PA ist auch signed! Verwende Arithmetisches Shift statt Logischem (schiebe beim Shift Vorzeichen-Bit nach, statt dem Carry) Verwende folgende Addition/Subtraktion Regeln (A 1 = ): 1. addiere zu P wenn A i = und A i 1 = 2. addiere B zu P wenn A i = und A i 1 = 1 3. subtrahiere B von P wenn A i = 1 und A i 1 = 4. addiere zu P wenn A i = 1 und A i 1 = 1 Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

11 Booth Multiplikation von 6 und 5 11 P A 11 Schreibe 6 = 11 2 nach A und 5 = 111 nach B 11 A = A 1 = ergibt mit Regel 1 Addition von 11 Shiften 111 A 1 = 1, A = ergibt mit Regel 3 Subtraktion von B +11 Zweierkomplement von ist Shiften +111 A 2 =, A 1 = 1 ergibt mit Regel 2 Addition von B Shiften (arithmetisch!) 111 A 3 = 1, A 2 = ergibt mit Regel 3 Subtraktion von B +11 Zweierkomplement von ist Shiften (arithmetisch!) Shiften, Resultat is = 3 Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

12 Hintergrund Booth Multiplikation 12 Da jedesmal B (A i 1 A i ) zum partiellen Produkt addiert wird, erhält man die Teleskopsumme B n 1 B (A i 1 A i ) 2 i i= ) ( A n 1 2 n 1 + A n 2 2 n A A + B A 1 Integer-Konvertierung einer n-bit Zahl A im Zweierkomplement: A n 1 2 n 1 + A n 2 2 n A A (z.b. 3 = 11 2 = = ) Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

13 Carry-Save-Adder (CSA) 13 Idee: keine Carry Propagierung bei der Multiplikation Unabhängige Volladdierer (Full Adder = FA) Carry-In wird von vorheriger Berechnung genommen Carry-Out wird gespeichert für nachfolgende Berechnung Man spart Propagation durch min. Ω(log n) Logik-Level beim CLA Wesentlich kürzere Multiplikationschritte Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

14 Sequentieller Multiplizierer mit CSA 14 P A Summe Carries FA FA FA FA Volladdierer C i C i +1 A i FA S i B i B Nach n Schritten muss noch die Summe und die Carries addiert werden. Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

15 Kombinatorischer Multiplizierer mit CSA 15 B 4 A B 3 A B 2 A B 1 A B A CSA CSA CSA Ausrollen des sequentiellen CSA und direktes Verbinden der Carries Propagate Adder Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

16 Zusammenfassung Multiplizierer 16 Multiplikation braucht Platz oder Zeit Carry-Save-Adder braucht kein Rippeln (sequentiell und kombinatorisch) Vorzeichen mit Booth-Recoding behandeln! Weitere Operationen wie Division haben ähnliche Trade-Offs Digitaltechnik # Sommersemester 24 Armin Biere ETH Zürich

Digitaltechnik. 4 Arithmetik. Revision 1.1

Digitaltechnik. 4 Arithmetik. Revision 1.1 Digitaltechnik 4 Arithmetik A Revision 1.1 Diskretisierung Einfache Addierer Carry-Select-Addierer Conditional-Sum-Addierer Conditional-Sum-Addierer Carry-Look-Ahead Addierer Multiplizierer Diskretisierung

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Multiplikation

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Multiplikation Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Multiplikation Eberhard Zehendner (FSU Jena) Rechnerarithmetik Multiplikation 1 / 28 Multiplikation in UInt 2 (l),

Mehr

6. Zahlendarstellungen und Rechnerarithmetik

6. Zahlendarstellungen und Rechnerarithmetik 6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,

Mehr

Computerarithmetik (15b)

Computerarithmetik (15b) Computerarithmetik (15b) Dazugehöriges Beispiel: Schleife Schritt Multiplikator Multiplikand Produkt 0 Anfangswerte 0011 0000 0010 0000 0000 1 1a: 1 -> Prod. = Prod. + Mcand 0011 0000 0010 0000 0010 2:

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Rechnerstrukturen, Teil 1

Rechnerstrukturen, Teil 1 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- jia.chen@cs.uni-.de http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches

Mehr

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010 Das negative Zweierkomplementzahlensystem Ines Junold 23. Februar 2010 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das konventionelle Zweierkomplement 4 2.1 Definition.......................................

Mehr

Inhalt. Zahlendarstellungen

Inhalt. Zahlendarstellungen Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

Das negative Zweierkomplementzahlensystem

Das negative Zweierkomplementzahlensystem Das negative Zweierkomplementzahlensystem Ines Junold 07. Dezember 2009 1 / 21 Inhaltsverzeichnis 1 Einleitung 2 Das konventionelle Zweierkomplement 3 Das negative Zweierkomplementsystem 4 Zusammenfassung

Mehr

G Zahlendarstellung und Rechnerarithmetik

G Zahlendarstellung und Rechnerarithmetik G Zahlendarstellung und Rehnerarithmetik G.1 1 Einordnung Ebene 6 Ebene 5 Ebene 4 Problemorientierte Sprahe Assemblersprahe Betriebssystem Ebene 3 ISA (Instrution Set Arhiteture) Ebene 2 Ebene 1 Ebene

Mehr

Carry Lookahead Adder

Carry Lookahead Adder Carry Lookahead Adder Mittels der Generate und Propagate Ausdrücke lässt ich dann für jede Stelle i der Carry (Übertrag) für die Stelle i+1 definieren: Für einen 4 Stelligen Addierer ergibt sich damit:

Mehr

Kapitel 6 - Addierwerke

Kapitel 6 - Addierwerke Kapitel 6 - Addierwerke Versuch 600 Halbaddierer und Volladdierer Der bürgerliche Algorithmus des schriftlichen Addierens zerlegt die binäre Addition in die folgenden elementaren Additionen. Es ergibt

Mehr

Carry-Lookahead Addierer (CLA)

Carry-Lookahead Addierer (CLA) Carry-Lookahead Addierer (CLA) Idee: Vorausberechnung der Carry-Signale c i für alle n Stellen für i-ten Volladdierer gilt: c i+1 = a i b i + (a i +b i )c i := G i + P i c i G i = a i b i gibt an, ob in

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

Informatik I Modul 5: Rechnerarithmetik (2)

Informatik I Modul 5: Rechnerarithmetik (2) Herbstsemester 2, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 5: Rechnerarithmetik (2) 2 Burkhard Stiller M5 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Division

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Division Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Division Eberhard Zehendner (FSU Jena) Rechnerarithmetik Division 1 / 44 Division in UInt Aus dem Dividenden A und

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden.

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden. 70 Arithmetische Schaltungen Multiplikation vorzeichenbehafteter Zahlen Zur Multiplikation vorzeichenbehafteter Zahlen (er-komplement) kann auf die Schaltung für vorzeichenlose Multiplikation zurückgegriffen

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Aufgabe 1: a) Bestimmen Sie die Darstellung der Zahl 113

Mehr

Teil V. Programmierbare Logische Arrays (PLAs)

Teil V. Programmierbare Logische Arrays (PLAs) Teil V Programmierbare Logische Arrays (PLAs) 1 Aufbau von PLAs Programmierbares Logisches Array (PLA): Programmierbarer Einheitsbaustein aufgebaut als ein Gitter (Array) von Basisbausteinen (Zellen).

Mehr

Computerarithmetik (6a)

Computerarithmetik (6a) Computerarithmetik (6a) Weitere Nachteile: erfordert separates Subtrahierwerk erfordert zusätzliche Logik, um zu entscheiden, welches Vorzeichen das Ergebnis der Operation hat 2. Die Komplement - Darstellung

Mehr

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen?

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen? TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Welche Eigenschaften einer Vorzeichendarstellung könnte man versuchen zu erreichen? Wie könnte man Vorzeichenzahlen darstellen? Grundlagen

Mehr

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle # A B C D OK m9 + m11 1 0 1 P1 m7 + m15 1 1 1 P2 m11 + m15 1 1 1 P3 m0 + m1 + m4 + m5 0 0 P4 m0 + m1 + m8 + m9 0 0 P5 m4 + m5 + m6 + m7 0

Mehr

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Logische Bausteine Addierwerke Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Addition eines einzigen Bits Eingang Ausgang a b CarryIn CarryOut Sum 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

2 Initialisierung clk_mkand= clk_produkt= multiplexer= init/>>1= 6 Schieben clk_mkand= clk_produkt= multiplexer= init/>>1=

2 Initialisierung clk_mkand= clk_produkt= multiplexer= init/>>1= 6 Schieben clk_mkand= clk_produkt= multiplexer= init/>>1= Arithmetische Schaltungen c) Vervollständigen Sie nachfolgend abgebildeten Zustands-Automaten so, dass er den Multiplizierer wie gewünscht steuert. Nehmen Sie an, dass Sie zur Detektion des Schleifen-Abbruchs

Mehr

Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design

Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design 2 Schaltnetze (kombinatorische Logik) Schaltnetze realisieren eine Schalt- oder Vektorfunktion Y = F (X) X: Eingangsvektor mit den Variablen x 0, x 1, x n Y: Ausgabevektor mit den Variablen y 0, y 1, y

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

N Bit Darstellung von Gleitkommazahlen

N Bit Darstellung von Gleitkommazahlen N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für )

Mehr

Das Verfahren in Hardware

Das Verfahren in Hardware Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = 110110 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Computer Arithmetik. Computer Arithmetik Allgemein

Computer Arithmetik. Computer Arithmetik Allgemein Vortrag von René Grohmann und Mirwais Turjalei, 22.11.2000 Computer Arithmetik Computer Arithmetik Allgemein Die ALU: Die Alu ist die Einheit im Computer, die dazu bestimmt ist arithmetische und logische

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Outline Schieberegister Multiplexer Zähler Addierer. Rechenschaltungen. Marc Reichenbach und Michael Schmidt

Outline Schieberegister Multiplexer Zähler Addierer. Rechenschaltungen. Marc Reichenbach und Michael Schmidt Rechenschaltungen Marc Reichenbach und Michael Schmidt Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 05/11 1 / 22 Gliederung Schieberegister Multiplexer Zähler Addierer 2 / 22 Schieberegister

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

14 Addierer und Subtrahierer

14 Addierer und Subtrahierer 14 Addierer und Subtrahierer 14.1 Darstellung positiver und negativer Zahlen Die Anzahl der Bitstellen muss festgelegt sein, um positive und negative Zahlen unterscheiden zu Binär m -1 = 3 Positiv Dezimal

Mehr

Speichern von Zuständen

Speichern von Zuständen Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 R S C D altes Q neues Q 0 0 0 0 0 1 0 1 0 0 1

Mehr

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014

Mehr

2. Vorzeichenbehaftete und vorzeichenlose Zahlen. 3.3 Beschleunigen der ganzzahligen Multiplikation - Booth s Algorithmus

2. Vorzeichenbehaftete und vorzeichenlose Zahlen. 3.3 Beschleunigen der ganzzahligen Multiplikation - Booth s Algorithmus Algorithmen II Inhalt Inhalt 1. Einleitung 2. Vorzeichenbehaftete und vorzeichenlose Zahlen 3. Grundlagen der ganzzahligen Arithmetik 3.1 Addition und Subtraktion 3.2 Multiplikation und Division 3.3 Beschleunigen

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

3.8 Sequentieller Multiplizierer 159

3.8 Sequentieller Multiplizierer 159 .8 Sequentieller Multiplizierer 59 Nachfolgende Abbildung zeigt den (unvollständigen) Aufbau einer Schaltung zur Implementierung des gezeigten Multiplikationsverfahrens. b) Vervollständigen Sie die Schaltung

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

Schaltnetz zur Addition n-bit langer Summanden. a 2 b 2. s 2

Schaltnetz zur Addition n-bit langer Summanden. a 2 b 2. s 2 3.3 Paralleles Addierwerk Shaltnetz zur Addition n-bit langer Summanden a n-1 b n-1 a 2 b 2 a 1 b 1 a 0 b 0 in... out s n-1 s 2 s 1 s 0 lange Gatterlaufzeit bis Endergebnis stabil Gatterlaufzeit: t = 2n

Mehr

Programmieren 1 C Überblick

Programmieren 1 C Überblick Programmieren C Überblick. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen

Mehr

5. Computer Arithmetik. a i b i C in i-1 C out i s i. a b hc out hs. Addition mit Volladddierer (1 Bit) Halbadddierer (1 Bit) b c in.

5. Computer Arithmetik. a i b i C in i-1 C out i s i. a b hc out hs. Addition mit Volladddierer (1 Bit) Halbadddierer (1 Bit) b c in. 5. Computer Arithmetik In diesem Abschnitt wollen wir einige grundlegende Techniken kennen lernen, mit denen in Computern arithmetische Operationen ausgeführt werden. Das dabei erworben Wissen werden wir

Mehr

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Zahlensysteme

Mehr

Dokumentation der Assemblerroutinen

Dokumentation der Assemblerroutinen Dokumentation der Assemblerroutinen für die Befehle MULT, MULTU, DIV & DIVU MulU Zum Multiplizieren, wurde die Methode der russischen Bauernmultiplikation benutzt, die prinzipiell nur ein schriftliches

Mehr

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die

Mehr

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen

Mehr

Digitaltechnik Grundlagen 5. Elementare Schaltnetze

Digitaltechnik Grundlagen 5. Elementare Schaltnetze 5. Elementare Schaltnetze Version 1.0 von 02/2018 Elementare Schaltnetze Dieses Kapitel beinhaltet verschiedene Schaltnetze mit speziellen Funktionen. Sie dienen als Anwendungsbeispiele und wichtige Grundlagen

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

Multiplikationschip. Multiplikation. Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95. Oberwiesenstr.

Multiplikationschip. Multiplikation. Beitrag zu Werkstattunterricht Multiplikation Allgemeine Didaktik - Seminar SS95. Oberwiesenstr. Informationsblatt für die Lehrkraft Multiplikation Multiplikationschip Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95 Autor: Ernesto Ruggiano Oberwiesenstr. 42 85 Zürich

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Implementierung von Gleitkomma-Operationen

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Implementierung von Gleitkomma-Operationen Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Implementierung von Gleitkomma-Operationen Eberhard Zehendner (FSU Jena) Rechnerarithmetik Gleitkomma-Operationen 1

Mehr

ALU ALU. ALU-Aufbau. Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus. Addierer. Logischer Einheit. Shifter

ALU ALU. ALU-Aufbau. Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus. Addierer. Logischer Einheit. Shifter ALU ALU-Aufbau Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus Addierer Logischer Einheit Shifter Eingänge in eine ALU: zwei Operanden, Instruktionscode OP1 OP0 Ausgänge einer ALU: Ergebnis,

Mehr

12. Tutorium Digitaltechnik und Entwurfsverfahren

12. Tutorium Digitaltechnik und Entwurfsverfahren 12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

G , Franz J. Hauck, Verteilte Systeme, Univ. Ulm, [2005s-TI1-G-Arith.fm, ]

G , Franz J. Hauck, Verteilte Systeme, Univ. Ulm, [2005s-TI1-G-Arith.fm, ] 3.3 Paralleles Addierwerk 3.4 Serielles Addierwerk Shaltnetz zur Addition n-bit langer Summanden Synhrones Shaltwerk zur Addition n-bit langer Summanden a n-1 b n-1... a 2 b 2 a 1 b 1 a b in Clk a n-1

Mehr

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Problem: Keine Integers in JavaCard. ToDo: Rechnen mit Bytes und Shorts

Problem: Keine Integers in JavaCard. ToDo: Rechnen mit Bytes und Shorts Kapitel 6: Arithmetik in JavaCard Problem: Keine Integers in JavaCard ToDo: Rechnen mit Bytes und Shorts Java SmartCards, Kap. 6 (1/20) Hex-Notation 1 Byte = 8 Bit, b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0101

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

Vorwort Teil 1: Grundlagen 1. 1 Einleitung Grundbegriffe Einheiten Geschichte Arten von Computern 8

Vorwort Teil 1: Grundlagen 1. 1 Einleitung Grundbegriffe Einheiten Geschichte Arten von Computern 8 Inhaltsverzeichnis Vorwort Teil 1: Grundlagen 1 1 Einleitung 3 1.1 Grundbegriffe 3 1.2 Einheiten 5 1.3 Geschichte 6 1.4 Arten von Computern 8 2 Allgemeiner Aufbau eines Computersystems 15 2.1 Blockdiagramm

Mehr

GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 12 Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 AUFGABE 1 KOMPARATOR Beschreibung Entwickeln Sie eine digitale Schaltung, die zwei Bits a und b miteinander

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

3.1 Schaltungselemente 129. b) Tragen Sie in nachfolgende Abbildung die Realisierung eines 1 Bit 4-auf-1 Multiplexers aus Logikgattern ein.

3.1 Schaltungselemente 129. b) Tragen Sie in nachfolgende Abbildung die Realisierung eines 1 Bit 4-auf-1 Multiplexers aus Logikgattern ein. 3.1 Schaltungselemente 129 b) Tragen Sie in nachfolgende Abbildung die Realisierung eines 1 Bit 4-auf-1 Multiplexers aus Logikgattern ein. 2 1 0 1 1 130 3 Arithmetische Schaltungen emultiplexer emultiplexer

Mehr

Mikroarchitekturen. Peter Marwedel Informatik 12 TU Dortmund 2013/07/16. technische universität dortmund. fakultät für informatik informatik 12

Mikroarchitekturen. Peter Marwedel Informatik 12 TU Dortmund 2013/07/16. technische universität dortmund. fakultät für informatik informatik 12 12 Mikroarchitekturen Peter Marwedel Informatik 12 TU Dortmund 2013/07/16 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Gegenüberstellung

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Schaltnetze Rechner-Arithmetik Addition Bessere Schaltnetze zur Addition Carry-Look-Ahead-Addierer Multiplikation Wallace-Tree Hinweis:

Mehr

Assembler Integer-Arithmetik

Assembler Integer-Arithmetik Assembler Integer-Arithmetik Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Integer-Arithmetik 1/23 2008-04-01 Arithmetik

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addition/Subtraktion

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addition/Subtraktion Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Addition/Subtraktion Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addition/Subtraktion 1 / 44 Vergleich von Addierern

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der technischen Informatik Kapitel 4 Verarbeitungsschaltungen Pascal A. Klein, M.Sc. 4 Verarbeitungsschaltungen... 3 4.1 Einführung... 3 4.2 Addierer... 3 4.2.1 Halbaddierer... 3 4.2.2 Volladdierer...

Mehr

Seminararbeit Sommersemester 2017

Seminararbeit Sommersemester 2017 Schaltkreise für die Addition Seminararbeit Sommersemester 2017 Bearbeitet von: Maximilian Breymaier (Matrikelnummer: 57214) Christoph Mantsch (Matrikelnummer: 57266) Betreuer: Prof. Dr. Thomas Thierauf

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur Wintersemester 2016/2017 Einführung

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht RA Überblick Einleitung Befehlsschnittstelle Mikroarchitektur Speicherarchitektur Ein-/Ausgabe Multiprozessorsysteme,... CS - RA - SS01 Kap. 2.1 2.1/2

Mehr

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen Aufgabenstellung: - das beigefügte Assembler-Programm schrittweise ausführen - sich mit der Handhabung der Entwicklungswerkzeuge

Mehr