BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ

Größe: px
Ab Seite anzeigen:

Download "BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ"

Transkript

1 BERÜHMTE KURVEN Gruppenleiter: Jürgen Appell, Kristina Appell, Anna Martellotti Hilfskräfte: Alison Cross, Ruth Smith Teilnehmer(innen): Ann-Christin Gerstner, Matthias Geuder, Michael Kierstein, Lukas Lürzel, Julian Schary, Tina Wagner, Stefanie Wellert, Florian Wisheckel 1. Spiralen. Auf der Suche nach berühmten Kurven sind wir als erstes auf Spiralen gestoßen. Wir fanden folgende interessante Varianten von jenen, die wir während der Projekttage genauer untersucht und auch mit groooooooooooooooooooooooooooooßem Aufwand selbst konstruiert haben. Diese haben wir ausgesucht, weil sie anschauliche und einfache Beispiele für berühmte Kurven sind Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ Wie man an der unteren Grafik sieht, wächst der Radius exponentiell mit dem Polarwinkel. Umgekehrt hängt der Polarwinkel logarithmisch vom Radius ab und man spricht daher von einer logarithmischen Spirale. Der Windungsabstand nimmt dabei mit wachsender Entfernung zum Zentrum zu. Besonders an der logarithmischen Spirale ist, dass alle durch den Pol gehenden Geraden die Kurve also ihre Tangenten unter dem gleichen Tangentenwinkel schneiden. Außerdem ist der Ursprung ein asymptotischer Punkt, d.h. die Spirale umkreist den Ursprung unendlich oft, ohne ihn zu erreichen. Beispiel in der Natur: Das Schneckenhaus

2 1.2. Archimedische Spirale. Auch die archimedische Spirale wird durch Polarkoordinaten bestimmt: r(φ)=a* φ mit a >0 Im Gegensatz zur logarithmischen Spirale wächst hier der Radius direkt proportional zum Drehwinkel φ. Beispiele in der Technik: Plattenspieler Beispiele in der Natur: Die Lakritzschnecke 2. Fraktale. Den Schwerpunkt unseres Projektes haben wir auf das Thema Fraktale gesetzt, da wir diese besonders interessant fanden. Zum einen wegen der ästhetischen Form, zum anderen auch weil sie oft in der Natur vorkommen Historischer Hintergrund. Der französische Mathematiker polnischer Herkunft Benoît Mandelbrot beschäftigte sich als einer der ersten sehr ausführlich mit dem Thema fraktale Geometrie. Er stieß darauf, als er aus unterschiedlichen Quellen abweichende Angaben zur Küstenlänge Großbritanniens entnahm.

3 Das kommt daher, dass die Küstenlänge je nach Maßstab unterschiedlich genau gemessen werden kann. Je detaillierter die Karte ist, desto länger ist die Küste. Nach Mandelbrot wurde auch die Mandelbrot-Menge, die wir später näher erklären, benannt Definition. Fraktal = aus dem Lat.: fractus, in Teile gebrochen (B. Mandelbrot, 1975) Fraktale besitzen beliebig kleine Teilbereiche (engl.: fractions ), die bei Vergrößerung immer wieder gleichermaßen komplizierte Strukturen aufweisen und oft selbstähnlich sind. Ein weiteres Merkmal von Fraktalen ist, dass sie keine ganzzahlige Dimension haben. 2.. Erstes Beispiel: Die Kochsche Schneeflocke Gestartet wird mit einem gleichseitigen Dreieck. Nun wird jede Seite gedrittelt und die mittlere durch zwei Strecken gleicher Länge ersetzt. (Ergebnis des ersten Schrittes: Davidstern) So fährt man nun immer weiter fort und erhält ein Fraktal, dessen Länge unendlich ist. Die eingegrenzte Fläche ist jedoch endlich Zweites Beispiel: Der Cantor-Staub. Der Cantor-Staub entsteht folgendermaßen: Aus dem Intervall [0,1] wird das mittlere Drittel entfernt. Im nächsten Schritt wird aus den beiden verbliebenen Strecken das mittlere Drittel entfernt usw.

4 n= n 1 2 = 1 n n = 1 n + 1 Der Cantor-Staub kann also wie folgt definiert werden: C = I n Ν C n Eine Besonderheit des Cantor-Staubs ist, dass die Länge der entfernten Teile 1 beträgt und dass dennoch unendlich viele Punkte übrig bleiben. An diesem Beispiel haben wir uns die Berechnung der Dimension eines Fraktals erarbeitet Berechnung der Dimension eines Fraktals log( AnzahlMselbstähnlicherMTeile) Dim = log( Verkleinerungsfaktor) Beim Cantor-Staub ergibt sich also: log 2 Dim ( C) = 0,58 log Der Cantor-Staub ist also eher eine eindimensionale Strecke als ein nulldimensionaler Punkt, da 0,58 näher an 1 als an 0 liegt. Auch für die Koch sche Schneeflocke können wir die Dimension errechnen: log 4 Dim ( K) = 1,26 log

5 Die Koch sche Schneeflocke ist also eher eine eindimensionale Strecke als eine zweidimensionale Fläche Drittes Beispiel: Das Sierpinski-Dreieck Man startet mit einer ausgefüllten schwarzen Fläche in Dreiecksform. Nun bestimmt man den Mittelpunkt jeder Seite und verbindet diese Punkte. Das so entstandene mittlere Teildreieck wird ausgeschnitten. Mit den übrigen Dreiecken verfährt man immer wieder genauso. log Dim ( S) = 1,585 log 2 Beim Sierpinski-Dreieck hat man also eher eine zweidimensionale Fläche als eine eindimensionale Strecke. Am Sierpinski-Dreieck konnten wir auch die Selbstähnlichkeit gut beobachten. Zoomt man immer weiter in das Dreieck hinein, so erscheinen immer wieder die selben Strukturen Viertes Beispiel: Die Mandelbrot-Menge Nachdem wir uns mit den obigen relativ anschaulichen Beispielen beschäftigt haben, fanden wir mit der Mandelbrot-Menge ein sehr ästhetisches, aber auch mathematisch äußerst kompliziertes Fraktal. Wir fanden im Internet ein gut veranschaulichendes Beispiel ( Das Flohbeispiel ) für die Entstehung einer solchen Menge. Da die Erklärung der Mandelbrot-Menge den Rahmen sprengen würde, wollen wir stattdessen berichten, wie wir uns mit der Mandelbrot-Menge beschäftigt haben. Wir fanden im Internet das Programm Ultra Fractal 5, mit dem wir eigene Fraktale und besonders Mandelbrot-Mengen erstellt und animiert haben. Dabei kamen immer neue faszinierende Formen zum Vorschein.

Fraktale. Mathe Fans an die Uni. Sommersemester 2009

Fraktale. Mathe Fans an die Uni. Sommersemester 2009 Fraktale Mathe Fans an die Uni Ein Fraktal ist ein Muster, das einen hohen Grad Selbstähnlichkeit aufweist. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst

Mehr

Kunst und Wissenschaft

Kunst und Wissenschaft Kunst und Wissenschaft HS 8 Visualisierung von Newton-Fraktalen Inhalt 1. Ist Schönheit Harmonie? Mathematik in Musik und Malerei 2. Warum heissen Fraktale Fraktale? oder: was ist hier zerbrochen? 3. Was

Mehr

2. Fraktale Geometrie

2. Fraktale Geometrie 2. Fraktale Geometrie Komplexe Systeme ohne charakteristische Längenskala z.b. Risse in festen Materialien, Küstenlinien, Flussläufe und anderes.. Skaleninvariante Systeme Gebrochene Dimensionen Fraktale

Mehr

9 Fraktale. Dabei hängt das Ergebnis vom Maßstab der Karte und von der eingestellten Weite des Stechzirkels

9 Fraktale. Dabei hängt das Ergebnis vom Maßstab der Karte und von der eingestellten Weite des Stechzirkels 79 9 Fraktale Problemstellung Im Jahr 1967 veröffentlichte der Mathematiker Benoit Mandelbrot 3 eine Arbeit mit dem Titel How long is the coast of Britain? Statistical self-similarity and fractional dimension.

Mehr

Zufällige Fraktale. Klaus Scheufele. 16. Januar 2007

Zufällige Fraktale. Klaus Scheufele. 16. Januar 2007 16. Januar 2007 1 Beispiele von zufälligen Fraktalen Zufällige Koch Kurve Zufällige Cantor Menge 2 3 4 Theorem 3 Zufällige Koch Kurve Zufällige Koch Kurve Zufällige Cantor Menge Zufällige Cantor Menge

Mehr

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale c Priv.-Doz. Dr. Adelhard Köhler May 19, 2005 1 Gebrochene (fraktale) Dimension Fraktale haben eine gebrochene Dimension. Unterschiedliche Dimensionsbegriffe

Mehr

Martin-Anderson-Nexö-Gymnasium, Dresden

Martin-Anderson-Nexö-Gymnasium, Dresden Fraktale Wechselspiel zwischen Chaos und Ordnung Teilnehmer: David Burgschweiger Tim Gabriel Welf Garkisch Anne Kell Leonard König Erik Lorenz Sofie Martins Niklas Schelten Heinrich-Hertz-Oberschule, Berlin

Mehr

Zufällige Fraktale. Klaus Scheufele. February 27, 2007

Zufällige Fraktale. Klaus Scheufele. February 27, 2007 Zufällige Fraktale Klaus Scheufele February 27, 2007 1 Einleitung Why is geometry often discribed as cold and dry? One reason lies in its inability to describe the shape of a cloud, a mountain, a coastline,

Mehr

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale?

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Klaus Kusche Frühjahr 2019 Inhalt Unser Ziel Was ist ein Fraktal? Von linearen geometrischen Abbildungen zu iterierten

Mehr

Die Archimedische und logarithmische Spirale

Die Archimedische und logarithmische Spirale Aus dem Seminar Ausgewählte höhere Kurven- WS 2016/17 Die Archimedische und logarithmische Spirale Estefani Rodriguez Diaz Bei Prof. Dr. Duco van Straten Contents 1 Definition 2 2 Polarkoordinaten 3 3

Mehr

Wie lang ist die Küste Großbritanniens?

Wie lang ist die Küste Großbritanniens? Wie lang ist die Küste Großbritanniens? Vortrag am 16.01.2009 Fach: Physik Deterministisches Chaos Ein Vortrag von Tina Rosner und Florian Sachs Werner-von-Siemens-Gymnasium Magdeburg Gliederung 1 Das

Mehr

Archimedische Spiralen

Archimedische Spiralen Hauptseminar: Spiralen WS 05/06 Dozent: Prof. Dr. Deißler Datum: 31.01.2006 Vorgelegt von Sascha Bürgin Archimedische Spiralen Man kann sich auf zwei Arten zeichnerisch den archimedischen Spiralen annähern.

Mehr

Fraktale und Chaos. Wir beschftigten uns mit Fraktalen, die aus dem Studium komplexer dynamischer

Fraktale und Chaos. Wir beschftigten uns mit Fraktalen, die aus dem Studium komplexer dynamischer Fraktale und Chaos Teilnehmer: Markus Auricht (Heinrich-Hertz-Oberschule) Martin Czudra (Andreas-Oberschule) Robert Foellmer (Heinrich-Hertz-Oberschule) Aser Hage-Ali (Heinrich-Hertz-Oberschule) Alexej

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 406 Fraktale Lernumgebung Hans Walser: Modul 406, Fraktale. Lernumgebung ii Inhalt 1 Die Kochsche Schneeflocke... 1 2 Weißt du wie viel Würfel stehen?...

Mehr

1. Einleitung ggf. Vorwissen abgreifen. 2. Space Filling Curves. - Cantors Erstes Diagonalargument. - Gosper-Curve - Sierpiński-Curve - Moore-Curve

1. Einleitung ggf. Vorwissen abgreifen. 2. Space Filling Curves. - Cantors Erstes Diagonalargument. - Gosper-Curve - Sierpiński-Curve - Moore-Curve 1. Einleitung ggf. Vorwissen abgreifen - Cantors Erstes Diagonalargument 2. Space Filling Curves - Allgemeiner Ansatz - Z-Curve (Morton Order, Z-Order) - Hilbert-Curve - Peano-Curve - Gosper-Curve - Sierpiński-Curve

Mehr

Musterbildung. Vom Kleinen zum Großen. 4. Lange Nacht der Mathematik. Thomas Westermann. Formen u. Muster. Differenzialgleichungen.

Musterbildung. Vom Kleinen zum Großen. 4. Lange Nacht der Mathematik. Thomas Westermann. Formen u. Muster. Differenzialgleichungen. bildung Vom Kleinen zum Großen Thomas Westermann 4. Lange Nacht der Mathematik HS Karlsruhe 12. Mai 2006 Formen und Formen und Formen und Formen und A R U B L R L UB = UR + UL U B U = RI() t + LI'() t

Mehr

10.3. Krümmung ebener Kurven

10.3. Krümmung ebener Kurven 0.3. Krümmung ebener Kurven Jeder der einmal beim Durchfahren einer Kurve bremsen oder beschleunigen mußte hat im wahrsten Sinne des Wortes erfahren daß die lokale Krümmung einen ganz wesentlichen Einfluß

Mehr

2 Selbstähnlichkeit, Selbstähnlichkeitsdimension

2 Selbstähnlichkeit, Selbstähnlichkeitsdimension 9 2 Selbstähnlichkeit, Selbstähnlichkeitsdimension und Fraktale 2.1 Selbstähnlichkeit Bei den Betrachtungen zur Dimension in Kapitel 1 haben wir ähnliche (im geometrischen Sinn) Figuren miteinander verglichen.

Mehr

Iteriertes Funktionensystem. Martin Aigner Rainer Brodinger Martin Rieger

Iteriertes Funktionensystem. Martin Aigner Rainer Brodinger Martin Rieger Iteriertes Funktionensystem Martin Aigner Rainer Brodinger Martin Rieger Agenda Einleitendes Beispiel Definition und Beschreibung Einsatzgebiete / Anwendungen weitere Beispiele Sierpinski-Dreieck "Das

Mehr

Hauptseminar Fraktale: Andere Begriffe der Dimension

Hauptseminar Fraktale: Andere Begriffe der Dimension Hauptseminar Fraktale: Andere Begriffe der Dimension 21. November 2006 Überblick 1 Einleitung 2 Fraktale Dimension Begriffsklärung Gewünschte Eigenschaften Beispiel: Teilerdimension 3 Boxdimension Definition

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

MATHE-BRIEF. Juni 2017 Nr. 80. Die Mandelbrotmenge

MATHE-BRIEF. Juni 2017 Nr. 80. Die Mandelbrotmenge MATHE-BRIEF Juni 2017 Nr. 80 Herausgegeben von der Österreichischen Mathematischen Gesellschaft http: // www.oemg.ac.at / Mathe Brief mathe brief@oemg.ac.at Die Mandelbrotmenge Komplexe Zahlen werden im

Mehr

Fraktale und Julia-Mengen

Fraktale und Julia-Mengen Uutner, J. Roser, A. Unseld, F. Fraktale und Julia-Mengen mit 77 Abbildungen Verlag Harri Deutsch Inhalt I Klassische Fraktale l 1 Cantor-Menge 2 1.1 Konstruktion und Eigenschaften 2 1.2 Triadische Darstellung

Mehr

Das Modellieren von 2D- und 3D-Objekten

Das Modellieren von 2D- und 3D-Objekten Das Modellieren von 2D- und 3D-Objekten 1 VTK-Format Florian Buchegger, Michael Haberleitner December 11, 2015 Eine VTK-Datei besteht aus einem Header und einem Body. Während im Header lediglich wichtige

Mehr

Kenneth J. Falconer. Fraktale Geometrie. Mathematische Grundlagen und Anwendungen. Aus dem Englischen von Jens Meyer. Mit 98 Abbildungen

Kenneth J. Falconer. Fraktale Geometrie. Mathematische Grundlagen und Anwendungen. Aus dem Englischen von Jens Meyer. Mit 98 Abbildungen Kenneth J. Falconer Fraktale Geometrie Mathematische Grundlagen und Anwendungen Aus dem Englischen von Jens Meyer Mit 98 Abbildungen Spektrum Akademischer Verlag Heidelberg Berlin Oxford Inhalt Vorwort

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 05 Schnecken und Spiralen Lernumgebung Hans Walser: Modul 05, Schnecken und Spiralen. Lernumgebung ii Inhalt 1 Spiralen in der Umwelt... 1 Archimedische

Mehr

Junge. Wissenschaft. Klimaneutral Autofahren. Young Researcher. Zukunftsprojekt: Jugend forscht in Natur und Technik. Das Magazin

Junge. Wissenschaft. Klimaneutral Autofahren. Young Researcher. Zukunftsprojekt: Jugend forscht in Natur und Technik. Das Magazin Junge 9,50 EUR // Ausgabe Nr. 96 // 28. Jahrgang // 2013 Wissenschaft Jugend forscht in Natur und Technik Young Researcher The European Journal of Science and Technology Medienpartner des Wissenschaftsjahres

Mehr

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen.

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. 10.1. Ebene Kurven Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. Parameterdarstellungen einer Kurve sind stetige

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

Fraktale und Beispiele aus der Physik

Fraktale und Beispiele aus der Physik Fraktale und Beispiele aus der Physik Anschauung Warum beschäftigen Fraktale (auch) Naturwissenschaftler? kurze Wiederholung Konkretes Beispiel: Magnetpendel Das Experiment Mathematische Beschreibung Trajektorien

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /18 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 3. Zahlenfolgen und Grenzwerte

Mehr

Beispiele. Strecke A R 1 (genauso für R d ):

Beispiele. Strecke A R 1 (genauso für R d ): Definition 6.1.1 (fraktale Dimension). Sei A R d beschränkt und für ε > 0 sei N A (ε) die minimale Anzahl der d-dimensionalen Kugeln vom Radius ε, mit denen A überdeckt werden kann. Die fraktale Dimension

Mehr

Mathematische Modellierung Lösungen zum 10. Übungsblatt

Mathematische Modellierung Lösungen zum 10. Übungsblatt Mathematische Modellierung Lösungen zum Klaus G. Blümel Lars Hoegen 30. Januar 2006 Aufgabe 1 Die Figur (a) zeigt bei einem Skalierungsfaktor s 3 eine selbstähnliche Vielfachheit von N 5 auf, sie hat demnach

Mehr

MATHEMATISCHE MONSTER - ALGORITHMEN der FRAKTALEN GEOMETRIE II

MATHEMATISCHE MONSTER - ALGORITHMEN der FRAKTALEN GEOMETRIE II MATHEMATISCHE MONSTER - ALGORITHMEN der FRAKTALEN GEOMETRIE II Wolf Bayer. Februar 00 Zusammenfassung Viele Formen der Natur lassen sich nicht mit der klassischen, auf Euklid basierenden Mathematik beschreiben.

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematik für das Ingenieurstudium von Martin Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzeichnis schnell

Mehr

2.3 Chaos und Lyapunov-Exponent. d dx f(x) λ = lim n n . (1) Programm. k=0. PROGRAM lyapunov ...

2.3 Chaos und Lyapunov-Exponent. d dx f(x) λ = lim n n . (1) Programm. k=0. PROGRAM lyapunov ... 2.3 Chaos und Lyapunov-Exponent... PROGRAM lyapunov REAL*8 1 λ = lim n n :: a,x,fly n k=0 ln d dx f(x). (1) x=xk DO it=1,itmax+ivor! Schleife Iterationen x=a*x*(1.-x)! log. Abbildung IF(it.GT.ivor.and.ABS(x-.5).GT.1.E-30)

Mehr

Geometrie Jahrgangsstufe 5

Geometrie Jahrgangsstufe 5 Geometrie Jahrgangsstufe 5 Im Rahmen der Kooperation der Kollegen, die im Schuljahr 1997/98 in der fünften Jahrgangstufe Mathematik unterrichteten, wurde in Gemeinschaftsarbeit unter Federführung von Frau

Mehr

1 Die Mandelbrotmenge

1 Die Mandelbrotmenge 1 Die Mandelbrotmenge In diesem Abschnitt wollen wir mathematische Aspekte der sogenannten Mandelbrotmenge beleuchten, die wir im Folgenden mit M bezeichnen wollen. 1 Ihr Name ist ihrem Entdecker Benoît

Mehr

Thema: Visualisierung mit MAPLE

Thema: Visualisierung mit MAPLE Ostervortrag zum Linux-Stammtisch am 07.04.2017 Thema: Visualisierung mit MAPLE Sybille Handrock 1 Computeralgebrasysteme Computeralgebra beschäftigt sich mit Methoden zum Lösen mathematischer Probleme

Mehr

Die Barth-Sextik ein ewiger Weltrekord. 3D-Skulptur von Oliver Labs

Die Barth-Sextik ein ewiger Weltrekord. 3D-Skulptur von Oliver Labs Die Barth-Sextik ein ewiger Weltrekord 3D-Skulptur von Oliver Labs Auch in der Mathematik gibt es Weltrekorde und die Barth-Sextik, entdeckt um 1996 vom Erlanger Professor Wolf Barth, stellt einen solchen

Mehr

Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages

Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages Proseminar Grundlagen der theoretischen Informatik Dozent: Prof. Helmut Alt Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages Richard Wilhelm Wintersemester 2007 Fraktale Vorgestellt wurden

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit Grenzwerte und Stetigkeit Gegeben sei eine Funktion z = f(,) von zwei Variablen. Außerdem sei ( 0, 0 ) eine vorgegebene Stelle der -Ebene. Wir interessieren uns für das Verhalten der Funktion bzw. der

Mehr

Fraktale: Eine Einführung

Fraktale: Eine Einführung Fraktale: Eine Einführung Fraktale Geometrie und ihre Anwendungen Seminar im WS 06/07 Florian Daikeler Übersicht: I. Einführung: Die Cantor-Drittelmenge II. Fraktale in 2D: Selbstähnlichkeit III. Beispiele:

Mehr

Seminarvortrag Schnitte von Fraktalen

Seminarvortrag Schnitte von Fraktalen Seminarvortrag Schnitte von Fraktalen Matthias Schmid matthias.schmid@uni-ulm.de Universität Ulm 9. Februar 2007 Inhaltsverzeichnis 1 Einleitung 2 1.1 Einordnung................................... 2 1.2

Mehr

Fraktale. 1. Fortgesetzte Bifurkationen der gleichen Art

Fraktale. 1. Fortgesetzte Bifurkationen der gleichen Art Fraktale 1. Fortgesetzte Bifurkationen der gleichen Art Bisher wurden nur Selbstorganisationsphänomena betrachtet, die durch einzelne Bifurkationen beschrieben werden können. Viele reale Prozesse bestehen

Mehr

Gedanken zur Unendlichkeit

Gedanken zur Unendlichkeit Gedanken zur Unendlichkeit Was erwartet Sie heute abend? Theologie ist eine besondere Wissenschaft Theologie ist mehr als bloße Bibel- Wissenschaft Theologie ist anschlussfähig an andere Wissenschaften

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

Kapitel 4 TRIGONOMETRISCHE FUNKTIONEN

Kapitel 4 TRIGONOMETRISCHE FUNKTIONEN Kapitel 4 TRIGONOMETRISCHE FUNKTIONEN Fassung vom 9. Dezember 005 Mathematik für Humanbiologen und Biologen 53 4. Periodische Vorgänge 4. Periodische Vorgänge Neben den Wachstumsprozessen spielen die periodischen

Mehr

Demo-Text für Inversion (Spiegelung am Kreis) Ein Spezialthema INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Inversion (Spiegelung am Kreis) Ein Spezialthema INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Inversion (Spiegelung am Kreis) Ein Spezialthema Teil 1 Grundlagen Text Nr. 1400 Stand: 4. Februar 016 FIEDICH W. BUCKEL INTENETBIBLIOTHEK FÜ SCHULMATHEMATIK 1400 Inversion 1 Vorwort Die Inversion, die

Mehr

Modulabschlussklausur

Modulabschlussklausur Sommersemester 2010 Dr. Reimund Albers Modul EM1: Mathematisches Denken in Arithmetik und Geometrie Modulabschlussklausur Name: Mat.Nr.: Schulschwerpunkt: Grund- oder Sekundarbitte ankreuzen Aufgabe 1

Mehr

Tag der Mathematik 2018

Tag der Mathematik 2018 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en Aufgabe G mit Aufgabe G Stein Für reelle Zahlen ist die Relation... ist kleiner als... transitiv, d.h. aus a < b und b < c folgt

Mehr

Kurven. Modul 4 Fraktale Kurvenmonster

Kurven. Modul 4 Fraktale Kurvenmonster Modul 4 Fraktale Kurvenmonster Wie lang ist die Küste Großbritanniens? Die Antwort auf diese Frage scheint klar zu sein. Allerdings findet man in jedem Nachschlagewerk einen (nicht nur geringfügig) anderen

Mehr

Anlage des Spiels. Forschungsgruppe. Ein Spiel entwickelt durch Patrik Böhler Fachstelle Religionspädagogik, Mittelstrasse 6a Bern

Anlage des Spiels. Forschungsgruppe. Ein Spiel entwickelt durch Patrik Böhler Fachstelle Religionspädagogik, Mittelstrasse 6a Bern Anlage des Spiels Forschungsgruppe Ein Spiel entwickelt durch Patrik Böhler Fachstelle Religionspädagogik, Mittelstrasse 6a Bern Ziel Die SuS erkennen, dass auf drei verschiedenen Wegen drei ähnliche Erkenntnisse

Mehr

Anlage des Spiels. Forschungsgruppe. Ein Spiel entwickelt durch Patrik Böhler Fachstelle Religionspädagogik, Mittelstrasse 6a Bern

Anlage des Spiels. Forschungsgruppe. Ein Spiel entwickelt durch Patrik Böhler Fachstelle Religionspädagogik, Mittelstrasse 6a Bern Anlage des Spiels Forschungsgruppe Ein Spiel entwickelt durch Patrik Böhler Fachstelle Religionspädagogik, Mittelstrasse 6a Bern Ziel Die SuS erkennen, dass auf drei verschiedenen Wegen drei ähnliche Erkenntnisse

Mehr

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung Algorithmische Geometrie): Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische

Mehr

Zentrum für Mathematik

Zentrum für Mathematik Fakultät: Mathematik und Naturwissenschaften, Fachrichtung: Mathematik, Professur für Didaktik der Mathematik Bilder und Perlen der Mathematik Tag der Mathematik 2017 Dr. rer. nat. Frank Morherr Marburg,

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Proseminar Computergraphik, 10. Juni 2008 Christoph Dähne Seite 1 Inhalt Polygonnetze 3 Knotenliste 3 Kantenliste 3 Parametrisierte kubische Kurven 4 Definition 4 Stetigkeit

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 406 Fraktale Hans Walser: Modul 406, Fraktale ii Inhalt 1 Was ist ein Fraktal?... 1 2 Fragen... 2 2.1 Wie viele Kurven hat die Gotthardstraße?... 2

Mehr

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier FRAKTALE Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier I. Fraktale allgemein a. Mathematischer Algorithmus i. Komplexe Zahlen b. Konvergieren und Divergieren i. Bei Mandelbrotmengen

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ)

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ) D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas MC-Serie 3 Kurven in der Ebene Einsendeschluss: 18. März 216, 16 Uhr (MEZ) Bei allen Aufgaben ist genau eine Antwort richtig. Sie dürfen während

Mehr

Juliamengen und Mandelbrotmenge

Juliamengen und Mandelbrotmenge Xin Xu Florian Pausinger 18. Januar 2008 Inhaltsverzeichnis 1 Mathematische Grundlagen Komplexe Zahlen Über Iterationen und beschränkte Folgen 2 Quadratische Familie Bildbeispiele 3 Charakterisierung Über

Mehr

7.8. Die Regel von l'hospital

7.8. Die Regel von l'hospital 7.8. Die Regel von l'hospital Der Marquis de l'hospital (sprich: lopital) war der erste Autor eines Buches über Infinitesimalrechnung (696) - allerdings basierte dieses Werk wesentlich auf den Ausführungen

Mehr

1.4. Funktionen, Kurven und Parameterdarstellungen

1.4. Funktionen, Kurven und Parameterdarstellungen .4. Funktionen, Kurven und Parameterdarstellungen Reellwertige Funktionen Eine reelle Relation ist eine beliebige Teilmenge F der Ebene (also eine ebene "Fläche"). Von einer reellen Funktion spricht man,

Mehr

4 Die Fibonacci-Zahlen

4 Die Fibonacci-Zahlen 4 Die Fibonacci-Zahlen 4.1 Fibonacci-Zahlen und goldener Schnitt Die Fibonacci-Zahlen F n sind definiert durch die Anfangsvorgaben F 0 = 0, F 1 = 1, sowie durch die Rekursion F n+1 = F n + F n 1 für alle

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

1 Der Goldene Schnitt

1 Der Goldene Schnitt Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10

Mehr

Rückblick. Dynamische Systeme. Reiner Lauterbach. Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

Rückblick. Dynamische Systeme. Reiner Lauterbach. Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg 5. Vorlesung Ergänzungen 14.05.2012 Satz. Die C [0, 1] ist gegeben durch C = c [0, 1] c = c j 3 j, c j {0, 2}. j=1 Beweis.

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 017 Klasse: g Profil: MN / M Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg. Analysis III

Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg. Analysis III Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik 18.11.2009 Universität Regensburg Analysis III Verbesserung der Zusatzaufgabe von Übungsblatt 4 Zusatzaufgabe Wir definieren die Cantormenge

Mehr

Die Dreiecks Ungleichung: I x + y I I x I + I y I

Die Dreiecks Ungleichung: I x + y I I x I + I y I Die Dreiecks Ungleichung: I x + y I I x I + I y I In dieser Proseminar-Arbeit geht es um die sog. Dreiecks-Ungleichung (Δ-Ungl.). Wir werden unter anderen sehen, wie man die Δ-Ungl. beweisen kann, welche

Mehr

Die Aktivitäten des vierten Tages der ersten Autonomie-Woche

Die Aktivitäten des vierten Tages der ersten Autonomie-Woche Die Aktivitäten des vierten Tages der ersten Autonomie-Woche 7 A / 7 B: Drogenpräventionskurs mit Sonia Parra Im Kurs haben wir die emotionalen Bedürfnisse und Defizite behandelt, die dazu führen, dass

Mehr

FC3 - Duffing Oszillator

FC3 - Duffing Oszillator FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme

Mehr

Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67

Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67 Aufgabenstellung: Berechne die Schnittpunkte der e k1 und k mit den Mittelpunkten M1 bzw. M und den Radien r1 bzw. r a. k1: M1 3, 4, P 5, 3 k 1, k geht durch A 0 und B 4 0 r 5 M liegt im 1. Quadranten

Mehr

Strophoiden. Eckart Schmidt

Strophoiden. Eckart Schmidt Strophoiden Eckart Schmidt Strophoiden sind als anallagmatische Kurven invariant gegenüber einer Kreisspiegelung; sie sind weiterhin das Inverse einer gleichseitigen Hyperbel, die Fußpunktkurve einer Parabel

Mehr

Prof. U. Stephan Wi-Ing 1.2

Prof. U. Stephan Wi-Ing 1.2 Seite 1 von 5 Prof. U. Stephan Wi-Ing 1. inweis: Dateien Starmath.ttf und Starbats.ttf im Verzeichnis C:\WINDOWS\FONTS erforderlich Ich vermisse im Vorspann "Was man weiß, was man wissen sollte" die trigonometrischen

Mehr

DIOPHANTISCHE GLEICHUNGEN

DIOPHANTISCHE GLEICHUNGEN DIOPHANTISCHE GLEICHUNGEN Teilnehmer: Inka Eschke (Andreas-Oberschule) Klaus Gülzow (Heinrich-Hertz-Oberschule) Lena Kalleske (Heinrich-Hertz-Oberschule) Thomas Lindner (Heinrich-Hertz-Oberschule) Valentin

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

BENOÎT MANDELBROT ( )

BENOÎT MANDELBROT ( ) BENOÎT MANDELBROT (1924 2010) Erfinder der Fraktale wird er genannt und Vater des Apfelmännchens sowie der nach ihm benannten Mandelbrot-Menge M: Benoît Mandelbrot Mathematiker, Physiker, Informatiker,

Mehr

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2012 BW

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2012 BW Aufgabe A1.1 Die Abbildung zeigt den Verlauf einer Umgehungsstraße zur Entlastung der Ortsdurchfahrt einer Gemeinde. Das Gemeindegebiet ist kreisförmig mit dem Mittelpunkt und dem Radius 1,5. Die Umgehungsstraße

Mehr

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2013

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2013 Selbstverständnis der Mathematik i 1 Selbstverständnis der Mathematik Komplexe Zahlen Geometrie i Analysis Nat. Zahlen Null Funktionentheorie Algebra 2 Selbstverständnis der Mathematik : = Menge der Menschen,

Mehr

Gleichung nach Diophantos von Alexandria (etwa n. Chr.), dessen Buch Arithmetica Gleichungen dieser Art behandelt.

Gleichung nach Diophantos von Alexandria (etwa n. Chr.), dessen Buch Arithmetica Gleichungen dieser Art behandelt. Faszinierende Bilder 2 Die Mathematik, richtig betrachtet, besitzt nicht nur Wahrheit, sondern auch überragende Schönheit eine kalte und nüchterne Schönheit wie die der Bildhauerei, ohne Reiz für irgendeinen

Mehr

Binomischer Satz. 1-E Vorkurs, Mathematik

Binomischer Satz. 1-E Vorkurs, Mathematik Binomischer Satz 1-E Vorkurs, Mathematik Terme Einer der zentralen Begriffe der Algebra ist der Term. Definition: Eine sinnvoll verknüpfte mathematische Zeichenreihe bezeichnet man als Term. Auch eine

Mehr

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 25. November 2017

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 25. November 2017 Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 25. November 2017 unser Programm 11. November: 1. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche,

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Seminar: Ausgewählte höhere Kurven

Seminar: Ausgewählte höhere Kurven Seminar: Ausgewählte höhere Kurven Janine Scholtes 6. März 2017 Die Pascalsche Schnecke und die Kartesische Ovale 1 Pascalsche Schnecke 1.1 Etienne Pascal Etienne Pascal war ein französischer Mathematiker

Mehr

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen Vorlesung Mathematische Strukturen Sommersemester 2016 Prof. Barbara König Übungsleitung: Christine Mika & Dennis Nolte Division mit Rest Seien a, b Z zwei ganze mit a 0. Dann gibt es eindeutig bestimmte

Mehr

Tag der Mathematik 2018

Tag der Mathematik 2018 Tag der Mathematik 08 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Tag der Mathematik 08 Hinweise für Korrektoren Generell gilt: Zielführende Zwischenschritte

Mehr

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger Hausdorff-Maß und Hausdorff-Dimension Jens Krüger Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen aus der Maßtheorie 3 3 Die Konstruktion des Hausdorff-Maßes 4 4 Eigenschaften des Hausdorff-Maßes und Hausdorff-Dimension

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR Bei sehr vielen mathematischen Aufgabenstellungen ist nicht nur die Länge von bestimmten Strecken oder der Umfang interessant, sondern auch die

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 1 18. April 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 1 18. April 2013 1 / 23 Organisatorisches Allgemeines Dozentin: Dr. Darya Apushkinskaya

Mehr

Geraden in R 2 Lösungsblatt Aufgabe 17.16

Geraden in R 2 Lösungsblatt Aufgabe 17.16 Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:

Mehr

Das Geheimnis der Zahl 5

Das Geheimnis der Zahl 5 Das Geheimnis der Zahl 5 Ingo Blechschmidt iblech@speicherleck.de Pizzaseminar in Mathematik Universität Augsburg 2. Oktober 206 Gewidmet an Prof. Dr. Jost-Hinrich Eschenburg. Pizzaseminar in Mathematik

Mehr