Kapitel II Kontinuierliche Wahrscheinlichkeitsraume

Größe: px
Ab Seite anzeigen:

Download "Kapitel II Kontinuierliche Wahrscheinlichkeitsraume"

Transkript

1 Kapitel II Kontinuierliche Wahrscheinlichkeitsraume 1. Einfuhrung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 195/460

2 Beispiel 78 Wir betrachten das Szenario: Bei einem Druckerserver kommen Auftrage in einer Warteschlange an, die alle 1=n Zeiteinheiten vom Server abgefragt wird. Der Server nimmt also zu den diskreten Zeitpunkte 1=n; 2=n; 3=n; : : : neue Auftrage entgegen. Durch den Grenzwert n! 1 " verschmelzen\ diese diskreten Zeitpunkte zu einer kontinuierlichen Zeitachse, und fur die Zufallsvariable T, welche die Zeitspanne bis zum Eintreen des nachsten Auftrags misst, reicht eine diskrete Wertemenge W T nicht mehr aus. DWT 196/460

3 1.2 Kontinuierliche Zufallsvariablen Denition 79 Eine kontinuierliche oder auch stetige Zufallsvariable X und ihr zugrunde liegender kontinuierlicher (reeller) Wahrscheinlichkeitsraum sind deniert durch eine integrierbare Dichte(-funktion) f X : R! R + 0 mit der Eigenschaft Z +1 f X (x) d x = 1: 1 S Eine Menge A R, die durch Vereinigung A = k I k abzahlbar vieler paarweise disjunkter Intervalle beliebiger Art (oen, geschlossen, halboen, einseitig unendlich) gebildet werden kann, heit Ereignis. Ein Ereignis A tritt ein, wenn X einen Wert aus A annimmt. Die Wahrscheinlichkeit von A ist bestimmt durch Pr[A] = Z A f X (x) d x = XZ k I k f X (x) d x: DWT 1.2 Kontinuierliche Zufallsvariablen 197/460

4 Beispiel 80 (Gleichverteilung) Eine besonders einfache kontinuierliche Dichte stellt die Gleichverteilung auf dem Intervall [a; b] dar. Sie ist deniert durch ( 1 f(x) = b a fur x 2 [a; b], 0 sonst. Analog zum diskreten Fall ordnen wir jeder Dichte f X eine Verteilung oder Verteilungsfunktion F X zu: Z x F X (x) := Pr[X x] = Pr[ft 2 R j t xg] = f X (t) d t: 1 DWT 198/460

5 Beispiel 81 Die Verteilungsfunktion der Gleichverteilung: Z x F (x) = f(t) d t = 1 8 >< >: 0 fur x < a; x a b a fur a x b; 1 fur x > b: DWT 1.2 Kontinuierliche Zufallsvariablen 199/460

6 1,4 ܵ 1,2 1,2 1,0 1,0 0,8 0,8 0,6 0,6 0,4 0,4 0,2 0,2 0,0 0,0-0,2-0,5 0,0 0,5 1,0 1,5-0,2-0,5 0,0 0,5 1,0 1,5 1,4 Gleichverteilung uber dem Intervall [0; 1] ܵ DWT 200/460

7 Beobachtungen:(Eigenschaften der Verteilungsfunktion) F X ist monoton steigend. F X ist stetig. Man spricht daher auch von einer " stetigen Zufallsvariablen\. Es gilt: lim x! 1 F X (x) = 0 und lim x!1 F X (x) = 1. Jeder (auer an endlich vielen Punkten) dierenzierbaren Funktion F, welche die zuvor genannten Eigenschaften erfullt, konnen wir eine Dichte f durch f(x) = F 0 (x) zuordnen. Es gilt Pr[a < X b] = F X (b) F X (a) : DWT 201/460

8 Bei den von uns betrachteten Dichten besteht zwischen den Ereignissen a < X b\, " " a X b\, " a X < b\ und a < X < b\ kein wesentlicher Unterschied, da " Z Z f(t) d t = f(t) d t = f(t) d t = f(t) d t: [a;b] ]a;b] [a;b[ ]a;b[ Z Z DWT 202/460

9 1.3 Kolmogorov-Axiome und -Algebren Algebren Denition 82 Sei eine Menge. Eine Menge A P() heit -Algebra uber, wenn folgende Eigenschaften erfullt sind: (E1) 2 A. (E2) Wenn A 2 A, dann folgt A 2 A. (E3) Fur n 2 N sei A n 2 A. Dann gilt auch S 1 n=1 A n 2 A. DWT 203/460

10 Fur jede (endliche) Menge stellt die Menge P() eine -Algebra dar. Fur = R ist die Klasse der Borel'schen Mengen, die aus allen Mengen A R besteht, welche sich durch abzahlbare Vereinigungen und Schnitte von Intervallen (oen, halboen oder geschlossen) darstellen lassen, eine -Algebra. DWT 204/460

11 1.3.2 Kolmogorov-Axiome Denition 83 (Wahrscheinlichkeitsraum, Kolmogorov-Axiome) Sei eine beliebige Menge und A eine -Algebra uber. Eine Abbildung Pr[:] : A! [0; 1] heit Wahrscheinlichkeitsma auf A, wenn sie folgende Eigenschaften besitzt: 1 (W1) Pr[] = 1. 2 (W2) A 1 ; A 2 ; : : : seien paarweise disjunkte Ereignisse. Dann gilt Pr " 1[ i=1 A i # = 1X i=1 Pr[A i ]: Fur ein Ereignis A 2 A heit Pr[A] Wahrscheinlichkeit von A. Ein Wahrscheinlichkeitsraum ist deniert durch das Tupel (; A; Pr). DWT 205/460

12 Die in obiger Denition aufgelisteten Eigenschaften eines Wahrscheinlichkeitsmaes wurden von dem russischen Mathematiker Andrei Nikolaevich Kolmogorov (1903{1987) formuliert. Kolmogorov gilt als einer der Pioniere der modernen Wahrscheinlichkeitstheorie, leistete jedoch auch bedeutende Beitrage zu zahlreichen anderen Teilgebieten der Mathematik. Informatikern begegnet sein Name auch im Zusammenhang mit der so genannten Kolmogorov-Komplexitat, einem relativ jungen Zweig der Komplexitatstheorie. Die Eigenschaften in obiger Denition nennt man auch Kolmogorov-Axiome. DWT 206/460

13 Lemma 84 Sei (; A; Pr) ein Wahrscheinlichkeitsraum. Fur Ereignisse A, B, A 1, A 2, : : : gilt 1 Pr[;] = 0, Pr[] = Pr[A] 1. 3 Pr[ A] = 1 Pr[A]. 4 Wenn A B, so folgt Pr[A] Pr[B]. DWT 1.3 Kolmogorov-Axiome und -Algebren 207/460

14 Lemma 84 5 (Additionssatz) Wenn die Ereignisse A 1 ; : : : ; A n paarweise disjunkt sind, so folgt Pr " n[ i=1 A i # = nx i=1 Pr[A i ]: Fur disjunkte Ereignisse A, B erhalten wir insbesondere Pr[A [ B] = Pr[A] + Pr[B]: Fur eine unendliche Menge von paarweise disjunkten Ereignissen A 1 ; A 2 ; : : : gilt analog Pr [ S 1 i=1 A i] = P 1 i=1 Pr[A i]. DWT 207/460

15 Beweis: Wenn wir in Eigenschaft (W2) P A 1 = und A 2 ; A 3 ; : : : = ; setzen, so ergibt die 1 Eigenschaft, dass Pr[] + i=2 Pr[;] = Pr[]. Daraus folgt Pr[;] = 0. Regel 2 und Regel 5 gelten direkt nach Denition der Kolmogorov-Axiome und Regel 1. Regel 3 erhalten wir mit Regel 5 wegen 1 = Pr[] = Pr[A] + Pr[ A]. Fur Regel 4 betrachten wir die disjunkten Ereignisse A und C := B n A, fur die gilt, dass A [ B = A [ C. Mit Regel 5 folgt die Behauptung. DWT 208/460

16 1.3.3 Lebesgue-Integrale Eine Funktion f : R! R heit messbar, falls das Urbild jeder Borel'schen Menge ebenfalls eine Borel'sche Menge ist. Z.B. ist fur jede Borel'sche Menge A die Indikatorfunktion ( 1 falls x 2 A, I A : x 7! 0 sonst messbar. Jede stetige Funktion ist messbar. Auch Summen und Produkte von messbaren Funktionen sind wiederum messbar. Jeder messbaren Funktion kann man ein Integral, das so genannte Lebesgue-Integral, geschrieben R f d, zuordnen. DWT 209/460

17 Ist f : R! R + 0 eine messbare Funktion, so deniert Pr : A 7! R f I A d eine Abbildung auf den Borel'schen Mengen, die die Eigenschaft (W2) der Kolmogorov-Axiome erfullt. Gilt daher zusatzlich noch Pr[R] = 1, so deniert f auf naturliche Weise einen Wahrscheinlichkeitsraum (; A; Pr), wobei = R und A die Menge der Borel'schen Mengen ist. DWT 1.3 Kolmogorov-Axiome und -Algebren 210/460

18 1.4 Rechnen mit kontinuierlichen Zufallsvariablen Funktionen kontinuierlicher Zufallsvariablen Sei Y := g(x) mit einer Funktion g : R! R. Die Verteilung von Y erhalten wir durch F Y (y) = Pr[Y y] = Pr[g(X) y] = Z C f X (t) d t: Hierbei bezeichnet C := ft 2 R j g(t) yg alle reellen Zahlen t 2 R, fur welche die Bedingung " Y y\ zutrit. Das Integral uber C ist nur dann sinnvoll deniert, wenn C ein zulassiges Ereignis darstellt. Aus der Verteilung F Y konnen wir durch Dierenzieren die Dichte f Y ermitteln. DWT 211/460

19 Beispiel 85 Sei X gleichverteilt auf dem Intervall ]0; 1[. Fur eine Konstante > 0 denieren wir die Zufallsvariable Y := (1=) ln X. F Y (y) = Pr[ (1=) ln X y] = Pr[ln X y] = Pr[X e y ] = 1 F X (e y ) ( 1 e y fur y 0; = 0 sonst: DWT 212/460

20 Beispiel (Forts.) Damit folgt mit f Y (y) = FY 0 (y) sofort ( e y fur y 0; f Y (y) = 0 sonst: Eine Zufallsvariable mit einer solchen Dichte f Y nennt man exponentialverteilt. DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 213/460

21 Beispiel 86 Sei X eine beliebige Zufallsvariable. Fur a; b 2 R mit a > 0 denieren wir die Zufallsvariable Y := a X + b. Es gilt und somit F Y (y) = Pr[aX + b y] = Pr f Y (y) = d F Y (y) d y X y = d F X((y b)=a) d y a b y b = F X ; a y b = f X 1 a a : DWT 214/460

22 Simulation von Zufallsvariablen Unter der Simulation einer Zufallsvariablen X mit Dichte f X versteht man die algorithmische Erzeugung von Zufallswerten, deren Verteilung der Verteilung von X entspricht. Dazu nehmen wir an, dass die zu simulierende Zufallsvariable X eine stetige, im Bildbereich ]0; 1[ streng monoton wachsende Verteilungsfunktion F X besitzt. Weiter nehmen wir an, dass U eine auf ]0; 1[ gleichverteilte Zufallsvariable ist, die wir simulieren konnen. Aus unserer Annahme uber F X folgt, dass es zu F X eine (eindeutige) inverse Funktion FX 1 gibt mit F X(F 1 (x)) = x fur alle x 2]0; 1[. X DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 215/460

23 Sei nun dann gilt ~X := F 1 X (U) ; Pr[ X ~ t] = Pr[FX 1 (U) t] = Pr[U F X (t)] = F U (F X (t)) = F X (t) : DWT 216/460

24 Beispiel 87 Im obigen Beispiel der Exponentialverteilung gilt F X (t) = 1 e t fur t 0, und wir erhalten auf ]0; 1[ die Umkehrfunktion FX 1 (t) = ln(1 t). Also gilt ~X = FX 1 (U) = ln(1 U). Statt ~ X haben wir im Beispiel die Zufallsvariable ln U betrachtet, die aber oensichtlich dieselbe Verteilung besitzt. DWT 217/460

25 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir konnen aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir fur ein festes > 0 denieren X = n () X 2 [n; (n + 1)[ fur n 2 Z: Fur X gilt Pr[X = n] = F X ((n + 1)) F X (n) : DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 218/460

26 1,0 0,8 ܵ Æ Üµ 0,6 0,4 0,2 0,0-3,0-2,0-1,0 0,0 1,0 2,0 3,0 Fur! 0 nahert sich die Verteilung von X der Verteilung von X immer mehr an. DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 219/460

27 1.4.3 Erwartungswert und Varianz Denition 88 Fur eine kontinuierliche Zufallsvariable X ist der Erwartungswert deniert durch Z 1 E[X] = t f X (t) d t; 1 sofern das Integral R 11 jtj f X(t) d t endlich ist. Fur die Varianz gilt entsprechend Z 1 Var[X] = E[(X E[X]) 2 ] = (t E[X]) 2 f X (t) d t; 1 wenn E[(X E[X]) 2 ] existiert. DWT 220/460

28 Lemma 89 Sei X eine kontinuierliche Zufallsvariable, und sei Y := g(x) : Dann gilt Z 1 E[Y ] = g(t) f X (t) d t : 1 DWT 221/460

29 Beweis: Wir zeigen die Behauptung nur fur den einfachen Fall, dass g eine lineare Funktion ist, also Y := a X + b fur a; b 2 R und a > 0. Es gilt (siehe obiges Beispiel) Z 1 Z 1 t E[a X + b] = t f Y (t) d t = t f X 1 1 b a 1 a d t: Durch die Substitution u := (t b)=a mit d u = (1=a) d t erhalten wir Z 1 E[a X + b] = (au + b)f X (u) d u: 1 DWT 222/460

30 Beispiel 90 Fur Erwartungswert und Varianz der Gleichverteilung ergibt sich Z b Z 1 E[X] = t a b a d t = 1 b b a t d t a 1 = 2(b a) [t2 ] b a = b2 a 2 2(b a) = a + b 2 ; Z E[X 2 ] = 1 b b a t 2 d t = b2 + ba + a 2 ; a 3 Var[X] = E[X 2 ] E[X] 2 = : : : = (a b)2 12 : DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 223/460

31 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsraumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich\ nicht immer ganz klar sein muss. " Bertrand'sches Paradoxon Wir betrachten einen Kreis mit einem eingeschriebenen gleichseitigen Dreieck. Was ist die Wahrscheinlichkeit, mit der die Lange einer zufallig gewahlten Sehne die Seitenlange dieses Dreiecks ubersteigt (Ereignis A)? DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 224/460

32 Ë Ö ¾ ½¾¼ Æ Ë Å Å ³ DWT 225/460

33 Beobachtungen: Die Seiten des Dreiecks haben Abstand r vom Mittelpunkt M. 2 Die Lage jeder Sehne ist (bis auf Rotation um M) durch einen der folgenden Parameter festgelegt: Abstand d zum Kreismittelpunkt, Winkel ' mit dem Kreismittelpunkt. Wir nehmen fur jeden dieser Parameter Gleichverteilung an und ermitteln Pr[A]. 1 Sei d 2 [0; r] gleichverteilt. A tritt ein, wenn d < r 2, und es folgt Pr[A] = Sei ' 2 [0 ; 180 ] gleichverteilt. Fur A muss gelten ' 2]120 ; 180 ], und es folgt somit Pr[A] = 1 3. Siehe auch diese graphischen Darstellungen! DWT 226/460

34 2. Wichtige stetige Verteilungen 2.1 Gleichverteilung f(x) = ( 1 b a 0 sonst: fur x 2 [a; b]; Z x F (x) = f(t) d t = 1 8 >< >: 0 fur x < a; x a b a fur a x b; 1 fur x > b: E[X] = a + b 2 und Var[X] = (a b)2 12 : DWT 2.1 Gleichverteilung 227/460

35 2.2 Normalverteilung Die Normalverteilung nimmt unter den stetigen Verteilungen eine besonders prominente Position ein. Denition 91 Eine Zufallsvariable X mit Wertebereich W X = R heit normalverteilt mit den Parametern 2 R und 2 R +, wenn sie die Dichte f(x) = p 1 (x ) 2 exp =: '(x; ; ) besitzt. In Zeichen schreiben wir X N (; 2 ). N (0; 1) heit Standardnormalverteilung. Die zugehorige Dichte '(x; 0; 1) kurzen wir durch '(x) ab. DWT 228/460

36 Die Verteilungsfunktion zu N (; 2 ) ist Z F (x) = p 1 x (t ) 2 exp d t =: (x; ; ) : Diese Funktion heit Gau'sche -Funktion (' ist nicht geschlossen integrierbar). DWT 229/460

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Bei der genaueren Betrachtung fallen die folgenden Gemeinsamkeiten bzw. Unterschiede auf:

Bei der genaueren Betrachtung fallen die folgenden Gemeinsamkeiten bzw. Unterschiede auf: Kapitel 3 Stochastik 3. Wahrscheinlichkeitsräume Zufällige Prozesse und Wahrscheinlichkeitsräume Wahrscheinlichkeitsräume dienen zur Beschreibung von idealisierten Modellen für die Ergebnisse eines zufälligen

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Paarweise Unabhängigkeit vs. Unabhängigkeit

Paarweise Unabhängigkeit vs. Unabhängigkeit Paarweise Unabhängigkeit vs. Unabhängigkeit Beispiel: Wir betrachten das Szenario von zuvor. Wissen bereits, dass A 1, A 2 und A 1, B unabhängig sind. Analog folgt, dass A 2 und B unabhängige Ereignisse

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

3. Prozesse mit kontinuierlicher Zeit

3. Prozesse mit kontinuierlicher Zeit 3. Prozesse mit kontinuierlicher Zeit 3.1 Einführung Wir betrachten nun Markov-Ketten (X(t)) t R +. 0 Wie beim Übergang von der geometrischen zur Exponentialverteilung können wir uns auch hier einen Grenzprozess

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Elementare Wahrscheinlichkeitsrechnung

Elementare Wahrscheinlichkeitsrechnung Johann Pfanzagl Elementare Wahrscheinlichkeitsrechnung 2., überarbeitete und erweiterte Auflage W DE G Walter de Gruyter Berlin New York 1991 Inhaltsverzeichnis 1. Zufallsexperimente und Wahrscheinlichkeit

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch

Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch Kapitel 4 Diskrete Verteilungen 4.1 Bernoulli-Verteilung Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch È Üµ ½ für Ü ¼ für Ü ½ ¼ sonst Die Bernoulli-Verteilung

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Stetige Gleichverteilung Exponentialverteilung Normalverteilung Bibliografie: Prof. Dr. Kück Universität Rostock

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

Kapitel 1: Elemente der Statistik

Kapitel 1: Elemente der Statistik 1 Kapitel 1: Elemente der Statistik 1.1 Beispiel Ein Elektromarkt erhält eine Lieferung von N = 10000 Glühbirnen. Darunter ist eine unbekannte Anzahl h defekt, wobei h 0 1 = {0, 1,..., N}. Um Kenntnisse

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

2. Zufallsvariable, Verteilungsfunktion, Erwartungswert,

2. Zufallsvariable, Verteilungsfunktion, Erwartungswert, 2. Zufallsvariable, Verteilungsfunktion, Erwartungswert, momentenerzeugende Funktion Ziel des Kapitels: Mathematische Präzisierung der Konzepte Zufallsvariable Verteilungsfunktion Dichtefunktion Erwartungswerte

Mehr

Diskrete Zufallsvariable

Diskrete Zufallsvariable Diskrete Zufallsvariablen Slide 1 Diskrete Zufallsvariable Wir gehen von einem diskreten W.-raum Ω aus. Eine Abbildung X : Ω Ê heißt diskrete (numerische) Zufallsvariable oder kurz ZV. Der Wertebereich

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Einführung in die Stochastik Sommersemester 07 Dr Walter Oevel 8 007 Ü b u n g s b l a t t Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden Lösungen von -Aufgaben sind

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie

Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie Vorbemerkung: Die folgenden Seiten sind nicht zur Abschreckung gedacht, sondern als Ergänzung zu den Darstellungen, die

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457.

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457. Exkurs A: Bedingte Erwartungswerte, bedingte Verteilungen (Ω, A, P ) sei W-Raum, X : Ω IR P-quasiintegrierbar, F A Unter - σ- Algebra. E(X F) = E P (X F) (Version des) bedingter Erwartungswert von X unterf

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Allgemeine Wahrscheinlichkeitsräume

Allgemeine Wahrscheinlichkeitsräume Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr