1.2 Abstände und Winkel
|
|
|
- Günther Rothbauer
- vor 8 Jahren
- Abrufe
Transkript
1 5 1.2 Abstände und Winkel Im Folgenden werde zunächst der n-dimensionale affine Standardraum A n = (R n, R n, τ) zugrunde gelegt und in der Regel auch A n = R n gesetzt. Im Vektorraum R n stehen das (euklidische) Skalarprodukt n = ν ν und die euklidische Norm = ( n ) 1/2 = ( i ) 2 zur Verfügung. Satz: Das Skalarprodukt erfüllt die Ungleichung von Cauch-Schwarz: ν=1 i=1 für alle, R 2. Gleichheit gilt genau dann, wenn und linear abhängig sind. Beweis: 1) Ist = λ, so ist = λ 2 und auch = λ 2. 2) Sind und linear unabhängig, so gilt für beliebiges t R : + t 0, also 0 < + t 2 = ( + t) ( + t) = 2 + 2t ( ) + t 2 2 ( ) 2 = + t + 2 ( ) 2. 2 Wählt man t := ( )/ 2, so erhält man die Ungleichung ( ) 2 < 2 2. Definition Sind P, Q A n zwei Punkte und v := OP und w := OQ die zugehörigen Ortsvektoren, so heißt d(p, Q) := w v der Abstand von P und Q. Die Länge einer Strecke P Q ist der Abstand der Endpunkte P und Q. Satz: Der Abstand von Punkten in A n hat die Eigenschaften einer Metrik: 1. Es ist stets d(p, Q) 0 und d(p, Q) = 0 P = Q. 2. Für alle Punkte P, Q ist d(p, Q) = d(q, P ). 3. Es gilt die Dreiecksungleichung: Bei drei Punkten P, Q, R ist d(p, Q) d(p, R) + d(r, Q). Wenn R auf der Strecke zwischen P und Q liegt, tritt Gleichheit auf.
2 6 1 Grundlagen der Schulgeometrie Beweis: 1) Es ist 0 für jeden Vektor, und es gilt = 0 genau dann, wenn = 0 ist. Also ist w v = 0 w v = 0 w = v. 2) Es ist w v = v w. 3) Unter Verwendung der Ungleichung von Cauch-Schwarz folgt: a + b 2 = a 2 + b 2 + 2a b a 2 + b a b = ( a + b ) 2, also a + b a + b. Ist v = OP, w = OQ und z = OR, so ist w v = (w z) + (z v) w z + z v. Liegt z zwischen v und w, so gibt es ein t R mit 0 t 1, so dass z = v+t(w v) ist. Dann ist auch 0 1 t 1, sowie z v = t(w v) und w z = (1 t)(w v). Daraus folgt: w z + z v = (1 t) w v + t w v = w v. Definition Sind, R n zwei linear unabhängige Vektoren, so ist < 1. Es gibt also eine Zahl (0, π) mit = cos. Diese Zahl nennt man den Winkel zwischen und, und man bezeichnet diesen Winkel mit dem Smbol (, ). Winkel werden mit kleinen griechischen Buchstaben bezeichnet:,,,... In der euklidischen Ebene A 2 versteht man unter einem Winkel BAC die Vereinigung der Strahlen AB und AC. C A B In Vektorschreibweise ist der Winkel die Vereinigung der Strahlen R + und R + (mit R + = {t R : t > 0}, = AB und = AC). Die beiden Strahlen nennt man die Schenkel des Winkels, den Punkt A den Scheitelpunkt. Es gibt nun eine( kleine Diskrepanz zwischen den beiden Winkeldefinitionen. Die Zahl = arccos / ( )) ist ein Maß für den Winkel, und sie nimmt
3 1.2 Abstände und Winkel 7 nur Werte im offenen Intervall (0, π) an (weil und linear unabhängig sind). Im Falle = kann man natürlich := 0 setzen, und im Falle = dann := π. Doch wo bleiben die Winkel zwischen π und 2π? Bei der arccos-definition kommen sie nicht vor, bei der Vereinigung von zwei Strahlen kann man sie aber nicht von vornherein ausschließen. Wie findet man den richtigen Winkel? ungültiger Winkel gültiger Winkel (, ) Tatsächlich zerteilen die von und aufgespannten Geraden die Ebene in vier Gebiete. Die Strahlen R + und R + begrenzen genau eines der Teilgebiete, nämlich I() := { = s + t : s, t > 0}. Man nennt dieses Gebiet das Innere von. I() Zu dem von R + und R + begrenzten Gebiet I() gehört das Winkelmaß = arccos ( /( ) ). Auf diesem Wege werden tatsächlich Winkel > π ausgeschlossen. Man verwendet folgende Sprechweisen: < π/2 spitzer Winkel rechter Winkel = π/2 > π/2 Es folgen nun ein paar bekannte Aussagen über Winkel. = π stumpfer Winkel gestreckter Winkel Satz Nebenwinkel ergänzen sich zu 180 : Beweis: Die Umrechnung zwischen Winkeln im Grad-Maß und im Bogenmaß darf als bekannt vorausgesetzt werden. 180 entspricht im Bogenmaß natürlich der Zahl π.
4 8 1 Grundlagen der Schulgeometrie Ist = (, ), so ist = (, ) der Nebenwinkel. Dazu müsste man natürlich erst mal definieren, was Nebenwinkel sind. Aus der Skizze ist das sicher jedem klar, aber man kann es auch ohne Skizze beschreiben: Wenn O zwischen den Punkten P und Q liegt, der Punkt R aber nicht auf der Geraden P Q, dann sind (P OR) und (ROQ) Nebenwinkel. Die Vektoren OP = P O und OQ zeigen in diesem Fall in die gleiche Richtung. Offensichtlich ist cos = ( )/( ) = cos. Es gibt dann ein δ > 0, so dass = π/2 δ und = π/2 + δ ist (oder umgekehrt), wie man dem Verhalten der Cosinus-Funktion zwischen 0 und π entnimmt: 0 π Daraus folgt: + = π. Satz Scheitelwinkel sind gleich: Beweis: Es ist + = π und + = π, also = π = π (π ) =. Von besonderer Bedeutung sind die Beziehungen zwischen Winkel an Parallelen. Regel 1: F- oder Stufenwinkel sind gleich: h 1 2 w v g 2 g 1 Beweis: Es gibt Punkte 1, 2 h und Vektoren v, w, so dass gilt: g 1 = { = 1 + tv : t R}, g 2 = { = 2 + tv : t R} und h = { = 1 + tw : t R} = { = 2 + tw : t R}. Es ist cos = ( w v)/( v w ) = cos. Weil der Cosinus auf [0, π] injektiv ist, ist =.
5 1.2 Abstände und Winkel 9 Regel 2 E- oder Ergänzungswinkel ergänzen sich zu 180 : Beweis: Die Winkel und sind Nebenwinkel, und es ist = (Regel 1). Deshalb ist + = + (π ) = π. Regel 3 Z- oder Wechselwinkel sind gleich: δ Beweis: Die Winkel und δ sind Nebenwinkel, und es ist + = π (Regel 2). Deshalb ist δ = π = π (π ) =.
Skalarprodukt, Norm & Metrik
Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.
8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x
Kapitel 5. Vektorräume mit Skalarprodukt
Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der
1 Euklidische und unitäre Vektorräume
1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen
2 Euklidische Vektorräume
Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,
Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen
Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).
Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April.
Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Symmetrische
Euklidische und unitäre Vektorräume
Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein
Grundlagen der Geometrie
Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode
Gerade, Strecke, Halbgerade, Winkel (in (R n,, ))
Gerade, Strecke, Halbgerade, Winkel (in (R n,, )) A B Winkel Gerade Halbgerade Strecke A A A Gerade ist Punktmenge L A,v := {A+t v t R}, wobei v 0. Halbgerade (Strahl) ist Punktmenge H A,v := {A+t v t
r i w i (siehe (3.7)). r i v, w i = 0.
Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum
Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß
Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz
Analytische Geometrie, Vektorund Matrixrechnung
Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?
L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...
L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
3. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen
Mathematischer Vorkurs zum Studium der Physik
Universität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übungen Aufgaben zu Kapitel 9 (Fortsetzung) (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergänzungen) Aufgabe
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 31 Vektorräume mit Skalarprodukt Im R n kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor
Lineare Algebra: Theorie und Anwendungen
Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und
Grundlagen der Vektorrechnung
Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =
1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition
Euklid ( v. Chr.) Markus Wurster
Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid
MAT746 Seminar über Euklidische Geometrie Philipp Becker
MAT746 Seminar über Euklidische Geometrie Philipp Becker R David Hilbert (1862-1943) Den Begriffen aus der Anschauungswelt fehlt die notwendige mathematische Exaktheit. Gebäude der Geometrie soll nicht
L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...
L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt
9 Vektorräume mit Skalarprodukt
9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden
Modulteilprüfung Geometrie (BaM-GS, L3M-RF)
Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Prof. Dr. Martin Möller SoSe 2011 // 05. Juli 2011 Kontrollieren Sie, ob Sie alle Blätter (12 einschließlich zweier Deckblätter) erhalten haben, und geben Sie
Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1
Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,
Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k
Skalarprodukte Tutorium 7 Bemerkung. Für jeden komplexen Vektorraum V mit dim V und jede komplexe Bilinearform P auf V findet man einen Vektor v mit P (v, v) =. Es gibt also keine positiv definite Bilinearformen
Lineare Algebra II 8. Übungsblatt
Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.
ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2
II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
Aufgaben zu Kapitel 20
Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v
Vektoren, Vektorräume
Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010
Skript zur Vorlesung Elementare und analytische Geometrie
Robert Labus Skript zur Vorlesung Elementare und analytische Geometrie Studienkolleg für ausländische Studierende Universität Kassel Wintersemester 2016/2017 Inhaltsverzeichnis 1 Elementargeometrie 1 1.1
1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.
1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie
1 Vorlesungen: und Vektor Rechnung: 1.Teil
1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg
Zahlen und metrische Räume
Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,
Technische Universität München
Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder
MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.
1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen
Klausur zur Akademischen Teilprüfung, Modul 2,
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung
14 Skalarprodukt Abstände und Winkel
4 Skalarprodukt Abstände und Winkel Um Abstände und Winkel zu definieren benötigen wir einen neuen Begriff. Zunächst untersuchen wir die Länge eines Vektors v. Wir schreiben dafür v und sprechen auch von
Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie
Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende
5 Teilmengen von R und von R n
5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung
Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).
Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =
Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis
Brückenkurs Mathematik. Mittwoch Freitag
Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Mathematik für Anwender II
Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 32 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines
5 Lineare Algebra (Teil 3): Skalarprodukt
5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale
Die Mittelsenkrechte im deduktiven Aufbau
Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1 Die Mittelsenkrechte
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse
Symmetrien und Winkel
Eigenschaften der Achsenspiegelung Alle Punkte werden an der Symmetrieachse gespiegelt. Die Verbindungslinien stehen senkrecht zur Symmetrieachse. Original- und Bildpunkte haben je den gleichen Abstand
7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?
Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist
Kapitel 3. Konvergenz von Folgen und Reihen
Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden
4 Affine Koordinatensysteme
4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner
Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:
Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:
x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω
5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,
Seminar Einführung in die Kunst mathematischer Ungleichungen
Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................
Von Skalarprodukten induzierte Normen
Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus
Inhaltsverzeichnis INHALTSVERZEICHNIS 1
INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4
In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ.
Entdeckungen an Geraden- und Doppelkreuzungen Schneiden sich zwei Geraden, so entstehen vier Winkel mit Scheitel im Schnittpunkt. Jeweils zwei gleichgroße Winkel liegen sich dabei gegenüber man nennt diese
2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.
Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum
1.6 Implizite Funktionen
1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen
2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen
Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Lineare Algebra und Numerische Mathematik für D-BAUG
P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen
Lösungen zu den Hausaufgaben zur Analysis II
Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin
Die Mittelsenkrechte im deduktiven Aufbau
Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1
Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015
Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt
a b b 1 b 2 bzgl. einer ONB (Orthonormalbasis) heißt der a 2 b 3 a 3 b 2 a 3 b 1 a 1 b b 3 a 1 b 2 a 2 b 1
VIII. Vektor- und Spatprodukt ================================================================== 8.1 Das Vektorprodukt -----------------------------------------------------------------------------------------------------------------
Definitionen: spitzer Winkel, stumpfer Winkel
Definitionen: spitzer Winkel, stumpfer Winkel Die in der Schule üblichen Definitionen über den Vergleich mit 90 dürften klar sein. Wir geben hier die Definitionen ohne die Verwendung von Zahlen für die
3 Lineare Differentialgleichungen
3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,
Lösungen Serie 6 (Vektorräume, Skalarprodukt)
Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9
1. Grundlegendes in der Geometrie
1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden
4 Eigenwerte und Eigenvektoren
4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ
Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand)
Kapitel 6 Metrik, Norm und Skalarproduktl Aus Ihrer täglichen Praxis sind Ihnen die Begriffe Abstand und Länge, möglicherweise gar Winkel wohlvertraut. 6.1 Metrik (Abstand) Definition Metrik : Sei M eine
4.3 Affine Punkträume
4.3. AFFINE PUNKTRÄUME 185 4.3 Affine Punkträume Es wird jetzt der Übergang von der linearen Algebra zur analytischen Geometrie beschrieben. 4.3.1 Definition (affiner Punktraum) Sei V ein K-Vektorraum,
Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.
Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz
Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks
Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks
Beziehungen zwischen Vektorräumen und ihren Dimensionen
Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz
Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf
Hilfe Winkel zeichnen 1. Zeichne einen Schenkel (die rote Linie) S 2. Lege das Geodreieck mit der Null am Scheitelpunkt an. (Dort wo der Winkel hinkommen soll) S 3. Möchtest du zum Beispiel einen Winkel
Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek
Lineare Algebra I Eine Vorlesung von Prof. Dr. Klaus Hulek [email protected] c Klaus Hulek Institut für Mathematik Universität Hannover D 30060 Hannover Germany E-Mail : [email protected]
Ebene Elementargeometrie
Ebene Elementargeometrie Im Folgenden unterscheiden wir neben Definitionen (Namensgebung) und Sätzen (nachweisbaren Aussagen) so genannte Axiome. Axiome stellen der Anschauung entnommene Aussagen dar,
D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
10.2 Linearkombinationen
147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition
Lineare Abbildungen - I
Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit
Das Vektorprodukt und Sphärische Geometrie
Das Vektorprodukt und Sphärische Geometrie Proseminar zu Algebra von Methnani Lassaad Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf 12. April 2010 Betreuung: Prof. Dr. Bogopolski Ÿ1)
Übungen zur Linearen Algebra 1
Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume
Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren
Wiederholung Winkel Das entscheidende Mittel zur Bestimmung von Winkeln ist das Skalarprodukt. Das Skalarprodukt lässt sich nämlich sehr komfortabel koordinatenweise berechnen, zugleich hängt es aber mit
