Algorithmische Bioinformatik I

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Bioinformatik I"

Transkript

1 Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift Hiermit stimme ich einer Veröffentlichung meines Klusurergenisses dieser Semestrlklusur unter Verwendung meiner Mtrikelnummer im Internet zu. J Nein (Unterschrift) Allgemeine Hinweise zur Semestrlklusur Vor der Prüfung ist diese Seite mit Vornmen, Nmen, Mtrikelnummer, Reihe und Pltz leserlich mit Druckuchsten zu versehen und zu unterschreien. Bitte nicht in roter oder grüner Fre zw. nicht mit Bleistift schreien. Der Studentenusweis und ein mtlicher Lichtildusweis sind ereit zu hlten. Die reine Bereitungszeit eträgt 120 Minuten. Es sind insgesmt 40 Punkte zu erreichen, zum Bestehen sind 17 Punkte nötig. Viel Erfolg! Hörsl verlssen von... is... von... is... Vorzeitig gegeen um... Hz A1 A2 A3 A4 A5 Erstkorrektur Nchkorrektur Zweitprüfer

2 Vornme: Nme: Mtrikelnummer: Aufge 1 (8 Punkte) Gi ds Mster-Theorem us der Vorlesung n. Spezifiziere hierzu insesondere die drei verschiedenen Fälle und gi n, welche Lösung der jeweilige Fll esitzt. Bestimme die Asymptotik von T(n) mithilfe des Mster-Theorems us der Vorlesung unter Ange einer der drei Fälle (siehe oen) mit Begründung zw. egründe, wrum ds Mster-Theorem nicht nwendr ist. Es gilt dei immer T(1) = 1: ) T(n) = 2 T(n/2)+ n, ) T(n) = 2 T(n/4)+ nlog(n), c) T(n) = 3 T(n/3)+n n. Seien,,d N mit > 1, sei f(n) eine Funktion und sei T(n) definiert durch die Rekursionsgleichung T(n) = T(n/)+f(n) für n > 1 und T(1) = d. Dnn gilt: Θ(n log () ) flls f(n) = O(n log () e ) für ein konstntes e > 0 Θ(n T(n) = log () log(n)) flls f(n) = Θ(n log () ) Θ(f(n)) flls f(n) = Ω(n log ()+e ) für ein konstntes e > 0 und f(n/) c f(n) für ein konstntes c < 1 ) Für ds Mster-Theorem erhlten wir = 2, = 2 und f(n) = n. Es gilt log 2 (2) = 1 und somit f(n) = n = n 1/2 = O(n log 2 (2) e ) = O(n log () e ) für e (0,1/2). Somit gilt der erste Fll und es ist T(n) = Θ(n log()) = Θ(n log 2 (2) ) = Θ(n). ) Für ds Mster-Theorem erhlten wir = 2, = 4 und f(n) = nlog(n). Es gilt log () = log 4 (2) = 1/2. Also ist f(n) = nlog(n) = ω(n 1/2 ) und dmit f(n) O(n 1/2 e ) = O(n log () e ) für lle e > 0 und Fll 1 ist nicht zutreffend. Weiter ist f(n) = nlog(n) = ω(n 1/2 ) und dher f(n) Θ(n 1/2 ) = Θ(n log () ). Fll 2 trifft lso nicht zu. Auch ist f(n) = nlog(n) Ω(n 1/2+e ) für lle e > 0, d nlog(n) = o(n 1/2+e ) für lle e > 0. Ds Mster-Theorem ist lso uch im Fll 3 nicht nwendr. c) FürdsMster-Theoremerhltenwir = 3, = 3undf(n) = n n.esgiltlog 3 (3) = 1 und somit f(n) = n n = n 3/2 = Ω(n log 3 (3)+e ) = Ω(n log ()+e ). für ein e (0,1/2), Weiter ist n f(n/) = 3 (n/3) 3 1 n 3/2! c f(n) 3 und somit gilt der dritte Fll des Mster-Theorems mit c = 1/ 3 < 1 (d 3 > 1). Dmit gilt T(n) = Θ(f(n)) = Θ(n n). [SS16] 2

3 Vornme: Nme: Mtrikelnummer: Aufge 2 (8 Punkte) Betrchte den unter ) geildeten Suffix-Bum für s = s 1 s 7 =. Der esseren Lesrkeit wegen sind hierei immer explizit die Kntenlels sttt der Referenzen ngegeen. ) Zeichne lle Suffix-Links ein, die Ukkonens Algorithmus hierfür konstruiert ht. ) Gi die Kntenlels so n, wie sie in Ukkonens Algorithmus verwendet werden. c) Führe Ukkonens Algorithmus für den Üergng von s uf s = s = us. d) Führe Ukkonens Algorithmus für den Üergng von s uf s = s = us. Gi für c) und d) lle Zwischenschritte n, mrkiere insesondere die Position des ktiven Knotens und Endknotens im jeweiligen Suffix-Bum. Zeichne dei nur die verwendeten und neu eingetrgenen Suffix-Links mit jeweils einer nderen Fre ein und nummeriere die neuen Blätter in der Reihenfolge der Einfügung. ) ε ) (1,1) ε (3, ) (3, ) (2, ) c) ε A E d) 2 4 ε 1 3 E A [SS16] 3

4 Vornme: Nme: Mtrikelnummer: Aufge 3 (8 Punkte) Löse die folgende Rekursionsgleichung mit Hilfe der llgemeinen Lösung für linere Rekursionsgleichungen: f n = 4 f n 1 2 für n 1, und f 0 = 1. Betrchte die Rekursionsgleichung für n und n 1: f n = 4 f n 1 2, f n 1 = 4 f n 2 2. Ziehen wir die zweite von der ersten Gleichung, so erhlten wir eine homogene linere Rekursionsgleichung f n = 5 f n 1 4 f n 2 f n 5 f n 1 +4 f n 2 = 0 mit den Anfngsedingungen f 0 = 1 und f 1 = 4 f 0 2 = 2. Wir etrchten nun ds chrkteristische Polynom χ(n) für diese Rekursionsgleichung: χ(n) = n 2 5n+4. Die Nullstellen ergeen sich (eispielsweise mit der p, q-formel) zu x 1,2 = ± 4 4 = ± 4. Also sind 1 und 4 die eiden Nullstelle des chrkteristischen Polynoms. Somit ht die Lösung der Rekursionsgleichung die Form: f n = (1) n + (4) n = + 4 n. Mit den Anfngsedingungen ergit sich für und : 1 = f 0 = (1) 0 + (4) 0 = +, 2 = f 1 = (1) 1 + (4) 1 = +4. Sutrktion der ersten von der zweiten Gleichung liefert 3 = 1, lso = 1. Somit ist 3 = 2, lso ist f 3 n = n. [SS16] 4

5 Vornme: Nme: Mtrikelnummer: Aufge 4 (8 Punkte) Gegeen seien zwei Wörter s = s 1 s m m und t = t 1 t n n. Gi einen Algorithmus mit Lufzeit O(n+m) n, der ds längste Präfix von s findet, ds uch ein Suffix von t ist. Beispiel: Für s = und t = sind ε und jeweils sowohl ein Präfix von s ls uch ein Suffix von t. Hinweis: Korrektheitseweis und Lufzeitnlyse nicht vergessen! Zuerst schuen wir uns n, wie ein Präfix von s, ds uch ein Suffix von t ist in der Zeichenreihe s$t ussieht: 0 m i n+m s $ t Z i Sei l := s$t = n+m+1. Gilt lso i+z[i] = l für ein i [m+1 : l 1], dnn endet ein Präfix von s ls Suffix von t n Position i m in t. Wir konstruieren lso für s$t zuerst die zugehörigen Z-Werte in Zeit O(n + m). Dnn testen wir für jedes i [m + 1 : l 1] in ufsteigender Reihenfolge, o i + Z[i] = l gilt. Dies ist in Zeit O(n+m) möglich. Der erste Wert, für den ds gilt, ist nch oiger Erläuterung ein Suffix von t, der ein Präfix von s ist. Nch Whl von i, muss dieses dnn uch ds längste Präfix von s und wir hen die gesuchte Lösung unseres Prolems. [Alterntive Lösungsmöglichkeiten mit Suffix-Bäumen oder der Border-Telle.] [SS16] 5

6 Vornme: Nme: Mtrikelnummer: Aufge 5 (8 Punkte) Ein spezielles Alignment für zwei Sequenzen s n undt m ist ein glolesprweises Sequenzen-Alignment (s, t) A(s, t) mit der Einschränkung, dss uf ein Indel (Insertion zw. Deletion) keine Sustitution folgen drf (lso rechts dvon stehen drf), jedoch ein Mtch oder ein Indel. Beispiel: Für s = AAAAC und t = ATTC ist ( AAA AC ATT C) ein spezielles Alignment (llerdings nicht notwendigerweise ein optimles), ( ) ( AAA AC A TT C oder AAA AC A TTC) jedoch nicht. Finde einen möglichst effizienten Algorithmus, der für zwei gegeene Sequenzen s n und t m ein optimles spezielles Alignment zgl. der Alignment-Distnz mit linerer Lückenstrfe findet. Hierei trägt jede Insertion und jede Deletion 2 sowie jede Sustitution 3 zur Alignment-Distnz ei, ein Mtch wie ülich 0. Hinweis: Korrektheitseweis und Lufzeitnlyse nicht vergessen! Wir konstruieren wie eim Gotoh-Algorithmus verschiedene Mtrizen D, E, F und G. Dei ist D[i,j] zw. E[i,j] zw. F[i,j] zw. G[i,j] die Alignment-Distnz eines speziellen Alignments von s 1 s i mit t 1 t j, ds keine weitere Einschränkung esitzt zw. mit einem Indel zw. mit einem Mtch zw. einer Sustitution endet. Für die Rekursionsgleichungen erhlten wir dnn: E[i,j] = min{d[i,j 1]+2,D[i 1,j]+2} F[i,j] = { D[i 1,j 1] flls si = t j sonst G[i,j] = { flls si = t j min{f[i 1,j 1]+3,G[i 1,j 1]+3} sonst D[i,j] = min{e[i,j],f[i,j],g[i,j]} Es stellt sich nun noch die Frge, welche Werte jeweils in der 1. Zeile zw. in der 1. Splte der Mtrizen stehen. Es gilt für i > 0 und j > 0: E[0,j] = 2 j, F[i,0] =, G[i,0] =, E[i,0] = 2 i, F[0,j] =, G[0,j] =, E[0,0] =, F[0,0] = 0, G[0,0] = 0. Die Werte für D ergeen sich us der Minimumsildung. Ein spezielles Alignment selst findet mn wieder üer den Trceck usgehend von D[n, m], woei mn erücksichtigen muss, us welcher Mtrix ds Minimum stmmt. Die Korrektheit folgt us der Ttsche, dss ein optimles spezielles Alignment in der letzten Splte entweder ein Indel, ein Mtch oder eine Sustitution esitzt. Hier werden gemäß der Definition eines speziellen Alignment für lle drei Fälle nch in den oigen Mtrizen E, F und G jeweils eine korrekte Alignment-Distnz für ds entsprechende spezielle Alignment erechnet. Jeder Eintrg der vier Tellen lässt sich in konstnter Zeit ermitteln, von dher wird für ds Erstellen der Tellen Zeit O(nm) enötigt. Ein spezielles Alignment knn mit dem Trceck in Zeit O(n + m) erstellt werden, so dss die Gesmtlufzeit O(nm) ist. [SS16] 6

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Maximilians-Universität Münhen Institut für Informatik Prof. Dr. Volker Heun Sommersemester 2016 Wiederholungsklausur 19. Oktoer 2016 Algorithmishe Bioinformatik I Vorname Name Matrikelnummer Reihe

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 15.01.2018 Lösung zur Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtisches Institut Prof. Dr. F. Vllentin Dr. A. Gundert Einführung in die Mthemtik des Opertions Reserch Aufge (5+5= Punkte) Sommersemester 4 Lösungen zur Klusur (5. Septemer 4).

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 5.0.208 Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS 207/8) Ich

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44 Technische Universität München Winter 08/9 Prof. J. Esprz / Dr. M. Luttenerger, C. Welzel 08//0 HA- TA- Diskrete Strukturen Tutorufgenltt Besprechung in KW Bechten Sie: Soweit nicht explizit ngegeen, sind

Mehr

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten)

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 2.7.24 Klusur üer den Stoff der Vorlesung Grundlgen der Informtik II (9 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (SS 24) Ich estätige,

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 12

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 12 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 29 Ferur 2012

Mehr

Formale Sprachen und Automaten. Schriftlicher Test

Formale Sprachen und Automaten. Schriftlicher Test Formle Sprchen und Automten Prof. Dr. Uwe Nestmnn - 23. Ferur 2017 Schriftlicher Test Studentenidentifiktion: NACHNAME VORNAME MATRIKELNUMMER S TUDIENGANG Informtik Bchelor, Aufgenüersicht: AUFGABE S EITE

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Minimalität des Myhill-Nerode Automaten

Minimalität des Myhill-Nerode Automaten inimlität des yhill-nerode Automten Wir wollen zeigen, dss der im Beweis zum yhill-nerode Stz konstruierte DEA für die reguläre Sprche L immer der DEA mit den wenigsten Zuständen für L ist. Sei 0 der konstruierte

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Klusur 09082011 Prof Dr Dr hc W Thoms Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1)

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1) Mthemtik für die Physik II, Sommersemester 28 Lösungen zu Serie 5 2) Berechnen Sie die uneigentlichen Riemn-Integrle ln d und d +. Für jedes < < gilt ln t dt = t ln t t = ln und nch I. 2.Lemm 4 und I..Stz

Mehr

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus Klusur Formle Sprchen und Automten Grundlgen des Compilerus 25. Novemer 2014 Nme: Unterschrift: Mtrikelnummer: Kurs: Note: Aufge erreichre erreichte Nr. Punkte Punkte 1 10 2 10 3 12 4 11 5 9 6 6 7 11 8

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie Wintersemester 2016/2017 Scheinklusur Formle Sprchen und Automtentheorie 21.12.2016 Üungsgruppe, Tutor: Anzhl Zustzlätter: Zugelssene Hilfsmittel: Keine. Bereitungszeit: 60 Minuten Hinweise: Lesen Sie

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü F-Studiengng Angewndte lektronik SS 8 Üungsufgen zu Mthemtik Vektor- und Mtrizenrechnung 9 Die ckpunkte des Dreiecks ABC seien durch ihre Ortsvektoren OA ( ) OB (7) und OC (8) gegeen Berechnen Sie die

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Lösungen zum Ergänzungsblatt 4

Lösungen zum Ergänzungsblatt 4 en zum Ergänzungsltt 4 Letzte Änderung: 23. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Vorereitungsufgen Vorereitungsufge 1 Sei M = ({p, q, r}, {, }, δ, p, {q, r}) ein DEA mit folgender

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Automaten mit dot erstellen

Automaten mit dot erstellen Automten mit dot erstellen 1 Ws ist dot? dot ist ein Progrmm zum Kompilieren von dot-dteien in verschiedene Grfikformte, sowie der Nme einer Sprche, mit der mn Grphen spezifizieren knn. Unter Anderem können

Mehr

5. Homotopie von Wegen

5. Homotopie von Wegen 28 Andres Gthmnn 5. Homotopie von Wegen In der Prxis wird der Cuchysche Integrlstz meistens in einer äquivlenten Umformulierung verwendet, die wir nun genuer ehndeln wollen. Anschulich esgt sie, dss Wegintegrle

Mehr

Universität Heidelberg 13. Oktober 2016 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Nadine Losert

Universität Heidelberg 13. Oktober 2016 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Nadine Losert Universität Heidelerg 13. Oktoer 2016 Institut für Informtik Prof. Dr. Klus Amos-Spies Ndine Losert Zweite Klusur zur Vorlesung Einführung in die Theoretische Informtik Es können mximl 60 Punkte erworen

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Üungsltt Vorlesung Theoretische Grundlgen der Informtik im WS 78 Ausge 9. Oktoer 27 Age 7. Novemer 27, : Uhr (im Ksten im UG von Geäude

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Grundbegriffe der Informatik Lösungsvorschläge Aufgabenblatt 11

Grundbegriffe der Informatik Lösungsvorschläge Aufgabenblatt 11 Grundegriffe der Informtik Lösungsvorschläge Aufgenltt 11 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 15. Jnur 2014 Age: 24. Jnur 2014, 12:30 Uhr im GBI-Briefksten im Untergeschoss von

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien DFA Reguläre Grmmtik (Folie 89) Stz. Jede von einem endlichen Automten kzeptierte Sprche ist regulär. Beweis. Nch Definition, ist eine

Mehr

Bitte die Blätter nicht trennen! Studiengang:

Bitte die Blätter nicht trennen! Studiengang: Bitte die Blätter nicht trennen! Mtrikelnummer: Fkultät Studiengng: Jhrgng / Kurs : Technik Angewndte Informtik 2017 ITA ÜBUNGSKLAUSUR Studienhljhr: 3. Semester Dtum: 14.11.2018 Bereitungszeit: 90 Minuten

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

= f (x). Anmerkung: Stammfunktionen finden ist also die Umkehrung der Ableitung, es wird daher auch manchmal als Aufleiten bezeichnet.

= f (x). Anmerkung: Stammfunktionen finden ist also die Umkehrung der Ableitung, es wird daher auch manchmal als Aufleiten bezeichnet. .Stmmfunktionen Integrlrechnung Im folgenden sei I R ein Intervll ds mit mindestens 2 verschiedene Punkte enthält.. Stmmfunktionen Definition: Eine differenzierre Funktion F : I R heißt Stmmfunktion einer

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2017W) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2017W) Lösung Theoretische Informtik und Logik Üungsltt 2 (207W) en Aufge 2. Geen ie jeweils eine kontextfreie Grmmtik n, welche die folgenden prchen erzeugt, sowie eine Linksleitung und einen Aleitungsum für ein von

Mehr

a) Eine Menge, die aus jeder Äquivalenzklasse genau ein Element enthält, ist

a) Eine Menge, die aus jeder Äquivalenzklasse genau ein Element enthält, ist Lösungen zu den Fschingsufgen Aufge 15 ) Eine Menge, die us jeder Äquivlenzklsse genu ein Element enthält, ist { n n N 0 } { n n N 0 } {}. ) n N 0 : w = n {w {, } ww L} = { k n+k k N 0 }. c) Nein. n N

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

Algorithmentheorie. 15 Suchen in Texten (1)

Algorithmentheorie. 15 Suchen in Texten (1) Algorithmentheorie 15 Suhen in Texten (1) Prof. Dr. S. Alers Suhe in Texten Vershiedene Szenrien: Sttishe Texte Literturdtennken Biliothekssysteme Gen-Dtennken WWW-Verzeihnisse Dynmishe Texte Texteditoren

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Klausur. Informatik 1 Wintersemester 2005/2006 Prof. Dr. Wolfgang May 4. April 2006, Uhr Bearbeitungszeit: 90 Minuten

Klausur. Informatik 1 Wintersemester 2005/2006 Prof. Dr. Wolfgang May 4. April 2006, Uhr Bearbeitungszeit: 90 Minuten Klusur Informtik 1 Wintersemester 2005/2006 Prof. Dr. Wolfgng My 4. April 2006, 11-13 Uhr Bereitungszeit: 90 Minuten Aufge erreichre erreichte Punkte Punkte 1 10 / 10 2 14 / 14 3 16 / 16 4 26(+8)* / 26(+8)*

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Krlsruher Institut für Technologie Institut für Alger und Geometrie PD Dr. Stefn Kühnlein Dipl.-Mth. Jochen Schröder Einführung in Alger und Zhlentheorie Üungsltt 7 Aufge 1 (4 Punkte) Sei R ein kommuttiver

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlgen der Informtik Vorlesungsprüfung vom 02.03.2007 Gruppe B Lösung Nme: Mtrikelnummer: Zuerst itte Nme und Mtrikelnummer uf ds Titelltt schreien. Es sind keine Unterlgen und keine Temreit erlut.

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen Algorithmus von Dijkstr: 1. Es sei S ie Menge er enteckten Knoten. Invrinte: Merke optimle Lösung für S: Für lle v S sei [v] = δ(s,v) ie Länge es kürzesten Weges von s nch v 3. Zu Beginn: S={s} un [s]=

Mehr

Vorkurs Theoretische Informatik

Vorkurs Theoretische Informatik Vorkurs Theoretische Informtik Einführung in reguläre Sprchen Areitskreis Theoretische Informtik Freitg, 05.10.2018 Fchgruppe Informtik Üersicht 1. Chomsky-Hierchie 2. Automten NEA DEA 3. Grmmtik und Automten

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 015/16 Bltt 4 09.11.015 Übungen zur Vorlesung Differentil und Integrlrechnung I Lösungsvorschlg 13. Zu betrchten ist die durch 0 = 1 und

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

ASW Übung 9 Mathematik Prof.Dr.B.Grabowski Tel.:

ASW Übung 9 Mathematik Prof.Dr.B.Grabowski   Tel.: ASW Üung 9 Mthemtik Prof.Dr.B.Growski e-mil: growski@htw-srlnd.de Tel.: 58- Aufge : Geen Sie den Rng der folgenden Mtrizen A E durch Drufschuen n! ( ) 5 8 E D C B A Aufge. Bestimmen Sie den Rng der folgenden

Mehr

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 7. Aufgabe 1

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 7. Aufgabe 1 Aufge 1 () Anmerkung: Der Punkt in den Bäumen t keinerlei Bedeutung und ist nur d, um drstellen zu können, ws linkes und retes Kind eines Elternteils sein soll Einfügen von,,,,,,, 0, 17 : : : Rottion :

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

15. Kürzeste Wege. SS 2017 DuA - Kapitel 15 1

15. Kürzeste Wege. SS 2017 DuA - Kapitel 15 1 5. Kürzeste Wege t s SS DuA - Kpitel 5 Gewichtete Grphen Ein gewichteter Grph G ist ein Pr (V,E) zusmmen mit einer Gewichtsfunktion w, woei E V V un w: E IR. Für e E heißt w(e) s Gewicht von e. Für einen

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung 0. Motivtion und Einordnung 1. Endliche Automten 2. Formle Sprchen 3. Berechnungstheorie 4. Komplexitätstheorie 1.1. 1.2. Minimierungslgorithmus 1.3. Grenzen endlicher Automten 1/1, S. 1 2017

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments von Jule Menzel, 12Q4 5) Lplce-Whrscheinlichkeit eines ufllsexperiments Ergenis ω 1 ω 2 ω 3 ω 4 ω 1 Ω ω 2 ω 3 ω 4 Ergenismenge ist ein Ereignis ist Teilmenge von Ω kurz: c Ω Ws ist ein Ereignis? Beispiel:

Mehr

Suche in Texten: Suffix-Bäume

Suche in Texten: Suffix-Bäume Suhe in Texten: Suffix-Bäume Prof. Dr. S. Alers Prof. Dr. Th. Ottmnn 1 Suhe in Texten Vershiedene Szenrios: Dynmishe Texte Texteditoren Symolmnipultoren Sttishe Texte Literturdtennken Biliothekssysteme

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen Prof. Dr. H. Brenner Osnrück WS 2014/2015 Vorkurs Mthemtik Vorlesung 3 Die rtionlen Zhlen Definition 3.1. Unter einer rtionlen Zhl versteht mn einen Ausdruck der Form, woei, Z und 0 sind, und woei zwei

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr