Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^

Größe: px
Ab Seite anzeigen:

Download "Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^"

Transkript

1 Inhaltsverzeichnis Vorwort Liste der verw endeten Sym bole V X V 1 N ew ton sche Mechanik Die Grundgleichungen der Newton schen Mechanik Gravitationspotential und K raft Bewegungsgleichung nach N ewton Gravitationspotential in der Nähe der Erdoberfläche Die Feldgleichung nach Newton Gravitationspotential und Poisson-Gleichung Der fallende Apfel und das Prinzip der kleinsten Wirkung Variation der Bahnkurve Lagrange-Funktion und W irkung Ist die Newton sche Mechanik falsch? Spezielle R elativitätstheorie Geschichte der speziellen Relativitätstheorie Postulate der speziellen Relativitätstheorie Galilei-Transformation Raumkontraktion und Zeitdilatation Zeitdilatation Raumkontraktion Lorentz-Transformation Invarianzelement im relativistischen F all Eigenzeit Vierer Vektoren Raumzeit-Diagramme Definition des Raumzeit-Diagramms CM CO ^

2 2.9.2 Raumartig, zeitartig, lichtartig Lichtkegel Gleichzeitigkeit Raumkontraktion Zeitdilatation Uhrenparadoxon Eigenzeit im Raumzeit-Diagramm Das Zwillingsparadoxon Eigenzeitdiagramme Zeitkegel Eigenzeit kr e is Gravitation und die Krümmung des Raumes Geschichte der allgemeinen Relativitätstheorie Postulate der allgemeinen Relativitätstheorie Der gekrümmte Raum Gravitation und Beschleunigung Gravitation und Krümmung des Raumes Die Formulierung der allgemeinen Relativitätstheorie Wie lässt sich Krümmung messen? Messung der Krümmung im zweidimensionalen Raum Krümmung in höherdimensionalen Räumen Krümmung unterschiedlicher Geometrien Vektoren und K oordinatensystem e Definitionen Vektoren, Vektorkomponenten und Basen Summationskonvention Abstand und Metrik Kovariante und kontravariante Basis Definition Bestimmung der kontravarianten Basis Rechnen mit ko- und kontravarianten Vektoren Rechnen mit indizierten G rößen Austausch von Indizes Herauf- und Herunterschieben von Indizes Kontraktion indizierter Größen Projektion von Vektoren Symmetrie indizierter Gleichungen Indizierte Größen in der Physik Polarisation isotroper Materialien... 73

3 4.5.2 Polarisation anisotroper Materialien Tensoren M etrik und die Vermessung des Raumes Metrik und Abstand Differentielle Länge Metrik in kartesischen Koordinaten Metrik in Polarkoordinaten Metrik und Krümmung Metriken im R aum Kartesische Koordinaten im dreidimensionalen R au m Kugelkoordinaten im dreidimensionalen R aum Zylinderkoordinaten im dreidimensionalen Raum Metriken in der Raumzeit Minkowski-Metrik in kartesischen Koordinaten Minkowski-Metrik in Kugelkoordinaten Eigenschaften der M etrik Metriken von Räumen mit konstanter Krümmung Metriken von Flächen mit konstanter Krümmung Allgemeine Darstellung einer zweidimensionalen Metrik mit konstanter Krümmung Vektoren in gekrüm m ten K oordinaten Partielle Ableitung Ableitung in geraden Koordinaten Ableitung in gekrümmten Koordinaten Basisvektoren und Christoffelsymbole Definition der Christoffelsymbole Bestimmung der Christoffelsymbole aus der Metrik Kovariante Ableitung Definition der kovarianten Ableitung Sonder fälle der kovarianten Ableitung Paralleltransport Messung der Krümmung Krümmung im zweidimensionalen Raum Riemann-Krümmung Krümmung in höherdimensionalen Räumen Berechnung der Riemann-Krümmung Symmetrieeigenschaften der Riemann-Krümmung

4 7.2.4 Kontraktion der Riemann-Krümmung Die Bianchi-Identität D ie E in stein sche Feldgleichung Ansatz zur Bestimmung der Feldgleichung Die Energie-Impuls-Matrix Energie-Impuls-Matrix für bewegte Materie Energie- und Impulserhaltung Energie-Impuls-Matrix für ruhende Materie Energie-Impuls-Matrix für den materiefreien Raum Energie-Impuls-Matrix für eine Flüssigkeit Eigenschaften der Energie-Impuls-Matrix Herleitung der Einstein schen Feldgleichung Einstein-Krümmung Masse und die Krümmung des Raumes Die kosmologische K onstante Vorgehensweise bei der Lösung der Feldgleichung Schwarzschild-M etrik oder wie M asse den Raum krümmt Definition der Schwarzschild-Metrik Berechnung der Schwarzschild-Metrik Ansatz zur Bestimmung der Schwarzschild-Metrik Gravitation und Zeitdilatation Gravitation und Raumkontraktion Der Schwarzschildradius Die Schwarzschild-Metrik Schwarze Löcher Die Bestimmung des Faktors k Bew egungsgleichung nach E instein Bewegung von Teilchen im Raum Geodätische Gleichung Lösung der geodätischen Gleichung im R aum Bewegung von Teilchen in der Raumzeit Die geodätische Gleichung in der Raumzeit Das Prinzip der kleinsten Wirkung Der Newton sche Grenzfall Vorgehensweise bei der Lösung der Bewegungsgleichung Warum der Apfel vom Baum fällt Lichtstrahlen und das Fermat sche Prinzip

5 Teilchen und die Wellenfunktion Wellenfunktion und W irkung Die Krümmung der Raum zeit Darstellung der Raumzeit-Krümmung Die Methode der Einbettung Die Einbettung zweidimensionaler Metriken in den R aum Einbettung der Schwarzschild-Metrik Die Methode der geodätisch äquivalenten Abbildung Definition der geodätisch äquivalenten Abbildung Bestimmung der Metrikkoeffizienten Grafische Darstellung der geodätisch äquivalenten M etrik Der Fall der Apfels in der gekrümmten Raumzeit Lichtablenkung in der gekrüm m ten R aum zeit Ausbreitung von Licht im Gravitationsfeld Aufstellen der Bewegungsgleichung Bestimmung der Christoffelsymbole Auswertung der geodätischen Gleichung Das Wegelement der Raumzeit für L icht Lösung der Bewegungsgleichung Lösung für den nichtrelativistischen F a ll Lösung für den relativistischen F all Bewegung von Körpern in der gekrümmten Raum zeit Periheldrehung im Gravitationsfeld Aufstellen der Bewegungsgleichung Die Gleichung der Bahnkurve Ableitung der Bahnkurve Lösung für den Newton schen Fall Lösung für den relativistischen F a ll Die Energiebilanzgleichung R obertson-w alker-m etrik und das gekrüm m te Universum Definition der Robertson-Walker-Metrik Ansatz zur Bestimmung der Metrik Auswertung der Feldgleichung Der Skalenfaktor und die Friedmann-Gleichungen...205

6 15 K osm ologie Das expandierende Universum Der Hubble-Parameter Der Skalenfaktor der Expansion Friedmann-Gleichung für unser Universum Die allgemeine Friedmann-Gleichung Die vereinfachte Friedmann-Gleichung Berechnung der zeitlichen Entwicklung unseres Universums Lösung der Friedmann-Gleichung Grafische Darstellung der Expansion Licht und Galaxien im Raumzeit-Diagramm Das Universum mit konstantem Hubble-Parameter Das Universum mit zeitabhängigem Hubble-Parameter Emissionsentfernung und physikalische Entfernung G ravitationsw ellen Die Wellengleichung Die Metrik bei schwachem Gravitationsfeld Die Linearisierung der Einstein sehen Feldgleichung Eigenschaften von Gravitationswellen Ausbreitungsgeschwindigkeit Polarisation Die Erzeugung von Gravitationswellen Die Quadrupolgleichung Doppelsternsysteme Detektion von Gravitationswellen A Anhang 251 A.l Drehmatrix A.2 Prinzip der kleinsten Wirkung A.3 Der kanonische Impuls A.4 Glossar Literaturverzeichnis 259 Index 261

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der

Mehr

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25 Inhaltsverzeichnis I. Das Weltbild der Gravitation vor Einstein 21 1. Die Keplerschen Gesetze 25 2. Fallgesetze 33 2.1. Bewegung in einer Dimension 33 2.1.1. Geschwindigkeit 34 2.1.2. Beschleunigung 42

Mehr

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung Allgemeine Relativitätstheorie Schwarzschildlösung und Anwendung Previously, on... Letztes Mal: Einsteingleichung und die Geodätengleichung Wir werden die Schwarzschild-Lösung der Einsteingleichung im

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine Einführung in die Theorie des Gravitationsfeldes von Hans Stephani 4. Auflage Mit 54 Abbildungen / j.* i v, V r ' ''% Щ r \. ', Deutscher Verlag der Wissenschaften Berlin

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Kontrollfragen Allgemeine Relativitätstheorie Stephan Mertens Wintersemester 2009 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Warum kann das Newton sche Gravitationsgesetz

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 8 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Quiz: Wo und was in aller Welt ist das? Themen Sternentstehung Sternentwicklung Das

Mehr

Gravitationstheorie: nach Newton und nach Einstein

Gravitationstheorie: nach Newton und nach Einstein Gravitationstheorie: nach Newton und nach Einstein Franz Embacher Fakultät für Physik der Universität Wien Vortrag im Astronomischen Seminar Kuffner Sternwarte, Wien, 13. April 2015 Inhalt Kepler: die

Mehr

Das Konzept der Raumzeit-Krümmung

Das Konzept der Raumzeit-Krümmung Das Konzept der Raumzeit-Krümmung Franz Embacher Fakultät für Physik der Universität Wien Vortrag auf der Jahrestagung der Wiener Arbeitsgemeinschaft für Astronomie Wien, 14. November 2015 Das Konzept

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Karl-Heinz Spatschek. Astrophysik. Eine Einführung in Theorie und Grundlagen. 2. Auflage. 4^ Springer Spektrum

Karl-Heinz Spatschek. Astrophysik. Eine Einführung in Theorie und Grundlagen. 2. Auflage. 4^ Springer Spektrum Karl-Heinz Spatschek Astrophysik Eine Einführung in Theorie und Grundlagen 2. Auflage 4^ Springer Spektrum Inhaltsverzeichnis Teil I Einführung in die moderne Astrophysik 1 Einige wichtige physikalische

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 1

Gravitation und Krümmung der Raum-Zeit - Teil 1 Gravitation und Krümmung der Raum-Zeit - Teil 1 Gauß hat gezeigt, daß es Möglichkeiten gibt, die Krümmung von Flächen durch inhärente Messungen auf der Fläche selbst zu bestimmen Gauß sches Krümmungsmaß

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie (ART) c 1 /4h by sphere, 2014-07-17 powered by LAT E X was soll das alles überhaupt? was soll das alles überhaupt? ˆ damals : Newton-Mechanik was soll das alles überhaupt?

Mehr

Raumzeit für Alle! Raum, Zeit, Raumzeit. Spezielle und Allgemeine Relativitätstheorie. mit einfachen mathematischen Hilfsmitteln nachvollziehen

Raumzeit für Alle! Raum, Zeit, Raumzeit. Spezielle und Allgemeine Relativitätstheorie. mit einfachen mathematischen Hilfsmitteln nachvollziehen Raumzeit für Alle! Raum, Zeit, Raumzeit Spezielle und Allgemeine Relativitätstheorie mit einfachen mathematischen Hilfsmitteln nachvollziehen P. Schneider, Herborn Mai 2015, Addendum Oktober 2017, Interne

Mehr

Einführung in die Relativitätstheorie

Einführung in die Relativitätstheorie Ray d'lnverno Einführung in die Relativitätstheorie Zweite, durchgesehene und korrigierte Auflage Deutsche Ausgabe herausgegeben von Gerhard Schäfer WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine anschauliche Einführung in die Grundlagen Wegelemente euklidischer Raum: Minkowski-Raum: y c t ds dy ds 2 =dx 2 dy 2 ds c d t ds 2 =c 2 dt 2 dx 2 dx x invariant bei

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Die Reihe wendet sich an Praktiker und Wissenschaftler gleichermaßen und soll insbesondere auch Nachwuchswissenschaftlern Orientierung geben.

Die Reihe wendet sich an Praktiker und Wissenschaftler gleichermaßen und soll insbesondere auch Nachwuchswissenschaftlern Orientierung geben. BestMasters Mit BestMasters zeichnet Springer die besten Masterarbeiten aus, die an renommierten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind. Die mit Höchstnote ausgezeichneten

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 11 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der Woche Fast Radio Burst zum ersten (?) Mal lokalisiert:

Mehr

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat Allgemeine Relativitätstheorie Ausarbeitung Von Jan Kaprolat Grundlegende Motivation zur ART Die Allgemeine Relativitätstheorie (ART) ist die Erweiterung der speziellen Relativitätstheorie (SRT). Sie bezieht

Mehr

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt Kosmologisches Standardmodell Übersicht Einführung und kosmologisches Prinzip ART und Metriken Robertson-Walker-Metrik und

Mehr

Hubert Goenner. Einführung in. die spezielle. und allgemeine Relativitätstheorie

Hubert Goenner. Einführung in. die spezielle. und allgemeine Relativitätstheorie Hubert Goenner Einführung in die spezielle und allgemeine Relativitätstheorie 0 Einleitung 1 0.1 Spezielle Relativitätstheorie 1 0.2 Allgemeine Relativitätstheorie 2 Teil I 1 Relativitätsprinzip und Lorentztransformation

Mehr

Seminar Frühes Universum Wintersemester 2003/04. Markus Kromer

Seminar Frühes Universum Wintersemester 2003/04. Markus Kromer Seminar Frühes Universum Wintersemester 2003/04 Weltmodelle I: Friedmann-Modell des Universums Markus Kromer Friedmann-Modell des Universums - Einführung 2 Einführung Hubble-Gesetz Grundgedanken der ART

Mehr

Theoretische Physik: Relativitätstheorie und Kosmologie

Theoretische Physik: Relativitätstheorie und Kosmologie Theoretische Physik: Relativitätstheorie und Kosmologie Bearbeitet von Eckhard Rebhan 1. Auflage 2011. Taschenbuch. XVIII, 608 S. Paperback ISBN 978 3 8274 2314 6 Format (B x L): 0 x 0 cm Gewicht: 1089

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

Die Geometrie des Universums. Max Camenzind Akademie Heidelberg November 2014

Die Geometrie des Universums. Max Camenzind Akademie Heidelberg November 2014 Die Geometrie des Universums Max Camenzind Akademie Heidelberg November 2014 Komet 67P Komet 67P: Perihel: 1,2432 AE Aphel: 5,689 AE a = 3,463 AE e = 0,6412 P = 6,44 a i = 7,04 P Rot = 12,4 h 67P Kometenbahn

Mehr

2.1 Das Ereignisintervall, die Eigenzeit

2.1 Das Ereignisintervall, die Eigenzeit Kapitel 2 Begriffe und Konzepte 2.1 Das Ereignisintervall, die Eigenzeit Wir wollen nun im Prinzip die Bewegung eines Körpers unter Einwirkung der Schwerkraft untersuchen und suchen deshalb in der Raumzeit

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Theoretische Elektrotechnik

Theoretische Elektrotechnik Theoretische Elektrotechnik Band 1: Variationstechnik und Maxwellsche Gleichungen von Dr. Roland Süße und Prof. Dr. Bernd Marx Technische Universität Ilmenau Wissenschaftsverlag Mannheim Leipzig Wien Zürich

Mehr

Inhaltsverzeichnis. Vorwort. Einführung in die Thematik

Inhaltsverzeichnis. Vorwort. Einführung in die Thematik Inhaltsverzeichnis Vorwort Einführung in die Thematik i iii 1. Theorie der Tensoren im n-dimensionalen Raum 1 1.1. TensorenalsgeometrischeObjekte... 1 1.1.1. n-dimensionalerraum... 1 1.1.2. EigenschaftenvonTensoren...

Mehr

Heute vor 100 Jahren zwischen Spezieller und Allgemeiner Relativitätstheorie (und danach)

Heute vor 100 Jahren zwischen Spezieller und Allgemeiner Relativitätstheorie (und danach) Heute vor 100 Jahren zwischen Spezieller und Allgemeiner Relativitätstheorie (und danach) Franz Embacher Fakultät für Physik Universität Wien Vortrag am GRG17 Parhamerplatz Wien, 30. 11. 2011 Inhalt Raum

Mehr

Inhaltsverzeichnis. Spezielle Relativitätstheorie

Inhaltsverzeichnis. Spezielle Relativitätstheorie Inhaltsverzeichnis 1 Einführung... 1 1.1 Überblick... 1 1.2 Licht und Lichtgeschwindigkeit... 2 1.3 Kurzer Abriss der Elektrodynamik... 4 1.4 Kurzer Abriss der Newton schen Gravitationstheorie... 7 1.4.1

Mehr

Relativitätstheorie. in elementarer Darstellung mit Aufgaben und Lösungen. Prof. Dr. rer. nat. habil. H. Melcher. Vierte, neubearbeitete Auflage

Relativitätstheorie. in elementarer Darstellung mit Aufgaben und Lösungen. Prof. Dr. rer. nat. habil. H. Melcher. Vierte, neubearbeitete Auflage Relativitätstheorie in elementarer Darstellung mit Aufgaben und Lösungen Prof. Dr. rer. nat. habil. H. Melcher Vierte, neubearbeitete Auflage VEB Deutscher Verlag der Wissenschaften Berlin 1974 Inhaltsverzeichnis

Mehr

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10. 10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent

Mehr

Die Geometrie. des Universums. Max Camenzind APCOSMO SS2012

Die Geometrie. des Universums. Max Camenzind APCOSMO SS2012 Die Geometrie des Universums Max Camenzind APCOSMO TUDA @ SS01 Das Universum Expandiert Der Raum wird gestreckt Hubble: Das Universum der Galaxien expandiert! Das Universum ist jedoch ein Kontinuum aus

Mehr

9. Spezielle Relativitätstheorie

9. Spezielle Relativitätstheorie 7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten

Mehr

Kosmologie. der Allgemeinen Relativitätstheorie. Das expandierende Universum

Kosmologie. der Allgemeinen Relativitätstheorie. Das expandierende Universum Kosmologie der Allgemeinen Relativitätstheorie Das expandierende Universum Historie der Theorie Albert Einstein 1916 Es gibt keinen absoluten Raum im Newtonschen Sinne. Massen bestimmen die Geometrie des

Mehr

Die Einsteinsche Feldgleichung

Die Einsteinsche Feldgleichung Die Einsteinsche Feldgleichung Volker Perlick ZARM, Univ. Bremen, Germany Eisenbahnfriedhof Uyuni, Bolivien Heraeus-Seminar 100 Jahre Allgemeine Relativitätstheorie Potsdam, 11 März 2015 Newton Einstein

Mehr

Allgemeine Relativitätstheorie, was ist das?

Allgemeine Relativitätstheorie, was ist das? , was ist das? 1905 stellte Albert Einstein die Spezielle Relativitätstheorie auf Beim Versuch die Gravitation im Rahmen der Speziellen Relativitätstheorie zu beschreiben stieß er allerdings schnell auf

Mehr

Gravitation und Raumzeitkrümmung

Gravitation und Raumzeitkrümmung Roland Steinbauer Fakultät für Mathematik, Universität Wien ÖAW, Gravitation 2015, Oktober 2015 1 / 36 Die Einsteingleichungen (1) November 1915 Albert Einstein, Zur allgemeinen Relativitätstheorie Die

Mehr

Einsteins Relativitätstheorie

Einsteins Relativitätstheorie Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die

Mehr

Aber gerade in diesem Punkt ist Newton besonders konsequent.

Aber gerade in diesem Punkt ist Newton besonders konsequent. 2.1.Lorentz-Transformationen Aus Einstein, Mein Weltbild 1.) Trotzdem man allenthalben das Streben Newtons bemerkt, sein Gedankensystem als durch die Erfahrung notwendig bedingt hinzustellen und möglichst

Mehr

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

Allgemeine Relativitätstheorie und Schwarze Löcher

Allgemeine Relativitätstheorie und Schwarze Löcher 1 Allgemeine Relativitätstheorie und Schwarze Löcher Christian Haderer 13.01.2010 2 KAPITEL 1 GRUNDLAGEN DER ALLGEMEINEN RELATIVITÄTSTHEORIE Die allgemeine Relativitätstheorie (kurz ART) ist immer noch

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation?

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Was ist RAUMZEIT? z t 3 dimensionaler Raum y + Zeitachse x = 4 dimensionale RAUMZEIT Was ist RAUMZEIT? Zeitachse = t c http://www.ws5.com/spacetime

Mehr

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor 1.6 Tensoren Tensor vom Typ (k,l) = multilineare Abb. nach R x bedeutet kartesisches Produkt (geordnetes Paar) Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor Skalar: Type (0,0) Vektor:

Mehr

Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen

Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen Workshop MNU-Tagung Leipzig 2016 Technische Universität Dresden Dr. rer. nat. Frank Morherr Albert Einstein und das Universum

Mehr

9 Der Riemann sche Krümmungstensor

9 Der Riemann sche Krümmungstensor 9 Der Riemann sche Krümmungstensor Bevor wir weitere physikalische Ergebnisse der ART wie Gravitationswellen oder die Verwirbelung der Raumzeit durch rotierende Massen diskutieren, wollen wir uns in den

Mehr

Entfernungsbestimmung im Kosmos 10

Entfernungsbestimmung im Kosmos 10 Entfernungsbestimmung im Kosmos 10 10.1 Folgerungen aus dem Hubble-Gesetz 10.2 Allgemeine Relativitätstheorie 10.3 Robertson-Walker - Metrik 10.4 Entfernungsdefinitionen 10.5 Dynamik der Expansion 10.6

Mehr

Die allgemeine Relativitätstheorie

Die allgemeine Relativitätstheorie Die allgemeine Relativitätstheorie Manuel Hohmann Universität Hamburg 20. Juni 2006 Inhaltsverzeichnis 1 Was ist die ART? 3 2 Wie löst die ART alte Probleme? 9 3 Welche neuen Vorhersagen macht die ART?

Mehr

Relativitätstheorie und Kosmologie Teil 2 Unterricht

Relativitätstheorie und Kosmologie Teil 2 Unterricht Relativitätstheorie und Kosmologie Teil 2 Unterricht F. Herrmann und M. Pohlig S www.physikdidaktik.uni-karlsruhe.de 9 DER GEKRÜMMTE RAUM 10 KOSMOLOGIE 9 DER GEKRÜMMTE RAUM Raum und Zeit getrennt behandeln

Mehr

Relativität und Realität

Relativität und Realität Max Drömmer Relativität und Realität Zur Physik und Philosophie der allgemeinen und der speziellen Relativitätstheorie mentis PADERBORN Inhaltsverzeichnis Vorwort... 15 Einleitung... 17 Kapitel 1 Allgemeine

Mehr

13. Relativitätstheorie

13. Relativitätstheorie Inhalt 13. Relativitätstheorie 13.1 Addition von Geschwindigkeiten 13.2 Zeitdilatation 13.33 Längenkontraktion kti 13.4 Relativistischer Impuls 13.5 Relativistische Energie 13.6 Allgemeine Relativitätstheorie

Mehr

Standardmodell der Kosmologie

Standardmodell der Kosmologie ! "# $! "# # % & Standardmodell der Kosmologie Urknall und Entwicklung des Universums Inhalt Einleitung Experimentelle Hinweise auf einen Urknall Rotverschiebung der Galaxien kosmische Hintergrundstrahlung

Mehr

Die Robertson- Walker Metrik. Marcus Tassler

Die Robertson- Walker Metrik. Marcus Tassler Die Robertson- Walker Metrik Marcus Tassler 0. Juli 005 1 Raum und Zeit in der allgemeinen Relativitätstheorie 1.1 Äquivalenzprinzip Über die heute mit einer Genauigkeit von 10 13 bestätigte Gleichheit

Mehr

8. Elemente der relativistischen Mechanik

8. Elemente der relativistischen Mechanik 8. Elemente der relativistischen Mechanik 8.1 Spezielle Relativitätstheorie 1905 (SRT) Voraussetzungen: Konstanz der Lichtgeschwindigkeit gleiche Physik in allen Inertialsystemen Folgerungen: Längenkontraktion

Mehr

Grundideen der allgemeinen Relativitätstheorie

Grundideen der allgemeinen Relativitätstheorie Grundideen der allgemeinen Relativitätstheorie David Moch La Villa 2006 Inhalt Newtons Physik und ihr Versagen Einsteins Lösung von Raum und Zeit: Die spezielle Relativitätstheorie Minkowskis Vereinigung

Mehr

Lorentz-Transformation

Lorentz-Transformation Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas

Mehr

Fey nman-vo rles u n ge n über Physik 1

Fey nman-vo rles u n ge n über Physik 1 Richard P. Matthew Sands Feynman, Robert B. Leighton, Fey nman-vo rles u n ge n über Physik 1 Mechanik New Millennium-Edition DE GRUYTER Inhaltsverzeichnis 1 Atome in Bewegung 1 1.1 Einleitung 1 1.2 Materie

Mehr

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3 Inhaltsverzeichnis Teil I Grundlagen 1 Einleitung 3 1.1 Was wir nicht herleiten können... 3 1.2 Überblick über das Buch... 5 1.3 Elementarteilchen und fundamentale Wechselwirkungen 8 2 Die Spezielle Relativitätstheorie

Mehr

Das Universum als RaumZeit

Das Universum als RaumZeit Das Universum als RaumZeit Max Camenzind Würzburg - 2017 Das ist eine der ältesten Aufnahmen von Andromeda "nebula, photographiert am Yerkes Observatorium um 1900. Für unsere modernen Augen ist dies wirklich

Mehr

Gravitation und Raumzeitkrümmung

Gravitation und Raumzeitkrümmung Roland Steinbauer Fakultät für Mathematik, Universität Wien VHS, 14. November 2018 1 / 36 Zu den Grundlagen der Allgemeinen Relativitätstheorie Laut Einstein fallen Dinge nicht deswegen nach unten, weil

Mehr

Inhaltsverzeichnis XIII

Inhaltsverzeichnis XIII Inhaltsverzeichnis 1 Elektrizität Magnetismus Elektromagnetische Wellen... 1 1.1 Einführung Historische Anmerkungen... 1 1.2 Elektrisches Feld... 4 1.2.1 Elektrische Ladung Coulomb sches Gesetz... 4 1.2.2

Mehr

Albert Einsteins Relativitätstheorie und die moderne Kosmologie In welchem Universum leben wir?

Albert Einsteins Relativitätstheorie und die moderne Kosmologie In welchem Universum leben wir? Albert Einsteins Relativitätstheorie und die moderne Kosmologie In welchem Universum leben wir? Günter Wunner Institut für Theoretische Physik Universität Stuttgart Einsteins Wunderjahr 1905 09.06.1905

Mehr

Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung Skript zum Vortrag im Rahmen des Seminars: Theorie der Teilchen und Felder (WS 06/07)

Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung Skript zum Vortrag im Rahmen des Seminars: Theorie der Teilchen und Felder (WS 06/07) Friedmann-obertson-Walker-Metrik und Friedmann-Gleichung Skript zum Vortrag im ahmen des Seminars: Theorie der Teilchen und Felder (WS 6/7) Daniel Bieletzki Inhaltsverzeichnis. Einführung. Grundlagen der

Mehr

Kosmologie. der Allgemeinen Relativitätstheorie. Geometrie gekrümmter Räume: Basis der Einsteinschen Feldgleichungen

Kosmologie. der Allgemeinen Relativitätstheorie. Geometrie gekrümmter Räume: Basis der Einsteinschen Feldgleichungen Kosmologie der Allgemeinen Relativitätstheorie Geometrie gekrümmter Räume: Basis der Einsteinschen Feldgleichungen Der Durchbruch Einstein: Das Gravitationsfeld beeinflußt bzw. bestimmt die metrischen

Mehr

Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung

Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung Anja Teuber Münster, 29. Oktober 2008 Inhaltsverzeichnis 1 Einleitung 2 2 Allgemeine Relativitätstheorie und die Einstein schen Feldgleichungen

Mehr

Kosmologische Modelle Vortrag im Rahmen des Ausbildungsseminars Vom Urknall zu den Galaxien

Kosmologische Modelle Vortrag im Rahmen des Ausbildungsseminars Vom Urknall zu den Galaxien Kosmologische Modelle Vortrag im Rahmen des Ausbildungsseminars Vom Urknall zu den Galaxien von Marius Schmidl Universität Regensburg, Fachbereich Physik November 007 Kosmologische Modelle sind wie eben

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

12. Spezielle Relativitätstheorie

12. Spezielle Relativitätstheorie Inhalt 12. Spezielle Relativitätstheorie 12.1 Lorentz-Transformation 12.2 Transformation von Geschwindigkeiten 12.3 Zeitdilatation 12.4 Längenkontraktion kti 12.5 Relativistischer Impuls 12.6 Relativistische

Mehr

Simulation zur Periheldrehung

Simulation zur Periheldrehung Simulation zur Periheldrehung Sebastian Hähnel 30.03.2015 Inhaltsverzeichnis 1 Lösung der Einstein-Gleichung 1 2 Lösung der Bewegungsgleichungen 2 3 Dimensionslose Gleichung 4 4 Einige Beispiele 4 1 Lösung

Mehr

Allgemeine Relativitätstheorie und Quantentheorie

Allgemeine Relativitätstheorie und Quantentheorie Allgemeine Relativitätstheorie und Quantentheorie Der Zusammenhang zwischen Gravitation und den Rest der Grundkräfte in komplexen Raum von 19. Januar 2012 bis? Fachbereich theoretische Physik/Mathematik

Mehr

Dieses Buch enthält eine kurze Einführung in die relativistische

Dieses Buch enthält eine kurze Einführung in die relativistische Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits

Mehr

Fragen zur Klausurvorbereitung

Fragen zur Klausurvorbereitung PD. Dr. R. Klesse, Prof. Dr. A. Schadschneider S. Bittihn, C. von Krüchten Wintersemester 2016/2017 Theoretische Physik in 2 Semestern I Fragen zur Klausurvorbereitung www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

Kosmologie für die Schule

Kosmologie für die Schule Kosmologie für die Schule Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik Kosmologie für die Schule p.1/0 Ein symmetrisches Universum Die moderne Kosmologie beruht auf Einsteins

Mehr

Evolution in der Physik

Evolution in der Physik Evolution in der Physik Zwei Bedeutungen eines Begriffs Franz Embacher Fakultät für Physik Universität Wien Vortrag im Rahmen von University Meets Public, VHS Meidling, Wien. 20. 10. 2009 Inhalt Evolution

Mehr

Quanten - Gravitation

Quanten - Gravitation Quanten - Gravitation Quantenmechanik und allgemeine Relativitätstheorie zwei Pfeiler im Gebäude der theoretischen Physik Passen sie zusammen? Oder brauchen wir ganz neue theoretische Konzepte? Quantenmechanik

Mehr

Wiederholung: Gravitation in der klassischen Physik

Wiederholung: Gravitation in der klassischen Physik Gravitation II Wiederholung: Gravitation in der klassischen Physik Eigenschaften: Intrinsische (ladungsartige) Eigenschaft der schweren Masse (Gravitationsladung) Es gibt nur positive Gravitationsladungen

Mehr

Hauptseminar: Kosmologie

Hauptseminar: Kosmologie Hauptseminar: Kosmologie Metrik des homogenen und isotropen Raumes Steffen Keßler Universität Stuttgart Hauptseminar: Kosmologie p. 1/41 Das kosmologische Prinzip Kosmologisches Prinzip: Hauptseminar:

Mehr

2 Die Newton sche Gravitationstheorie

2 Die Newton sche Gravitationstheorie 2 Die Newton sche Gravitationstheorie Von welchem Ausgangspunkt wollen wir Einsteins Gravitationstheorie kennenlernen? Wir rekapitulieren zu Beginn die Beschreibung der Gravitation nach Newton. Vektoren

Mehr

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage Kaluza Klein Theorie Forschungsseminar Quantenfeldtheorie Montag, 22.05.2006 Jens Langelage Inhalt 1.) Gravitation und Elektromagnetismus in höheren Dimensionen 2.) Kaluza Klein Miracle 1.) Elektromagnetismus

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 2

Gravitation und Krümmung der Raum-Zeit - Teil 2 Gravitation und Krümmung der Raum-Zeit - Teil 2 Einsteinsche Gravitationsfeldgleichungen Krümmung der Raumzeit = universelle Konstante x Energie- und Impulsdichte Die Raumzeit wirkt auf die Masse (Energie),

Mehr

Robertson-Walker Metrik

Robertson-Walker Metrik 3. Eine Metrik für das Universum: Robertson-Walker Metrik Kosmologisches Prinzip: Die Welt ist homogen und isotrop, d.h. das Universum sieht (zu einem bestimmten Zeitpunkt) von allen Orten aus gleich aus!

Mehr

Das Standardmodell der Kosmologie Die Friedmann-Gleichung

Das Standardmodell der Kosmologie Die Friedmann-Gleichung Seminar: Theorie der Teilchen und Felder Das Standardmodell der Kosmologie Die Friedmann-Gleichung Bastian Brandt 1 1 bastianbrandt@uni-muenster.de Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Einleitung

Mehr

Bild 1 (Quelle : https://www.oebv.at/node/3060/online-selection/55420/57022)

Bild 1 (Quelle : https://www.oebv.at/node/3060/online-selection/55420/57022) Die Gravitation Im Tutorial Standardmodell der Teilchenphysik wurden neben den Elementarteilchen auch die zwischen den Teilchen wirkenden fundamentalen Kräfte in einem allgemeinen Überblick vorgestellt.

Mehr

Inhaltsverzeichnis. Teil I. Nichtrelativistische Vielteilchen-Systeme

Inhaltsverzeichnis. Teil I. Nichtrelativistische Vielteilchen-Systeme Inhaltsverzeichnis Teil I. Nichtrelativistische Vielteilchen-Systeme 1. Zweite Quantisierung... 3 1.1 Identische Teilchen, Mehrteilchenzustände undpermutationssymmetrie... 3 1.1.1 Zustände und Observable

Mehr

Ort: Raum in der Mittelspange. Zeit: Mo 15-17h Mi 15-17h. Beginn Mo d

Ort: Raum in der Mittelspange. Zeit: Mo 15-17h Mi 15-17h. Beginn Mo d Spezialvorlesung WS 11/12. Vorl.Verz. 52302 Wolfgang Gebhardt: Vom Urknall zu den Sternen. Eine Einführung in die Kosmologie mit Übungen Ort: Raum 5.1.01 in der Mittelspange Zeit: Mo 15-17h Mi 15-17h Beginn

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

Über teleparallele Gravitationstheorien

Über teleparallele Gravitationstheorien Diplomkolloquium Über teleparallele Gravitationstheorien Uwe Münch 24. September 1997 Übersicht: Geometrische Größen Gravitation als Eichtheorie der Translationen: Teleparallelismus-Theorien Alternative

Mehr

Theorie der Gravitationswellen

Theorie der Gravitationswellen 28. Januar 2008 1 Historisches 2 Theoretische Grundlagen 3 Die Feldgleichungen 4 Eigenschaften von Gravitationswellen 5 Ausblick Historisches Historisches 1905 H. Poincaré : Gravitationswechselwirkung

Mehr

Doku Spezielle Relativität

Doku Spezielle Relativität Doku Spezielle Relativität Äther-Diskussion um 1900 Newton Mechanik ist Galilei-invariant Maxwell EM ist jedoch Lorentz-invariant Michelson-Morley Experiment Albert Michelson & Edward Morley Drehbarer

Mehr

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin Raum, Zeit, Universum Die Rätsel des Beginns Bild : pmmagazin Der Urknall Wie unser Universum aus fast Nichts entstand Inflationäres Universum Überall fast Nichts nur Fluktuationen Explosionsartige Expansion

Mehr