Eigenschaften von LPs

Größe: px
Ab Seite anzeigen:

Download "Eigenschaften von LPs"

Transkript

1 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört y = λx (1) + (1 λ)x (2) Die konvexe Hülle H einer Menge K IR n ist die kleinste konvexe Menge, die K enthält Operations Research FH Bonn-Rhein-Sieg, WS 08/09 40

2 2 Lineare Programmierung Eigenschaften von LPs konvexe Menge nicht konvexe Menge Operations Research FH Bonn-Rhein-Sieg, WS 08/09 41

3 2 Lineare Programmierung Eigenschaften von LPs Definition 25 Es seien x (1),,x (r) Punkte des IR n und λ 1,,λ r seien nichtnegative relle Zahlen mit r i=1 λ i = 1 Dann heißt x = r i=1 λ ix (i) Konvexkombination von x (1),,x (r) Gilt sogar λ i > 0(i = 1,,r), so heißt x echte Konvexkombination von x (1),,x (r) Die Menge aller Konvexkombinationen endlich vieler Punkte x (1),,x (r) des IR n heißt (durch diese Punkte aufgespanntes) konvexes Polyeder Bemerkung: Das durch r Punkte aufgespannte konvexe Polyeder ist identisch mit der konvexen Hülle der aus diesen Punkten bestehenden Menge Operations Research FH Bonn-Rhein-Sieg, WS 08/09 42

4 2 Lineare Programmierung Eigenschaften von LPs Definition 26 y heißt Ecke von K, wenn sich y nicht als echte Konvexkombination zweier verschiedener Punkte x (1) und x (2) von K darstellen lässt Bemerkung: Ein konvexes Polyeder enthält endlich viele Ecken Satz 21 Es gilt: Die Menge der hinsichtlich jeder einzelnen Nebenbedingung zulässigen Lösungen ist konvex Die Menge X der zulässigen Lösungen eines LP ist konvex Die Menge X der optimalen Lösungen eines LP ist konvex Operations Research FH Bonn-Rhein-Sieg, WS 08/09 4

5 2 Lineare Programmierung Eigenschaften von LPs Satz 22 Die Menge X der zulässigen Lösungen hat endlich viele Ecken Ist X ein konvexes Polyeder, so nimmt die Zielfunktion ihr Optimum in mindestens einer Ecke von X an Ist X unbeschränkt, aber F(x) auf X (nach oben) beschränkt, so nimmt die Zielfunktion ihr Optimum in mindestens einer Ecke von X an Ist X unbeschränkt und F(x) auf X unbeschränkt, so hat das LP keine Lösung Operations Research FH Bonn-Rhein-Sieg, WS 08/09 44

6 2 Lineare Programmierung Eigenschaften von LPs Definition 27 Gegeben sei ein LP in der Normalform mit m als Rang der (m n) Matrix A x IR n heißt Basislösung gdw n m Komponenten x i gleich Null und die zu den restlichen Variablen gehörenden Spaltenvektoren a j linear unabhängig sind Eine Basislösung, die zulässig ist, heißt zulässige Basislösung Die m linear unabhängigen Spaltenvektoren a j einer (zulässigen) Basislösung heißen Basisvektoren, die zugehörigen Variablen x j Basisvariablen (BV) Alle übrigen Spaltenvektoren heißen Nichtbasisvektoren, die zugehörigen Variablen Nichtbasisvariablen (NBV) Operations Research FH Bonn-Rhein-Sieg, WS 08/09 45

7 2 Lineare Programmierung Eigenschaften von LPs Die Menge aller Basisvariablen x j einer Basislösung bezeichnet man als Basis Satz 2 x ist genau dann eine zulässige Basislösung eines LP, wenn x ist Ecke von X ist Beispiel 24 Wir greifen das Beispiel mit dem Eisverkäufer (Beispiel 21 bzw 22) wieder auf Maximiere z = 0x x x 1 x 2 x x 4 x 5 = x 1,,x 5 0 Operations Research FH Bonn-Rhein-Sieg, WS 08/09 46

8 2 Lineare Programmierung Eigenschaften von LPs Die redundante Nebenbedingung x 1 6 wurde weggelassen Man erhält ( 5 ) = 10 Systeme von Spalten der Matrix A: Für die Ecke 0 wird der maximale Zielfunktionswert angenommen 0 7 Operations Research FH Bonn-Rhein-Sieg, WS 08/09 47

9 2 Lineare Programmierung Eigenschaften von LPs Bemerkung: Wenn m der Rang von A ist, sind im Normalfall genau m Koordinaten einer Ecke positiv, die übrigen Null Definition 28 Es sei m der Rang von A Eine Ecke heißt entartet (degeneriert) gdw weniger als m Koordinaten positiv sind Bemerkung: Bei entarteten Ecken ist das System der linear unabhängigen Spalten von A nicht eindeutig bestimmt Operations Research FH Bonn-Rhein-Sieg, WS 08/09 48

10 2 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis durch Basisaustausch zu einer Ecke mit besserem Zielfunktionswert fortzuschreiten Da es nur endlich viele Ecken gibt, erhält man nach endlich vielen Schritten die optimale Lösung Operations Research FH Bonn-Rhein-Sieg, WS 08/09 49

11 2 Lineare Programmierung Simplex-Algorithmus Beispiel 25 Wir bleiben beim Problem des Eisverkäufers und ordnen die Daten in einem Tableau an: x 1 x 2 x x 4 x 5 b i x x x z Die Strukturvariablen x 1,x 2 sind NBV, die Schlupfvariablen x, x 4, x 5 sind BV Die Werte der BV ergeben sich aus den Nebenbedingungsgleichungen, die durch die Zeilen des Tableaus repräsentiert werden Letzte Zeile ist Zielfunktionszeile, Zielfunktionswert ganz rechts Operations Research FH Bonn-Rhein-Sieg, WS 08/09 50

12 2 Lineare Programmierung Simplex-Algorithmus Basisaustausch: x 1 verspricht den größeren Zuwachs, x 1 -Spalte ist die Pivotspalte x 1 kann höchstens den Wert 0/5 = 6 annehmen, x 4 wird dann Null x 4 -Zeile ist die Pivotzeile Pivotspalte und Pivotzeile schneiden sich im Pivotelement, hier a 21 = 5 Die Pivotzeile entspricht der Gleichung 5x 1 + 2x 2 + x 4 = 0 Somit x 1 = x x 4 Dies setzen wir in alle übrigen Gleichungen ein Für die erste Zeile erhalten wir ( x x 4) +x2 +x = 10 Dies ergibt 5 x 2 + x 1 5 x 4 = 4 Die Pivotzeile wird zu x x x 4 = 6 Die dritte Zeile bleibt unverändert, da x 1 dort nicht auftritt Operations Research FH Bonn-Rhein-Sieg, WS 08/09 51

13 2 Lineare Programmierung Simplex-Algorithmus Die Zielfunktionszeile wird zu 0(6 2 5 x x 4) 25x 2 + z = 0, also 1x 2 + 6x 4 + z = 180 Das neue Tableau: x 1 x 2 x x 4 x 5 b i x x x z Man dividiert also die Pivotzeile durch den Pivotwert Zu den übrigen Zeilen addiert man ein Vielfaches der Pivotzeile, so daß in der Pivotspalte Nullen entstehen Operations Research FH Bonn-Rhein-Sieg, WS 08/09 52

14 2 Lineare Programmierung Simplex-Algorithmus Durch Vertauschen der Spalten für x 1 und x 4 bringt man das Tableau wieder in die übliche Form: x 4 x 2 x x 1 x 5 b i x x x z Die zugehörige Ecke ist Operations Research FH Bonn-Rhein-Sieg, WS 08/09 5

15 2 Lineare Programmierung Simplex-Algorithmus Der nächste Austauschschritt liefert das Tableau: Das heißt in der Ecke wird das Optimum mit z = 800 angenommen x 4 x 2 x x 1 x 5 b i x x x z Operations Research FH Bonn-Rhein-Sieg, WS 08/09 54

16 2 Lineare Programmierung Simplex-Algorithmus Algorithmus 21 [Simplexalgorithmus] Start: Es liege ein kanonisches Maximumproblem (b i 0, i = 1,,m) vor Ecke des Ausgangstableaus ist: x 1 x n m x n m+1 x n = 0 0 b 1 b m mit z = 0 Schlupfvariablen sind BV, Strukturvariablen sind NBV Operations Research FH Bonn-Rhein-Sieg, WS 08/09 55

17 2 Lineare Programmierung Simplex-Algorithmus Ausgangstableau: x 1 x t x n m x n m+1 x n m+s x n b i x n m+1 a 11 a 1t a 1,n m b 1 x n m+s a s1 a s,n m b s x n a m1 a mt a m,n m b m z c 1 c t c n m Wahl der Pivotspalte: Ist die Zielfunktionszeile von der Gestalt z d 1 d t d n m 0 0 d mit d j 0, (j = 1,,n m), so liegt eine Optimallösung vor Operations Research FH Bonn-Rhein-Sieg, WS 08/09 56

18 2 Lineare Programmierung Simplex-Algorithmus Andernfalls mache man eine Spalte t mit negativem d j zur Pivotspalte und die NBV x t zur BV Wahl der Pivotzeile: Sind in der Pivotspalte alle a it 0, so wächst z unbeschränkt, da x t unbeschränkt wachsen kann Es gibt dann keine Optimallösung Andernfalls bestimme man eine Zeile s durch b s = min m i=1 b i a it für a it > 0 Die NBV x t wird BV und bekommt den Wert b s Die bisherige BV x n m+s wird BV und nimmt den Wert 0 an Operations Research FH Bonn-Rhein-Sieg, WS 08/09 57

19 2 Lineare Programmierung Simplex-Algorithmus Austauschschritt: Das neue Tableau lautet: Linke Hälfte: x 1 x t x n m a 11 a 1t a s1 0 a 1,n m a 1t a s,n m a s1 a 1 s,n m a m1 a mt a s1 0 a m,n m a mt a s,n m z d 1 d t a s1 0 d n m d t a s,n m x n m+1 x t x n Operations Research FH Bonn-Rhein-Sieg, WS 08/09 58

20 2 Lineare Programmierung Simplex-Algorithmus Rechte Hälfte: x n m+1 x n m+s x n b i 1 a 1t 0 b 1 b s a 1t 1 b 0 0 s 0 a mt 1 b m b s a mt 0 d t 0 d b s d t Terminierung: Wenn alle Koeffizienten der Zielfunktionszeile nichtnegative Werte haben, beschreibt das Tableau eine optimale Ecke Rechts unten steht z max Operations Research FH Bonn-Rhein-Sieg, WS 08/09 59

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen

Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen be/ji/3(2) 2-1 2 im Kontext der OR-Optimierungsmodelle Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen Standardform: - Planungsziel min bzw. min Z(x) = c 1 x 1 + c 2 x 2 + + c n x n Z(x)

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

Operations Research für Wirtschaftsinformatiker. Vorlesungsskript von Richard Mohr

Operations Research für Wirtschaftsinformatiker. Vorlesungsskript von Richard Mohr Operations Research für Wirtschaftsinformatiker Vorlesungsskript von Richard Mohr Fachhochschule Esslingen, SS 2005 INHALTSVERZEICHNIS i Inhaltsverzeichnis Lineare Optimierung. Graphische Lösung des linearen

Mehr

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de)

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de) Lineare Optimierung Vorlesung von Prof Christiane Tammer Author : Georg Kuschk (Quelle : wwwrikutide) 11 August 2006 Inhaltsverzeichnis 1 Einleitung, Beispiele 2 2 Das allgemeine lineare Optimierungsproblem

Mehr

Lineare Optimierung. Master 1. Semester

Lineare Optimierung. Master 1. Semester Prof. Dr.-Ing. Fritz Nikolai Rudolph Fachhochschule Trier Fachbereich Informatik Master 1. Semester Inhaltsverzeichnis 1 Einleitung... 2 1.1 Lineare Gleichungssysteme... 2 1.2 sprobleme... 3 2 Standardform...

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

0. Einleitung. 0.1. Der Begriff Operations Research / Decision Support

0. Einleitung. 0.1. Der Begriff Operations Research / Decision Support 0. Einleitung 0.1. Der Begriff Operations Research / Decision Support Es werden Methoden zur Entscheidungsunterstützung (Decision Support, DS) vorgestellt. Durch Problemanalyse, daraus formulierte mathematische

Mehr

Einführung in das Operations Research

Einführung in das Operations Research S. Nickel, O. Stein, K.-H. Waldmann Einführung in das Operations Research Skript zur Vorlesung am Karlsruher Institut für Technologie Vorläufige Version, Stand: 11. März 2011 Inhaltsverzeichnis 1 Kernkonzepte

Mehr

Vorlesungsmitschrift Operations Research I und II

Vorlesungsmitschrift Operations Research I und II Vorlesungsmitschrift Operations Research I und II Bemerkung: Dies ist eine Überarbeitung der beiden Skripte [1] und [2] zu den oben genannten Vorlesungen von Prof. Sebastian, ergänzt um Anmerkungen, die

Mehr

Algorithmische Anwendungen

Algorithmische Anwendungen Lineare Programmierung Studiengang: Allgemeine Informatik 7.Semester Gruppe: A blau Sibel Cilek 3835 Daniela Zielke 36577..6 Inhaltsverzeichnis Einleitung...3. Was ist lineare Optimierung?... 3. Anwendungsbeispiele...

Mehr

Einführung in die Mathematische Optimierung

Einführung in die Mathematische Optimierung Einführung in die Mathematische Optimierung Rainer E. Burkard Technische Universität Graz Institut für Mathematik Steyrergasse 30 A-800 Graz, Austria burkard@opt.math.tu-graz.ac.at 2 Inhaltsverzeichnis

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Ausgewählte Methoden der ganzzahligen Linearen Optimierung

Ausgewählte Methoden der ganzzahligen Linearen Optimierung Ausgewählte Methoden der ganzzahligen Linearen Optimierung Diplomarbeit zur Erlangung des akademischen Grades Magistra rerum naturalium eingereicht von Arntraud Bacher bei AUnivProf Dr Kurt Girstmair an

Mehr

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Einführung Standard- und Schlupfformen Simplex Algorithmus Matthias Zwicker Universität Bern Frühling 2009 2 Beispiel: Wahlkampf Ziel: mit möglichst wenig Werbung eine gewisse

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Ziele: Einführung in richtige Einordnung von Optimierungsproblemen Modellierungstechniken praktische Umsetzung

Mehr

Anwendungen der linearen Programmierung

Anwendungen der linearen Programmierung Anwendungen der linearen Programmierung BACHELOR-ARBEIT Referent Prof. Dr. Karl Frauendorfer vorgelegt von Simon Wehrmüller Universität St. Gallen Hochschule für Wirtschafts-, Rechts- und Sozialwissenschaften

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Einführung in die Lineare Programmierung. Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen

Einführung in die Lineare Programmierung. Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen Einführung in die Lineare Programmierung Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen 30. Juli 2008 Inhaltsverzeichnis 1 Lineare Programme 3 1.1 Die kanonische Form..........................

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker MATTHIAS GERDTS Optimierung für Wirtschaftsinformatiker Address of the Author: Matthias Gerdts Schwerpunkt Optimierung und Approximation Department Mathematik Universität Hamburg D-2146 Hamburg E-Mail:

Mehr

Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010. Prof. Dr. S. Dempe

Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010. Prof. Dr. S. Dempe Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010 Prof. Dr. S. Dempe Inhaltsverzeichnis Kapitel 0. Einleitung 5 0.1. Historische Entwicklung 5 0.2. Begriff des Operations

Mehr

Optimierung I Wintersemester 1996/97

Optimierung I Wintersemester 1996/97 Optimierung I Wintersemester 1996/97 Florian arre Institut für Angewandte Mathematik und Statistik Universität Würzburg, Am Hubland D 97074 Würzburg 8 November 2000 Inhalt 1 Lineare Optimierung: Definition

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel Einführung in die Optimierung Sommersemester 2005 Anita Schöbel 9. Juli 2010 Vorwort Das vorliegende Vorlesungsskript entstand aufgrund der Notizen der von mir im Sommersemester 2005 gehaltenen Vorlesung

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

THEMA. Research of suitable optimization strategies for the implementation of an intelligent charging management for electric vehicles

THEMA. Research of suitable optimization strategies for the implementation of an intelligent charging management for electric vehicles THEMA Untersuchung geeigneter Optimierungsstrategien zur Umsetzung eines intelligenten Lademanagements für Elektrofahrzeuge Research of suitable optimization strategies for the implementation of an intelligent

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Optimierung. Vorlesung, zuerst gehalten im Wintersemester 2012/13. Tomas Sauer

Optimierung. Vorlesung, zuerst gehalten im Wintersemester 2012/13. Tomas Sauer Optimierung Vorlesung, zuerst gehalten im Wintersemester 2012/13 Tomas Sauer Version 1.0 Letzte Änderung: 11.2.2013 Statt einer Leerseite... 0 Chaos is found in greatest abundance whereever order is being

Mehr

1 Einführung...2 1.1 Was ist Operations Research?...2 1.2 Modellierung und Methodik...2

1 Einführung...2 1.1 Was ist Operations Research?...2 1.2 Modellierung und Methodik...2 S. OPERATIONS RESEARCH Einführung.... Was ist Operations Research?.... Modellierung und Methodik... Lineare Optimierung.... Beschreibung linearer Optimierungsprobleme (LOP).... Modellierung ökonomischer

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Operations Research / Datenverarbeitung

Operations Research / Datenverarbeitung Bachelor BW Operations Research / Datenverarbeitung WS 2014/15 Prof. Dr. Dominik Kramer Hochschule Trier Fachbereich Wirtschaft 1 Inhaltsübersicht 1 Einführung 2 Lineare Gleichungssysteme 3 Lineare Optimierung

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Einsatz von Software zur Lösung linearer Optimierungsprobleme

Einsatz von Software zur Lösung linearer Optimierungsprobleme Technische Universität Kaiserslautern, Fachbereich Mathematik SS 2004 Projektstudie zum Thema: Einsatz von Software zur Lösung linearer Optimierungsprobleme im Mathematikunterricht Prof. Dr. H. W. Hamacher

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 6 gesamt erreichbare P. 6 10 12 12

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

3. UNGLEICHUNGEN, UNGLEICHUNGSSYSTEME

3. UNGLEICHUNGEN, UNGLEICHUNGSSYSTEME 3. UNGLEICHUNGEN, UNGLEICHUNGSSYSTEME 3.1. Ungleichungen (a) Definition Im vorigen Kapitel wurden Terme miteinander verglichen, indem sie gleichgesetzt wurden. Ein andere Art, Terme zu vergleichen, ist

Mehr

Integrierte Umlauf- und Dienstplanung im ÖPNV

Integrierte Umlauf- und Dienstplanung im ÖPNV Integrierte Umlauf- und Dienstplanung im ÖPNV Frico 2007 Weíder Dres. Löbel, Borndörfer und GbR Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) weider@zib.de http://www.zib.de/weider Planung im

Mehr

Einführung in die Lineare Optimierung

Einführung in die Lineare Optimierung Kapitel 2 Einführung in die Lineare Optimierung lineare Modelle der relevanten Umwelt werden wegen ihrer Einfachheit häufig gegenüber nichtlinearen Ansätzen vorgezogen, lineare Optimierungsprobleme können

Mehr

Einführung in Verkehr und Logistik

Einführung in Verkehr und Logistik WS 13/14 Einführung in Verkehr und Logistik 1 / 50 Einführung in Verkehr und Logistik (Bachelor) Tourenplanung - Spaltengenerierung Univ.-Prof. Dr. Knut Haase Institut für Verkehrswirtschaft Wintersemester

Mehr

OPTIMIERUNG I. Christian Clason. Fakultät für Mathematik Universität Duisburg-Essen

OPTIMIERUNG I. Christian Clason. Fakultät für Mathematik Universität Duisburg-Essen OPTIMIERUNG I Vorlesungsskript, Sommersemester 2014 Christian Clason Stand vom 1. Juli 2014 Fakultät für Mathematik Universität Duisburg-Essen INHALTSVERZEICHNIS I GRUNDLAGEN 1 theorie der linearen ungleichungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Lineare und Ganzzahlige Optimierung

Lineare und Ganzzahlige Optimierung Lineare und Ganzzahlige Optimierung Tim Nieberg Research Institute for Discrete Mathematics University of Bonn Lennéstr. 2 D-53113 Bonn nieberg@or.uni-bonn.de This device is provided without warranty of

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil):

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil): Lösungen zur Mathematikklausur WS 2004/2005 (Versuch 1) 1.1. Hier ist die Rentenformel für gemischte Verzinsung (nachschüssig) zu verwenden: K n = r(12 + 5, 5i p ) qn 1 q 1 = 100(12 + 5, 5 0, 03)1, 0325

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I Inhaltsverzeichnis 1 Lineare Gleichungssysteme I 3 1.1 Mengen und Abbildungen....................................... 3 1.1.1 Mengen und ihre Operationen.............................. 3 1.1.2 Summen- und

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

2. Lineare Planungsrechnung

2. Lineare Planungsrechnung . Lineare Planungsrechnung. Einführung.. Bestimmen des Problembereichs. Sind Entscheidungen Glücksache? OR oder Optimalplanung bedeuten das Vorbereiten optimaler Entscheidungen. Entscheidungen sind aber

Mehr

Friedrich-Schiller-Universität Jena

Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Diskussionspapier Reihe A, Nr. 00/05 Zielgerichtete Koordination mit Hilfe der Dantzig-Wolfe-Dekomposition Eine betriebswirtschaftliche

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Spieltheoretische Modellierung. Nullsummenspiele

Spieltheoretische Modellierung. Nullsummenspiele Spieltheoretische Modellierung Nullsummenspiele Definition 2.1 Unter einem Zweipersonen-Nullsummenspiel in Normalformdarstellung versteht man ein Tripel (X, Y, K), bestehend aus ) einer nichtleeren Menge

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

wisu-lexikon Operations Research

wisu-lexikon Operations Research wisu-lexikon Operations Research Das WISU-Lexikon vermittelt einen kompakten Überblick über zentrale Gebiete der Wirtschaftswissenschaften. Wichtige Begriffe werden knapp und präzise erläutert, Querverweise

Mehr

5. Verschiedene Repräsentanten

5. Verschiedene Repräsentanten 5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und

Mehr

Fotografie * Informatik * Mathematik * Computer-Algebra * Handreichung für Lehrer

Fotografie * Informatik * Mathematik * Computer-Algebra * Handreichung für Lehrer BIKUBISCHE INTERPOLATION AM BEISPIEL DER DIGITALEN BILDBEARBEITUNG - AUFGABENSTELLUNG FÜR SCHÜLER Problem Bei Veränderung der Größe eines Digitalbildes sind entweder zuviel Pixel (Verkleinerung) oder zuwenig

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Peter Becker Hochschule Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@h-brs.de Kurzvorlesung am Studieninformationstag, 13.05.2009

Mehr