Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen

Größe: px
Ab Seite anzeigen:

Download "Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen"

Transkript

1 Effiziente Algorithmen Einführung 1 Inhalt 1. Flußprobleme 2. Matching. Lineares Programmieren 4. Ganzzahliges Programmieren 5. NP-Vollständigkeit 6. Approximationsalgorithmen 7. Backtracking und Branch-and-Bound 8. Randomisierte Algorithmen 9. Online-Algorithmen

2 Effiziente Algorithmen Einführung 2 Literatur Sehr empfehlenswertes Buch. Es enthält einen Überblick über die wichtigsten Entwurfstechniken für Algorithmen und einen sehr vollständigen Überblick über bekannte Algorithmen mit Verweisen. Steven S. Skiena: The Algorithm Design Manual. Springer Verlag. Preis: US $69.95, Hardcover mit CD-ROM.

3 Effiziente Algorithmen Einführung Literatur Sehr umfangreiches, modernes Buch. Sehr gut geschrieben. Enthält alle wichtigen Algorithmen. Nur ein Buch dieses! Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest: Introduction To Algorithms. MIT Press. Preis: US $69.95, Hardcover, 1028 Seiten!

4 Effiziente Algorithmen Flußprobleme 4 Netzwerkfluß (Wiederholung der Grundlagen aus DSAL) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, 5 oder 8l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?

5 Effiziente Algorithmen Flußprobleme 5 Netzwerkfluß Antwort: Maximal 11l/s sind möglich. s t

6 Effiziente Algorithmen Flußprobleme 6 s-t-netzwerke Ein s-t-netzwerk (flow network) ist ein gerichteter Graph G = (V,E), wobei 1. jede Kante (u,v) E eine Kapazität c(u,v) 0 hat, 2. es eine Quelle s V und eine Senke t V gibt. Es ist bequem, anzunehmen daß jeder Knoten auf einem Pfad von s nach t liegt. Falls (u,v) / E setzen wir c(u,v) = 0. Es kann Kanten (u,v) und (v,u) mit verschiedener Kapazität geben.

7 Effiziente Algorithmen Flußprobleme 7 Beispiel eines s-t-netzwerks v 1 12 v s t 1 4 v 2 14 v 4 Die Kanten sind mit den Kapazitäten c(u,v) beschriftet.

8 Effiziente Algorithmen Flußprobleme 8 Flüsse Ein Fluß ist eine Funktion f: V V R, die Paare von Knoten auf reelle Zahlen abbildet und diese Bedingungen erfüllt: Zulässigkeit: Für u,v V gilt f(u,v) c(u,v). Symmetrie: Für u,v V gilt f(u,v) = f(v,u). Flußerhaltung: Für u V {s,t} gilt v V f(u,v) = 0. Der Wert f eines Flusses ist definiert als f = u V f(s,u). Dies ist gerade der Gesamtfluß aus der Quelle heraus.

9 Effiziente Algorithmen Flußprobleme 9 Maximale Flüsse Das Problem des maximalen Flusses: Gegeben: Ein s-t-netzwerk. Gesucht: Ein Fluß mit maximalem Wert.

10 Effiziente Algorithmen Flußprobleme 10 Was ist der maximale Fluß? v 1 12 v s t 1 4 v 2 14 v 4

11 Effiziente Algorithmen Flußprobleme 11 Der maximale Fluß ist 2 v 1 12/12 v 12/16 19/20 s /7 t 11/1 4/4 v 2 11/14 v 4 Die Kanten sind mit c(u,v) beschriftet oder mit f(u,v)/c(u,v), falls f(u,v) > 0.

12 Effiziente Algorithmen Flußprobleme 12 Andere optimale Lösungen 14/16 v 1 12/12 v 19/20 s 2/ /7 t 9/1 v 2 11/14 10/16 v 4 v 1 4/4 12/12 v 19/20 s 10 2/4 9 7/7 t 1/1 v 2 11/14 v 4 4/4

13 Effiziente Algorithmen Flußprobleme 1 Mehrfache Quellen oder Senken s 10 5 t 6 s t 2 6 s t 1 Mehrfache Quellen oder Senken sind eine Verallgemeinerung des Problem des maximalen Flusses.

14 Effiziente Algorithmen Flußprobleme 14 Mehrfache Quellen oder Senken s 10 5 t 6 s s t 2 t 6 s t 1 Neue Superquelle und Supersenke hinzufügen

15 Effiziente Algorithmen Flußprobleme 15 Existenz des maximalen Flusses Existiert stets der maximale Fluß max { f f ist ein s-t-fluß in G }? Ja, denn die Menge aller Flüsse ist abgeschlossen im R m und sie ist nicht leer. Die stetige Funktion, die einen Fluß auf ihren Wert abbildet, hat daher ein Maximum: f = u V f(s, u) ist stetig!

16 Effiziente Algorithmen Flußprobleme 16 Einige Notationen Es ist bequem einige Abkürzungen zu verwenden: f(x,y) = f(x,y) für X,Y V x X y Y f(x,y) = y Y f(x,y) für Y V f(x,y) = x Xf(x,y) für X V X y statt X {y}

17 Effiziente Algorithmen Flußprobleme 17 Lemma A Falls f ein s-t-fluß für G = (V,E) ist, dann gilt: 1. f(x,x) = 0 für X V 2. f(x,y) = f(y,x) für X,Y V. f(x Y,Z) = f(x,z)+f(y,z) für X,Y,Z V mit X Y = 4. f(z,x Y) = f(z,x)+f(z,y) für X,Y,Z V mit X Y = Dieses Lemma ist sehr nützlich, um wichtige Eigenschaften über Flüsse abzuleiten.

18 Effiziente Algorithmen Flußprobleme 18 Lemma A Um Lemma A zu beweisen, dürfen wir nur die Eigenschaften eines s-t-flusses verwenden, also Zulässigkeit, Symmetrie und Flußerhaltung. Beweis für f(x,x) = 0: f(x,x) = 1 ( 2 = 1 ( 2 = 1 2 x 1 X x 1 X x 1 X x 2 X x 2 X x 2 X f(x 1,x 2 )+ x 1 X f(x 1,x 2 )+ x 1 X x 2 X x 2 X ( ) f(x 1,x 2 )+f(x 2,x 1 ) ) f(x 1,x 2 ) ) f(x 2,x 1 ) = 0 Hier genügt die Symmetrie allein! (Rest als Übungsaufgabe.)

19 Effiziente Algorithmen Flußprobleme 19 Anwendung des Lemmas Der Fluß in die Senke sollte intuitiv dem Fluß aus der Quelle entsprechen: Beweis mit Lemma A: f(s,v) = f(v,t) f(s,v) = f(v,v) f(v s,v) = f(v s,v) = f(v,v s) = f(v,t)+f(v,v s t) = f(v, t) wegen Flußerhaltung

20 Effiziente Algorithmen Flußprobleme 20 Definition: Residualnetzwerke Netzwerk minus Fluß = Residualnetzwerk Gegeben ist ein Netzwerk G = (V,E) und ein Fluß f. Das Residualnetzwerk G f = (V,E f ) zu G und f ist definiert vermöge E f = {(u,v) V V c f (u,v) > 0}, wobei c f (u,v) = c(u,v) f(u,v). c f ist die Restkapazität. Das s-t-netzwerk G f hat die Kapazitäten c f.

21 Effiziente Algorithmen Flußprobleme 21 Beispiel 11/16 v 1 12/12 v 15/20 s 10 1/4 4/9 7/7 t s-t-netzwerk mit Fluß f 8/1 v 2 11/14 v 4 4/4 v 1 12 v Residualnetzwerk G f s v v t

22 Effiziente Algorithmen Flußprobleme 22 Augmentierende Pfade Ein s-t-pfad p in G f heißt augmentierender Pfad. c f (p) = min{c f (u,v) (u,v) ist auf p} heißt Restkapazität von p. Beispiel: s 11 5 v v v v t Die Restkapazität dieses Pfades ist 4.

23 Effiziente Algorithmen Flußprobleme 2 Die Ford Fulkerson Methode Initialisiere Fluß f zu 0 while es gibt einen augmentierenden Pfad p do augmentiere f entlang p return f f p (u,v) = Augmentiere f entlang p: f := f +f p f p ist ein Fluß in G f c f (p) falls (u,v) auf p c f (p) falls (v,u) auf p 0 sonst

24 Effiziente Algorithmen Flußprobleme 24 Die Ford Fulkerson Methode s t Anfangs ist der Fluß 0. Der augmentierende Pfad ist rot eingezeichnet.

25 Effiziente Algorithmen Flußprobleme 25 Die Ford Fulkerson Methode s t Der augmentierende Pfad hat Kapazität 5.

26 Effiziente Algorithmen Flußprobleme 26 Die Ford Fulkerson Methode s t Der augmentierende Pfad hat Kapazität.

27 Effiziente Algorithmen Flußprobleme 27 Die Ford Fulkerson Methode s t Jetzt gibt es keinen augmentierenden Pfad mehr. Der Fluß ist maximal.

28 Effiziente Algorithmen Flußprobleme 28 Lemma B Korrektheit Set G = (V,E) ein s-t-netzwerk und f ein Fluß in G. Sei f ein Fluß in G f. Dann ist f +f ein Fluß in G. Konsequenz: Die Ford Fulkerson Methode berechnet einen Fluß. Beweis: Wir müssen zeigen, daß f +f zulässig, symmetrisch und flußerhaltend ist.

29 Effiziente Algorithmen Flußprobleme 29 Beweis (Symmetrie) (f +f )(u,v) = f(u,v)+f (u,v) = f(v,u) f (v,u) = (f(v,u)+f (v,u)) = (f +f )(v,u)

30 Effiziente Algorithmen Flußprobleme 0 Beweis (Flußerhaltung) Sei u V {s,t}. (f +f )(u,v) = f(u,v)+f (u,v) = 0+0 = 0

31 Effiziente Algorithmen Flußprobleme 1 Beweis (Zulässigkeit) (f +f )(u,v) = f(u,v)+f (u,v) f(u,v)+c f (u,v) = f(u,v)+(c(u,v) f(u,v)) = c(u, v) Der Beweis verwendet, daß f ein Fluß in G f ist, aber nicht, daß f ein Fluß in G ist.

32 Effiziente Algorithmen Flußprobleme 2 Laufzeit der Ford Fulkerson Methode s t

33 Effiziente Algorithmen Flußprobleme Laufzeit der Ford Fulkerson Methode s t

34 Effiziente Algorithmen Flußprobleme 4 Laufzeit der Ford Fulkerson Methode s t

35 Effiziente Algorithmen Flußprobleme 5 Laufzeit der Ford Fulkerson Methode s t

36 Effiziente Algorithmen Flußprobleme 6 Laufzeit der Ford Fulkerson Methode s t

37 Effiziente Algorithmen Flußprobleme 7 Laufzeit der Ford Fulkerson Methode s t

38 Effiziente Algorithmen Flußprobleme 8 Laufzeit der Ford Fulkerson Methode s t

39 Effiziente Algorithmen Flußprobleme 9 Laufzeit der Ford Fulkerson Methode s t

40 Effiziente Algorithmen Flußprobleme 40 Laufzeit der Ford Fulkerson Methode s t

41 Effiziente Algorithmen Flußprobleme 41 Laufzeit der Ford Fulkerson Methode Ein Flußproblem ist integral, wenn alle Kapazitäten ganzzahlig sind. Theorem. Die Ford Fulkerson Methode benötigt nur O(f ) Iterationen, um ein integrales Flußproblem zu lösen, falls der Wert eines maximalen Flusses f ist. Beweis. In jeder Iteration wird der Wert des Flusses um c f (p) 1 erhöht. Er ist anfangs 0 und am Ende f. Korollar. Bei rationalen Kapazitäten terminiert die Ford Fulkerson Methode.

42 Effiziente Algorithmen Flußprobleme 42 Schnitte in Netzwerken Ein Schnitt (S, T) in einem s-t-netzwerk G = (V, E) ist eine Partition S T = V, S T = mit s S und t T. Wenn f ein Fluß in G ist, dann ist f(s,t) der Fluß über (S,T). Die Kapazität von (S, T) ist c(s, T). Ein minimaler Schnitt ist ein Schnitt mit minimaler Kapazität.

43 Effiziente Algorithmen Flußprobleme 4 Schnitte in Netzwerken s v S 1 v 2 11/16 8/1 12/ /4 4/9 11/14 v Tt 7/7 t 4/4 v 4 15/20 Der Fluß über (S,T) ist 19. Die Kapazität von (S,T) ist 26.

44 Effiziente Algorithmen Flußprobleme 44 Schnitte in Netzwerken v 1 S11/16 T s 10 1/4 7/7 4/9 8/1 v 2 12/12 11/14 v v 4 15/20 t 4/4 Der Fluß über (S,T) ist 19. Die Kapazität von (S,T) ist 29.

45 Effiziente Algorithmen Flußprobleme 45 Schnitte in Netzwerken 11/16 v 1 12/12 v 15/20 s 8/1 10 1/4 STt v 2 4/9 11/14 v 4 7/7 4/4 t Der Fluß über (S,T) ist 19. Die Kapazität von (S,T) ist 2.

46 Effiziente Algorithmen Flußprobleme 46 Lemma C Fluß über einen Schnitt Der Fluß über einen Schnitt und der Wert des Flusses sind identisch, d.h. f(s,t) = f. Beweis f(s,t) = f(s,v) f(s,v T) = f(s,v) f(s,s) Spezialfälle = f(s,v) = f(s,v)+f(s s,v) = f(s,v) = f f = f(s,v s) = f(v t,t)

47 Effiziente Algorithmen Flußprobleme 47 Theorem Max-flow Min-cut Theorem Sei f ein Fluß im s-t-netzwerk G = (V,E). Dann sind äquivalent: 1. f ist ein maximaler Fluß 2. In G f gibt es keinen augmentierenden Pfad. f = c(s,t) für einen Schnitt (S,T) Folgerungen Falls die Ford Fulkerson Methode terminiert, berechnet sie einen maximalen Fluß. Die Kapazität eines kleinsten Schnittes gleicht dem Wert eines größten Flusses.

48 Effiziente Algorithmen Flußprobleme 48 Beweis Sei f ein maximaler Fluß. Nehmen wir an, es gebe einen augmentierenden Pfad p. Dann ist f +f p ein Fluß in G mit f +f p > f. Das ist ein Widerspruch zur Maximalität von f.

49 Effiziente Algorithmen Flußprobleme 49 Beweis 2.. G f hat keinen s-t-pfad. S := {v V es gibt einen s-v-pfad in G f } T := V S Dann ist (S, T) ein Schnitt und es gilt f(u, v) = c(u, v) für alle u S, v T. Nach Lemma C gilt dann f(s,t) = c(s,t) = f.

50 Effiziente Algorithmen Flußprobleme 50 Beweis. 1. Sei f ein beliebiger Fluß. f = f(s,t) = u S v T u S v T = c(s,t) f(u,v) c(u, v) Der Wert jedes Flusses ist also höchstens c(s,t). Erreicht er sogar c(s,t) ist er folglich maximal.

51 Effiziente Algorithmen Flußprobleme 51 Wo ist ein minimaler Schnitt?

52 Effiziente Algorithmen Flußprobleme 52 Wie findet man einen minimalen Schnitt? 1. Einen maximalen Fluß berechnen. 2. Eine Kante (u, v) ist kritisch, wenn c(u, v) = f(u, v).. S besteht aus Knoten, die von s aus über unkritische Kanten erreicht werden können. 4. T besteht aus allen anderen Knoten. Es gibt aber bessere, direkte Methoden!

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s.

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s. Netzwerkfluß (Folie, Seite 78 im Skript) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, oder 8 l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Graphenalgorithmen Maximaler Fluss Einleitung Flussnetzwerke Ford-Fulkerson Fulkerson Methode Maximales bipartites Matching

Mehr

Flüsse in Netzwerken

Flüsse in Netzwerken Proseminar Theoretische Informatik, Prof. Wolfgang Mulzer, SS 17 Flüsse in Netzwerken Zusammenfassung Gesa Behrends 24.06.2017 1 Einleitung Unterschiedliche technische Phänomene wie der Flüssigkeitsdurchfluss

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, chnitte, bipartite Graphen Matthias Hoffmann 5.5.009 Matthias Hoffmann Flüsse, chnitte, bipartite Graphen 5.5.009 / 48 Übersicht Einführung Beispiel Definitionen Ford-Fulkerson-Methode Beispiel

Mehr

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson

Mehr

Kapitel 1: Flussalgorithmen

Kapitel 1: Flussalgorithmen Netzwerke und Flüsse Ein Flussnetzwerk ist ein gerichteter Graph G = (V, E, c) mit zwei ausgewählten Knoten q, s V und einer Kapazitätsfunktion c : E N 0. Die Quelle q hat Eingangsgrad 0 und die Senke

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

ij. , d (k 1) + d (k 1)

ij. , d (k 1) + d (k 1) Dabei war ja die Idee, dass wir unser k Schritt für Schritt erhöhen bis wir bei n angekommen sind, denn dann haben wir das Problem gelöst. Dies ist im Grunde unser Algorithmus. Wir müssen diesen nur noch

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 4: Flüsse Flüsse Netzwerk, Fluss, s,t-schnitt, Kapazität MaxFlow-MinCut-Theorem Restnetzwerk

Mehr

VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz

VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz Gruppe A: Bernhard Stader, Georg Ziegler, Andreas Zugaj 10. November 2004 Inhaltsverzeichnis

Mehr

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt;

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt; Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt Referent Matthias Rost 1 Einleitung Definitionen Maximaler Dynamischer Fluss Algorithmus von Ford-Fulkerson Techniken zur

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

KAPITEL 4 FLÜSSE IN NETZWERKEN

KAPITEL 4 FLÜSSE IN NETZWERKEN KAPITEL 4 FLÜSSE IN NETZWERKEN F. VALLENTIN, A. GUNDERT 1. Das Max-Flow-Min-Cut Theorem Es sei D = (V, A) ein gerichteter Graph, s, t V zwei Knoten. Wir nennen s Quelle und t Senke. Definition 1.1. Eine

Mehr

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Thomas Fersch mail@t-fersch.de 11.06.2010 Seminar "Hallo Welt!" für Fortgeschrittene 1 Übersicht Maximale Flüsse in Netzwerken Worum geht s? Lösung nach Ford-Fulkerson

Mehr

Anwendungen von Netzwerkfluss

Anwendungen von Netzwerkfluss Anwendungen von Netzwerkfluss Berlin, 13. 01. 2009 Wojciech Polcwiartek Institut für Informatik FU Berlin 1. Einführung/ Definitionen Modellieren der Probleme mit Hilfe von Netzwerken und Flüssen in den

Mehr

Mathematische Modelle in den Naturwissenschaften Proseminar

Mathematische Modelle in den Naturwissenschaften Proseminar Mathematische Modelle in den Naturwissenschaften Proseminar Johannes Kepler Universität Linz Technische Mathematik Der Algorithmus von Ford und Fulkerson Ausgearbeitet von Julia Eder, Markus Eslitzbichler,

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 7 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 2. Mai 2018 [Letzte Aktualisierung: 2/05/2018,

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen Flußnetzwerke 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert

Mehr

Graphalgorithmen Netzwerkalgorithmen. Laufzeit

Graphalgorithmen Netzwerkalgorithmen. Laufzeit Netzwerkalgorithmen Laufzeit (Folie 390, Seite 78 im Skript) Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{

Mehr

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom

Mehr

Flüsse, Schnitte, Bipartite Graphen

Flüsse, Schnitte, Bipartite Graphen Flüsse, Schnitte, Bipartite Graphen Sebastian Hahn 4. Juni 2013 Sebastian Hahn Flüsse, Schnitte, Bipartite Graphen 4. Juni 2013 1 / 48 Überblick Flussnetzwerke Ford-Fulkerson-Methode Edmonds-Karp-Strategie

Mehr

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

FLÜSSE, SCHNITTE UND - TEIL 2 - BIPARTITE GRAPHEN. Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D.

FLÜSSE, SCHNITTE UND - TEIL 2 - BIPARTITE GRAPHEN. Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D. FLÜSSE, SCHNITTE UND BIPARTITE GRAPHEN - TEIL 2 - Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D. Lukas Dresel 17. Juni 215 Inhalt Problemstellung Lösungsmethode 1

Mehr

Der Preow-push-Algorithmus

Der Preow-push-Algorithmus Der Preow-push-Algorithmus Bea Schumann 26. Juni 2009 Inhaltsverzeichnis Einleitung 2 Der generische Algorithmus 2 2. Push und Relabel........................... 3 2.. Push..............................

Mehr

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6.

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6. .6 Graphen.6. Definition und Dartellung.6. Aupähen von Graphen.6.3 Minimal pannende Bäume.6.4 Kürzete Pfade.6.5 Maximaler Flu .6.5 Maximaler Flu.6.5. Flunetzwerke.6.5. Ford-Fulkeron-Methode.6.5.3 Algorithmu

Mehr

Effiziente Algorithmen und Datenstrukturen II

Effiziente Algorithmen und Datenstrukturen II Effiziente Algorithmen und Datenstrukturen II Prof. Dr. Christian Scheideler Technische Universität München, 25. April 2006 1 Algorithmen für maximale Flüsse 1.1 Flüsse Ein Flussnetzwerk G = (V, E) ist

Mehr

Flüsse und Zuordnungen. Kapitel 6. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Flüsse und Zuordnungen. Kapitel 6. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 6 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 227 / 296 Inhalt Inhalt 6 Flussnetzwerke Berechnung maximaler Flüsse Max-Flow-Min-Cut Matchings Peter Becker (H-BRS) Graphentheorie

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 9 Programm: Übungsblatt

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 14. Mai

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme 10 Matching-Probleme 10.1 Definition von Matching-Probleme Definition 21 [2-dimensionales Matching] Sei G = (V, E) ein ungerichteter Graph und E E. E ist ein Matching, wenn für alle Kantenpaare e 1, e

Mehr

6 Flüsse und Matchings

6 Flüsse und Matchings 6. Flüsse in Netzwerken Flußnetzwerke 6 Flüsse und Matchings In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert werden

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorleung. Falltudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal pannende Bäume 5. Kürzete Pfade 6. Traveling Saleman Problem 7. Flüe in Netzwerken

Mehr

Very simple methods for all pairs network flow analysis

Very simple methods for all pairs network flow analysis Very simple methods for all pairs network flow analysis Tobias Ludes 02.07.07 Inhalt Einführung Algorithmen Modifikation der Gomory-Hu Methode Einführung Nach Gomory-Hu nur n-1 Netzwerk-Fluss- Berechnungen

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal spannende Bäume 5. Kürzeste Pfade 6. Traveling Salesman Problem 7. Flüsse

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Trennender Schnitt. Wie groß kann der Fluss in dem folgenden Flussnetzwerk höchstens sein?

Trennender Schnitt. Wie groß kann der Fluss in dem folgenden Flussnetzwerk höchstens sein? 6. Flüsse und Zuordnungen max-flow min-cut Trennender Schnitt Wie groß kann der Fluss in dem folgenden Flussnetzwerk höchstens sein? a e s c d t b f Der Fluss kann nicht größer als die Kapazität der der

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 8, 4.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Am Dienstag, 11.11., fällt die

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

Effiziente Algorithmen I 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin:

Effiziente Algorithmen I 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin: 11 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin: 19.01.2016 Aufgabe 29 Bestimmen Sie mit der Stepping-Stone-ethode einen Transportplan mit minimalen Kosten für das klassische Transportproblem mit

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Kürzeste Wegealgorithmen

Kürzeste Wegealgorithmen Kürzeste Wegealgorithmen Berechnung kürzester Wege Ein gewichteter Graph G ist ein Tupel (V,E) zusammen mit einer Gewichtsfunktion f, wobei E V V und f: E Seien u,v V. Ein kürzester Weg von u nach v ist

Mehr

Very simple methods for all pairs network flow analysis

Very simple methods for all pairs network flow analysis Very simple methods for all pairs network flow analysis obias Ludes 0.0.0. Einführung Um den maximalen Flusswert zwischen allen Knoten eines ungerichteten Graphen zu berechnen sind nach Gomory und Hu nur

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching Kap. 1.4: Minimum Weight Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 4. VO 6. November 2006 Überblick kurze Wiederholung: 1.2 Blüten-Schrumpf-Algorithmus für Perfektes Matching

Mehr

Strukturelle Modelle in der Bildverarbeitung Binäre MinSum Probleme

Strukturelle Modelle in der Bildverarbeitung Binäre MinSum Probleme Strukturelle Modelle in der Bildverarbeitung Binäre MinSum Probleme TUD/INF/KI/IS Äquivalente Transformationen (Reparametrisierung) Binäre MinSum Probleme kanonische Form MinCut Binäre MinSum Probleme

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

7. Der Entwurf von Algorithmen (Fortsetzung)

7. Der Entwurf von Algorithmen (Fortsetzung) Prof. Dr. Norbert Blum M.Sc. Adrian Schmitz Informatik V BA-INF 041 - Algorithmen und Berechnungskomplexität II SS 2015 Mögliche Klausuraufgaben Stand 1. Juli 2015 Bitte beachten Sie, dass die tatsächlichen

Mehr

Zählen perfekter Matchings in planaren Graphen

Zählen perfekter Matchings in planaren Graphen Zählen perfekter Matchings in planaren Graphen Kathlén Kohn Institut für Mathematik Universität Paderborn 25. Mai 2012 Inhaltsverzeichnis Motivation Einführung in Graphentheorie Zählen perfekter Matchings

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Beweis: Färbe jede Kante zufällig und unabhängig mit Ws 1 2. Ereignis A i : i-te Clique K (i), i = 1,..., ( n K (i)

Beweis: Färbe jede Kante zufällig und unabhängig mit Ws 1 2. Ereignis A i : i-te Clique K (i), i = 1,..., ( n K (i) Die Probabilistische Methode Beobachtung: Besitzt ein Ereignis Ws > 0, so muss es existieren! Notation: Sei K n der komplette Graph mit n Knoten und ( n 2) Kanten. Satz Falls 2 (k 2) 1 > ( n k), existiert

Mehr

Effiziente Algorithmen

Effiziente Algorithmen Effiziente Algorithmen Martin Hofmann und Jan Johannsen Institut für Informatik LMU München Sommersemester 2002 Graphalgorithmen Grundlegendes Repräsentation von Graphen Breiten- und Tiefensuche Minimale

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Wiederholung

Wiederholung Wiederholung Knotenfärbung von Graphen Chromatische Zahl χ(g) Beweis: Jeder planare Graph ist 5-färbbar Vierfarbensatz: Jeder planare Graph ist 4-färbbar. Kantenfärbung: χ (G) = (G) oder (G)+1 Matchings

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

Effiziente Algorithmen (SS2014)

Effiziente Algorithmen (SS2014) Effiziente Algorithmen (SS204) Kapitel 2 Flüsse Walter Unger Lehrstuhl für Informatik 26.06.204 09: (2:2) Walter Unger 7..205 7:56 SS204 Z x Inhalt I Dinitz mit Propagation Einleitung Algorithmus und

Mehr

Klausur zum Modul Einführung in die Diskrete Mathematik

Klausur zum Modul Einführung in die Diskrete Mathematik Klausur zum Modul Einführung in die Diskrete Mathematik 11.2.2014 Aufgabe 1 [10 Punkte] Sei G ein ungerichteter Graph, k N und x, y, z V (G). Zeigen Sie: Gibt es k paarweise kantendisjunkte x-y-wege und

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

Flüsse, Schnitte, bipartite Graphen. Martin Oettinger

Flüsse, Schnitte, bipartite Graphen. Martin Oettinger Flüsse, Schnitte, bipartite Graphen Martin Oettinger Übersicht Einführung Algorithmen für maximalen Fluss Preflow-Push Ford-Fulkerson Spezialfall: Maximaler Fluss bei minimalen Kosten Reduktionen Bipartites

Mehr

Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007

Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 11. Dezember 2007 1 / 47 2 / 47 wir wenden uns jetzt einem weiteren Optimierungsproblem zu Gliederung Matchings in bipartiten Graphen

Mehr

SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION)

SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) Vorlesung 12 AUSDÜNNUNG VON GRAPHEN SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) 387 Wiederholung: Approximative Schnitterhaltung Ziel: Approximationsalgorithmus: A(S(G)) Ziele bei Eingabe eines dichten

Mehr

Systems of Distinct Representatives

Systems of Distinct Representatives Systems of Distinct Representatives Seminar: Extremal Combinatorics Peter Fritz Lehr- und Forschungsgebiet Theoretische Informatik RWTH Aachen Systems of Distinct Representatives p. 1/41 Gliederung Einführung

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 10. Oktober 2006 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 I NSTITUT F U R T HEORETISCHE I NFORMATIK, P ROF. D R. D OROTHEA WAGNER KIT Universita t des Landes Baden-Wu rttemberg und nationales

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie 1 Algorithmische Graphentheorie Sommersemester 2014 5. Vorlesung Matchings / Paarungen II Kombinatorischer Algorithmus, Anwendung für Handlungsreisende, LP-Runden Dr. Joachim Spoerhase Prof. Dr. Alexander

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Lösungshinweise 3 Vorlesung Algorithmentechnik im WS 08/09

Lösungshinweise 3 Vorlesung Algorithmentechnik im WS 08/09 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Lösungshinweise Vorlesung Algorithmentechnik im WS 08/09 Problem : Kreuzende Schnitte Zwei Schnitte (S, V \ S) und (T, V \ T ) in einem

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Übung 5 Algorithmen II

Übung 5 Algorithmen II Michael Axtmann michael.axtmann@kit.edu http://algo.iti.kit.edu/algorithmenii_ws6.php - 0 Axtmann: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson

3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson 3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson Definition 3.4.1 Die Aufgabe, zu jedem Netzwerk N = (s, t, V, E, c o ) mit n = V Knoten und m = E Kanten den Fluß f IR m mit maximalem Wert zu

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Flüsse und Schnitte von Graphen

Flüsse und Schnitte von Graphen Flüsse und Schnitte von Graphen Christian Koch Friedrich-Alexander-Universität Erlangen-Nürnberg 2. Juni 27 Christian Koch Flüsse und Schnitte 2. Juni 27 / 29 Gliederung Flüsse Allgemeines Maximaler Fluss

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Search - Beweis der Korrektheit David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2013 Algemeine Anmerkungen zur Übung 9 Aufgabenblätter, 3 Abgabetermine

Mehr