Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Größe: px
Ab Seite anzeigen:

Download "Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter"

Transkript

1 Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

2 Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter? Parameter? Eigenschaften? Gaussfilter? Parameter? Eigenschaften? Grundidee Bandpass- / Bandreject-Filterung? Grundidee inverse Filterung? Probleme bei der inversen Filterung? Computergrafik SS0

3 Besprechung Übung 5 Probleme? Computergrafik SS0 3

4 Ideales Tiefpassfilter Tiefpassfilter lässt tiefe Frequenzen passieren und dämpft hohe Frequenzen Ideales Tiefpassfilter ideal low pass filter (ILPF) F max : Cut-Off-Frequenz H Fmax ( u, v) = " $ # %$, falls u + v F max 0, sonst. K. D. Tönnies, Grundlagen der Bildverarbeitung Computergrafik SS0 4

5 Butterworth-Filter Frequenzen werden nicht gelöscht, sondern nur abgeschwächt Tiefpass-Filter (BLPF): H ( u, v) = + ( D( u, v) / D ) n 0 Tiefpass Hochpass-Filter (BHPF): H ( u, v) = ( ( )) + D0 / D u, v n D 0 : Cutoff-Frequenz D(u,v): Frequenz, Abst. Ursprung n: Ordnung des Filters Butterworth- Tiefpass H(u,v)=0.5 Computergrafik SS0 5

6 Gauß-Filter Keine Artefakte, da Fourier-Transformation einer Gauß- Funktion wieder eine Gauß-Funktion Tiefpass-Filter (GLPF): " H u, v $ # D 0 ( ) = exp D (u, v) % ' & Gauß- Tiefpass D 0 groß Hochpass-Filter (GHPF): ( ) = exp D (u, v) $ H u, v " # D 0 D 0 : entspricht σ D(u,v): Frequenz, Abstand vom Ursprung % ' & Gauß- Tiefpass D 0 klein K. D. Tönnies, Grundlagen der Bildverarbeitung Computergrafik SS0 6

7 Vermeiden der Auslöschung niedriger Frequenzen beim GHPF Hochpass-Filter (GHPF): H u, v 0 H(u,v) modifiziertes GHPF: H a ( ) = exp D (u, v) $ a H a (u,v) " # D 0 ( u, v) = a + ( a) H u, v % ' & ( ) D 0 : entspricht σ D(u,v): Frequenz, Abstand vom Ursprung R. C. Gonzalez & R. E. Woods, Digital Image Processing Computergrafik SS0 7

8 in Python def GLPF((h,w), D0, a = 0.0): H = np.zeros((h,w), dtype='float3') for y in xrange(h): for x in xrange(w): dx = x - w/ dy = y - h/ D = np.sqrt(dx * dx + dy * dy) H[y,x] = np.exp(-d**/(*d0**)) if a > 0.0: H[y,x] = a + (.0 - a) * H[y,x] return H Computergrafik SS0 8

9 Korrelation im Ortsraum Ähnlichkeiten zwischen Bild und Modell feststellen Modell (Template) im Bild suchen R. C. Gonzalez & R. E. Woods, Digital Image Processing Computergrafik SS0 9

10 Korrelation im Ortsraum Ähnlichkeitsmaß (normalisierter) Korrelationskoeffizient Mittelwerte subtrahiert und Varianzen normiert Kleineres Bild pixelweise über größeres Bild verschieben und Korrelationskoeffizient berechnen (f = Bild, m = Modell/Template, (x,y) = Suchposition) cc f,m (x, y) = # % $ a a s= a t= b cc f,m (x, y) b s= a t= b b ( m(s,t) m) f (x + s, y + t) f (x, y) ( ) ( m(s,t) m) &# a b (% f (x + s, y + t) f (x, y) ' $ s= a t= b ( ) & ( ' Computergrafik SS0 0

11 Korrelation im Frequenzraum Subtrahiere Mittelwerte von f und m Ähnlichkeitsmaß: Korrelationskoeffizient cc f,g cc f,m (x, y) = a # % $ a a s= a t= b b s= a t= b b = k m(s,t) m s= a t= b a b b ( m(s,t) m) f (x + s, y + t) f (x, y) ( ) ( m(s,t) m) &# a b (% f (x + s, y + t) f (x, y) ' $ s= a t= b ( )( f (x + s, y + t) f (x, y) ) = k m(s,t) f (x + s, y + t) s= a t= b Korrelationsfunktion FT ( ) ([ f g](x, y) ) = F(u, v) G (u, v) Korrelation & ( ' G konjugiert Computergrafik SS0

12 Python-Tipps plt.gray() f = f - np.mean(f) fftsize = (M,N) F = np.fft.fft(f, fftsize) F = np.fft.fftshift(f) plt.imshow(np.log(np.abs(f))) M = np.conjugate(m) CC = np.fft.ifftshift(cc) cc = np.fft.ifft(cc, fftsize) cc = cc[0:h, 0:w] cc = np.real(cc) plt.imshow(cc, cmap=plt.get_cmap('jet')) cc[cc < 0.75 * np.max(cc)] = 0.0 Computergrafik SS0

13 Bandreject/Bandpass-Filter Bandreject-Filter Ideal Butterworth Gauß Bandpass-Filter H BP H ( u, v) = # % $ % & 0, falls D 0 W D D 0 + W, sonst H(u, v) = ' DW + ) D ( D 0 *, + n ' ' H(u, v) = exp D D 0 * ) ), ( ( DW + ( u, v) = H ( BR u, v) *, + Gauß- Bandreject- Filter Gauß- Bandpass- Filter R. C. Gonzalez & R. E. Woods, Digital Image Processing Computergrafik SS0 3

14 Wer ist das? Bildrestauration, wie? Computergrafik SS0 4

15 Inverse Filterung Vollständige Rückgewinnung der Information aus den gestörten Daten FT - ( / )= Computergrafik SS0 5

16 Numerische Probleme bei der inversen Filterung g = h* f ( m, n) = Problem: Nullstellen von H Treten auf, falls h als Matrix nicht den vollen Rang hat Auch kleine Werte von H sind numerisch schon ein Problem Deswegen in der Praxis: F ( u v) f (, v) ( u, v) FT (, v) ( ) u, v G u H G u H ( u, v) > H min, = H 0 sonst komplexe Zahlen dividieren? Computergrafik SS0 6

17 Rauschen Problem: Inverse Filterung geht von idealen (ungestörten) Daten aus aber: Bilddaten enthalten Rauschen inverse Filterung verstärkt Rauschen extrem mit steigender Frequenz: (weißes) Rauschen bleibt, Signal- Amplitude nimmt schnell ab, Rauschanteil wird höher g(m, n) = f (m, n)* h(m, n)+η(m, n) G(u, v) = F(u, v) H(u, v)+ N(u, v) G(u, v) H(u, v) = F(u, v)+ N(u, v) H(u, v) ad-hoc Lösung: hohe Frequenzen ausschließen Computergrafik SS0 7

18 Rauschen Invertierung bei Rauschen oft nicht möglich Computergrafik SS0 8

19 Abschneiden hoher Frequenzen komplettes Filter cut-off-radius: 40 unscharfes Bild cut-off-radius:70 cut-off-radius:85 R. C. Gonzalez & R. E. Woods, Digital Image Processing Computergrafik SS0 9

20 Wiener Filter Minimierung des Fehlers zwischen Originalbild f und Schätzer ˆf führt zu ˆF(u, v) = X(u, v) G(u, v) X(u, v) = H u, v ( ) H ( u, v) ( ) + S η ( u, v) S f ( u, v) H u, v = H u, v ( ) H ( u, v) ( ) + N ( u, v ) F ( u, v) H u, v S η und S f sind die Spektren (Quadrate der Amplituden) des Rauschens bzw. der ungestörten Funktion S η = 0 (ungestört) è perfekte inverse Filterung Wiener Filter dämpft Frequenzen abhängig von SNR Computergrafik SS0 0

21 Heuristisches Wiener Filter Leider ist S η in der Praxis meist unbekannt Lösung: Konstante K: heuristisches Wiener Filter ˆF K (u, v) = X K (u, v) G(u, v) X K (u, v) = H u, v ( ) H ( u, v) H u, v ( ) + K H ( u, v) = H * ( u, v)h ( u, v) = re H ( u, v) ( ) ( ) + im( H u, v ) Computergrafik SS0

22 Wiener Filter Herleitung Bild/Signal s und Rauschen/Noise n im Ortsraum: o(x) = s(x)+ n(x) o = Observation Bild/Signal s und Rauschen/Noise n im Frequenzraum: O(u) = S(u)+ N(u) Annahmen E[ S(u) ] S(u) sind normalverteilte Zufallsvariablen N(u) sind normalverteilte Zufallsvariablen E[ S(u) ] nimmt mit steigendem u ab E[ N(u) ] ist konstant (weißes Rauschen) E[ N(u) ] u E[X] = Erwartungswert der Zufallsvariablen X Computergrafik SS0

23 Wiener Filter Herleitung E[ S(u) ] S(u) ist (µ S (u),σ S (u))-normalverteilt p( S(u) ) = " σ S (u) π exp S(u) µ (u) S $ # σ S (u) ( ) σ S (u) = E( S(u) µ S (u) * ) + = E ( S(u) ) N(u) ist (µ N (u),σ N (u))-normalverteilt für µ N (u) = 0, σ N (u) = const p( N(u) ) = O(u) = S(u)+ N(u) " σ N (u) π exp N(u) µ N (u) $ # σ N (u) % ' & ( ) p( O(u) S(u) ) = p( S(u)+ N(u) S(u) ) = * +, für µ (u) = 0 S σ N p(n(u)) p(s(u)) % ' = " N(u) % exp$ ' & σ N π # σ N & " π exp O(u) S(u) $ # σ N ( ) % ' & E[ N(u) ] u Computergrafik SS0 3

24 Wiener Filter Herleitung E[ S(u) ] Satz von Bayes p( S(u) O(u) ) = p O(u) p( O(u) S(u) ) p S(u) p O(u) ( ) ( ) = p O(u) S(u) = v v= ( ) ( ) p S(u) = v ( ) = const Gegeben Beobachtung O(u), was ist wahrscheinlichstes Signal? maximiere p(s(u) O(u)) äquivalent zu: minimiere log(p(s(u) O(u))) ( ) = log( p( O(u) S(u) )) log( p( S(u) )) + log( p( O(u) )) log p( S(u) O(u) ) = ( O(u) S(u) ) σ N ( + S(u) µ S(u) ) σ S (u) + const p(n(u)) p(s(u)) Abl. nach S(u) S(u) = + σ N σ S (u) E[ N(u) ] u O(u) Computergrafik SS0 4

25 Wiener Filter Herleitung ( ) ( ( )) log( p( S(u) )) + log( p( O(u) )) f (S(u)) = log p( S(u) O(u) ) = log p O(u) S(u) " = log $ # " = log$ # σ N σ N " π exp O(u) S(u) $ # σ N % '+ π & ( ) ( O(u) S(u) ) σ N %% " '' log " ( S(u) ) %% exp $ && σ S (u) π $ # σ S (u) '' # && " % log$ '+ # σ S (u) π & ( S(u) ) σ S (u) ( ( )) + log p O(u) Ableitung von f(s(u)) = log(s(u) O(u)) nach S(u): O(u) S(u) f '( S(u) ) = + S(u) σ N σ S (u) = S(u) " σ + % $ ' O(u) = 0 # N σ S (u) & σ N S(u) = + σ O(u) = W (u) O(u), mit W (u) = N σ + N σ S (u) E* S(u), log( p( O(u) )) Computergrafik SS0 5

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

Kapitel 7. Bildverarbeitung im Frequenzraum

Kapitel 7. Bildverarbeitung im Frequenzraum Kapitel 7 Bildverarbeitung im Frequenzraum Durchführung von Faltungen im Frequenzraum Filterung im Frequenzraum: Tiefpass- und Hochpass-Filter, etc. Bildrestaurierung Notch-Filter: Entfernung periodischer

Mehr

Computergrafik 2: Übung 2. Subsampling und Moiré-Effekte, Color Maps und Histogrammlinearisierung

Computergrafik 2: Übung 2. Subsampling und Moiré-Effekte, Color Maps und Histogrammlinearisierung Computergrafik 2: Übung 2 Subsampling und Moiré-Effekte, Color Maps und Histogrammlinearisierung Inhalt Besprechung von Übung 1 Subsampling und Moiré Effekte Color Maps Histogrammlinearisierung Computergrafik

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

Computergrafik 2: Fourier-Transformation

Computergrafik 2: Fourier-Transformation Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Pipeline Pipelinestufen können sich unterscheiden, beinhalten aber i.d.r. eine Stufe zur Bildvorverarbeitung zur

Mehr

Computergrafik 2: Filtern im Ortsraum

Computergrafik 2: Filtern im Ortsraum Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung

Computergraphik 1 2. Teil: Bildverarbeitung 1 Computergraphik 1 2. Teil: Bildverarbeitung Bildverbesserung 2 Themen jetzt gleich Rauschen, Entropie Bildverbesserung Punktbasiert Flächenbasiert Kantenbasiert 3 Was ist Rauschen? Rauschen n(m,n) ist

Mehr

Fouriertransformation und Unschärfeprinzip

Fouriertransformation und Unschärfeprinzip Information, Codierung, Komplexität 2 SS 2007 24. April 2007 Das berühmte von Heisenberg in der Quantentheorie beruht, rein mathematisch betrachtet, auf einer grundlegenden Eigenschaft der der Dichtefunktionen

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

Einführung in die medizinische Bildverarbeitung SS 2013

Einführung in die medizinische Bildverarbeitung SS 2013 Einführung in die medizinische Bildverarbeitung SS 2013 Stephan Gimbel 1 Kurze Wiederholung Gradienten 1. und 2. Ableitung grad( f ( x, y) ) = f ( x, y) = f ( x, y) x f ( x, y) y 2 f ( x, y) = 2 f ( x,

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Systemtheorie abbildender Systeme

Systemtheorie abbildender Systeme Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken

Mehr

Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg

Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg Bildverbesserung Frequenz-, Punkt- und Maskenoperationen Filtern im Frequenzraum Fouriertransformation f(x)->f( ) Filter-Multiplikation F =FxH Rücktransformation F ( )->f (x) local-domain frequency-domain

Mehr

Kapitel 8: Zeitdiskrete Zufallssignale

Kapitel 8: Zeitdiskrete Zufallssignale ZHAW, DSV2, 2007, Rumc, 8-1 Kapitel 8: Zeitdiskrete Zufallssignale Inhaltsverzeichnis 1. STOCHASTISCHER PROZESS...1 2. STATISTISCHE EIGENSCHAFTEN EINER ZUFALLSVARIABLEN...2 3. STATISTISCHE EIGENSCHAFTEN

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Computergrafik 2: Filtern im Ortsraum

Computergrafik 2: Filtern im Ortsraum Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Faltung, Korrelation, Filtern

Faltung, Korrelation, Filtern Faltung, Korrelation, Filtern Wie beschreibe ich lineare Systeme (z.b. Seismometer) -> Faltung, Konvolution, Dekonvolution? Wie quantifiziere ich die Ähnlichkeit von Zeitreihen (-> Korrelation) Wie quantifiziere

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Diskrete Signalverarbeitung und diskrete Systeme

Diskrete Signalverarbeitung und diskrete Systeme Diskrete Signalverarbeitung und diskrete Systeme Computer- basierte Verarbeitung von Signalen und Realisierung von Systemverhalten erfordern diskrete Signale und diskrete Systembeschreibungen. Wegen der

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99

Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99 Struktur des menschlichen Auges 2 / 99 Detektoren im Auge Ca. 100 150 Mio. Stäbchen Ca. 1 Mio. Zäpfchen 3 / 99 Zapfen Entlang der Sehachse, im Fokus Tagessehen (Photopisches Sehen) Scharfsehen Farbsehen

Mehr

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67 Kapitel 2.1: Die stochastische Sicht auf Signale 215 Georg Dorffner 67 Stochastische Prozesse Stochastische Prozesse sind von Zufall geprägte Zeitreihen x n f x, n 1 xn2,... n vorhersagbarer Teil, Signal

Mehr

Nichtmonotone Grauwertabbildung

Nichtmonotone Grauwertabbildung LMU München Medieninformatik Butz/Hilliges 2D Graphics WS2005 02.12.2005 Folie 1 Nichtmonotone Grauwertabbildung Zwei Grauwertfenster in einem Bild. g (g) 0 511 2100 g Erzeugt künstliche Kanten. Grenzen

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach Statistische Kennwerte und -funktionen Dr.-Ing. habil. H. Nobach 1. Einführung Statistische Kennwerte und -funktionen, wie Mittelwert Varianz Wahrscheinlichkeitsdichte Autokorrelation spektrale Leistungsdichte

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV Regina Pohle. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

Computergrafik 2: Kanten, Linien, Ecken

Computergrafik 2: Kanten, Linien, Ecken Computergrafik 2: Kanten, Linien, Ecken Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Teil IV-A: Signal- und Bildverarbeitung Methoden

Teil IV-A: Signal- und Bildverarbeitung Methoden Teil IV-A: Signal- und Bildverarbeitung Methoden 1. Aufgaben der Signal- / Bildverarbeitung 2. Elementare Verarbeitungsmethoden 3. 2D Fourier-Transformation und Faltung Aufgaben der Signal- / Bildverarbeitung

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, wie lineare

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Grundlagen der Statistischen Nachrichtentheorie

Grundlagen der Statistischen Nachrichtentheorie - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der Veröffentlichung des Klausurergebnisses unter meiner

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

FILTER UND FALTUNGEN

FILTER UND FALTUNGEN Ausarbeitung zum Vortrag von Daniel Schmitzek im Seminar Verarbeitung und Manipulation digitaler Bilder I n h a l t. Der Begriff des Filters 3 2. Faltungsfilter 4 2. Glättungsfilter 4 2.2 Filter zur Kantendetektion

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 6 146 2. Teil Ziele der Filteranwendung Signal-Trennung (z.b. EKG eines Kindes im Mutterleib, Spektralanalyse) Signal-Restauration (z.b. unscharfes

Mehr

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Multimediale Werkzeuge 1, Audio-Berabeitung normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Beachte: Teilbänder werden nach den Unter-Abtasten "aufgeblasen" (siehe

Mehr

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings Monotone Approximationen durch die Stirlingsche Formel Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings Formel für n!: e n n e n n! e n n+/2 e n Genauer zeigen wir, dass die Folge

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Filterung von Bildern (2D-Filter)

Filterung von Bildern (2D-Filter) Prof. Dr. Wolfgang Konen, Thomas Zielke Filterung von Bildern (2D-Filter) SS06 6. Konen, Zielke Aktivierung Was, denken Sie, ist ein Filter in der BV? Welche Filter kennen Sie? neuer Pixelwert bilden aus

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert Die Eigenschaften von Systemen Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert S gesendet IDEALER WANDLER S gesendet Reales System (realer Wandler): Es entstehen Verzerrungen

Mehr

2D Graphik: Bildverbesserung. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005

2D Graphik: Bildverbesserung. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005 2D Graphik: Bildverbesserung Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005 Themen heute Rauschen, Entropie Bildverbesserung Punktbasiert Flächenbasiert Kantenbasiert Was ist

Mehr

Aktive Filter. Talal Abdulwahed. Betreuer: Christian Brose

Aktive Filter. Talal Abdulwahed. Betreuer: Christian Brose Aktive Filter Betreuer: Christian Brose 1 2 1. Einführung 2. Unterschied zwischen aktive und passive Filtern 3. Was ist die Ordnung eines Filters? 4. Verschiedene Arten der aktiven Filtern 1. Tiefpassfilter

Mehr

Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev

Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev 1 Inhaltsverzeichnis: 1.Pixelbasierte Bildverbesserung...3 1.1.Monotone Grauwertabbildung...3 1.1.1.Maximierung des

Mehr

Grundlagen der Statistischen Nachrichtentheorie

Grundlagen der Statistischen Nachrichtentheorie Grundlagen der Statistischen Nachrichtentheorie - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

Zusammenfassung Abitursstoff Mathematik

Zusammenfassung Abitursstoff Mathematik Zusammenfassung Abitursstoff Mathematik T. Schneider, J. Wirtz, M. Blessing 2015 Inhaltsverzeichnis 1 Analysis 2 1.1 Monotonie............................................ 2 1.2 Globaler Verlauf........................................

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf 5. Dezember 2016 Siehe begleitend: Kammeyer / Kroschel, Digitale Signalverarbeitung, 7. Auflage, Kapitel 4.2 1 Filterentwurfsstrategien 2 Diskretisierung

Mehr

S a m s t a g, 2 1. J a n u a r

S a m s t a g, 2 1. J a n u a r S a m s t a g, 2 1. J a n u a r 2 0 1 7 D e r e r s t e T a g d e s n e u e n D o n J a, d a v e r w e i s e i c h d o c h g e r n a u f : R e a l G a m e o f T h r o n e s : H a b e m u s D o n a l d

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Bildverarbeitung. Fachschaftsrat Informatik. Professor Fuchs. Fragen TECHNISCHE UNIVERSITÄT DRESDEN. Unterteilung der Filter in Klassen

Bildverarbeitung. Fachschaftsrat Informatik. Professor Fuchs. Fragen TECHNISCHE UNIVERSITÄT DRESDEN. Unterteilung der Filter in Klassen Professor Fuchs Unterteilung der Filter in Klassen Wie erstellt man bei der Segmentierung objektumschreibende Formen? Eigenschaften der Zellkomplextopologie Was ist ein Histogramm? Wozu ist es gut? Unterschied

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Übungsaufgaben zur Lehrveranstaltung Analoge und digitale Filter Filter. Ordnung. Betrachtet wird ein

Mehr

Regularisierung in Bildrekonstruktion und Bildrestaurierung

Regularisierung in Bildrekonstruktion und Bildrestaurierung Regularisierung in Bildrekonstruktion und Bildrestaurierung Ulli Wölfel 15. Februar 2002 1 Einleitung Gegeben seien Daten g(x, y), die Störungen enthalten. Gesucht ist das (unbekannte) Originalbild ohne

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Projektdokumentation

Projektdokumentation Thema: Bildschärfung durch inverse Filterung von: Thorsten Küster 11027641 Lutz Kirberg 11023468 Gruppe: Ibv-team-5 Problemstellung: Bei der Übertragung von Kamerabildern über ein Video-Kabel kommt es

Mehr

Fourier Optik. Zeit. Zeit

Fourier Optik. Zeit. Zeit Fourier Optik Beispiel zur Fourier-Zerlegung: diskretes Spektrum von Sinus-Funktionen liefert in einer gewichteten Überlagerung näherungsweise eine Rechteckfunktion Sin t Sin 3t Sin 5t Sin 7t Sin 9t Sin

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise Audiotechnik II Digitale Audiotechnik: 5. Tutorium Prof. Dr. Stefan Weinzierl 0.11.01 Musterlösung: 1. November 01, 15:50 1 Dither a) Leiten sie den SNR eines idealen, linearen -bit Wandlers her. Nehmen

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

Grundlagen der Fourier Analysis

Grundlagen der Fourier Analysis KAPITEL A Grundlagen der Fourier Analysis Wir definieren wie üblich die L p -Räume { ( } 1/p L p (R) = f : R C f(x) dx) p =: f p < 1. Fourier Transformation in L 1 (R) Definition A.1. (Fourier Transformation,

Mehr

Kurs Empirische Wirtschaftsforschung

Kurs Empirische Wirtschaftsforschung Kurs Empirische Wirtschaftsforschung 5. Bivariates Regressionsmodell 1 Martin Halla Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz 1 Lehrbuch: Bauer/Fertig/Schmidt (2009), Empirische

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr