Anleitung zu GeoGebra 3.0
|
|
|
- Karlheinz Kirchner
- vor 8 Jahren
- Abrufe
Transkript
1 Anleitung zu GeoGebra 3.0 von Ac I. Algebraische Fähigkeiten: Funktionen und Umkehrrelationen : Verarbeitet werden Funktionen, abschnittsweise def. F., Relationen (nur als Ortslinie, nicht als Term), Funktionenscharen, parametrisierte Funktionen bzw. Relationen (x(t),y(t)), Folgen. Funktionen gibt man anhand ihres Terms ein, z.b. 3-x oder f(x)=3-x. Fehlt der Funktionsname, so wird er von GeoGebra zugewiesen (im Algebrafenster). Achtung! Definiert man y=3-x statt f(x)=3-x, so erzeugt GeoGebra ein geometrisches Objekt, das als Gerade erkannt wird und z.b. nicht abgeleitet werden kann, z.b.: d: y=-x+3 Abschnittsweise definierte Funktionen erzeugt man z.b. mit funktion[5-x 2,-3,2.5]. Funktionen mit Formvariablen (Animation): Die Anweisungsfolge a=0.5 b=-1.5 c=-2.5 f(x)=a*x 2 +b*x+c erzeugt zunächst eine spezielle Funktion. Nun können a, b, c variiert werden, entweder im Algebrafenster (Doppelklick auf die Zahl und ändern) oder durch Schieberegler. Funktionenscharen: Mit Schieberegler Parameter erzeugen. Dann für die Funktion f im Kontextmenü Spur an markieren. Voilà! Zusätzlich kann man noch Wendepunkte o.ä. darstellen mit Trick : NW=nullstelle[f,3] ( x W mit Newton!) W=(x(NW),f(x(NW))) (WP mit f =0 ) Dann wieder schieben. Umkehrrelation: Diese wird als Ortslinie konstruiert, am besten mithilfe von Befehlen und nicht durch manuelle Konstruktion! Anschließend kann sogar f umdefiniert werden und man erhält automatisch neue Ortslinien : P=punkt[f] w: y=x P =spiegle[p,a] ortslinie[p,p]
2 Parameterkurven: c=kurve[x(t),y(t),t,a,b] definiert und zeichnet eine Kurve im Bereich [a;b]. Beispiel: c=kurve[5cos(t),3sin(t),t,0,2pi] definiert eine Ellipse mit den Halbachsen5;3. A=c(3pi/4) liefert den Punkt A(5cos(.75π),3sin(.75π)) Folgen: L=Folge[Liste,Variable,von,bis,Schritt] definiert eine Folge bzw. Liste. Schritt ist optional. Beispiele: L1=Folge[(i,i²),i,-1,0.5,0.5] liefert L1={(-1,1),(-.4,.25),(0,0),(.5,.25)} L2=Folge[(n,(6n²-4n)/(1.5n²)),n,1,7] liefert L2={(1,1.33),(2,2.67),(3,3.11), }
3 Ableitung, Tangente, Steigung, Krümmung: Die Ableitungsfunktionen einer Funktion f werden mittels f (x) bzw. f (x), f (x) etc. berechnet. Alternativ sind auch die Anweisungen ableitung[f] bzw. ableitung[f,2] etc. erlaubt. Beispiele: f(x)=sin(x) gegeben. f (x) liefert -cos(x). f (π) liefert -1. Tangente an eine Funktion zeichnen: Beispiel: a = 3 f(x) = 2 sin(x) t = tangente[a, f] oder einfach tangente[3,f] liefert die Tangentengleichung von t (approximativ). Möglich ist auch: tangente[(5,1),f] verwendet nur den x-wert des Punktes (5,1) und bildet dann (5,f(5))! Die Steigung einer Geraden wird mit Steigung[Gerade] ermittelt. Dieser Befehl zeichnet auch das Steigungsdreieck, welches in seiner Größe veränderbar ist. Die Krümmung einer Funktion (oder parametrisierten Kurve) wird ermittelt durch Krümmung[Punkt, Funktion]. Beispiele: krue= Krümmung[((pi/2,1), sin(x)] liefert krue=-1. Einen Kreis mit k=curve[2+3cos(t),4+3sin(t),t,0,2pi] definieren und: krue2= Krümmung[(5,4), k] liefert krue2=0.33. Dies ist der Kehrwert des Radius!
4 Integral,Flächeninhalt : Das unbestimmte Integral (Stammfunktion F) von f wird mittels integral[f] berechnet. Beispiel: Z=integral[cos(x)] liefert Z(x)=sin(x). Achtung: Es werden nur einfache Stammfunktionen ermittelt, z.b. exp(x) exp(x), 1/x log(x), cos(3x) sin(3x)/3 und -4/x 3 2/x 2, nicht jedoch exp(5x) undefiniert. Bestimmte Integrale berechnet GeoGebra durch zusätzliche Eingabe der Grenzen. Gleichzeitig wird auch die zwischen f und x-achse gelegene Fläche gezeichnet. Erweiterung: integral[f,g,a,b] schraffiert die Fläche und berechnet das Integral zu f - g in [a;b]. Beispiele: integral[exp(x),-1,3] liefert und schraffiert die betreffende Fläche. integral[2-x,x 2,1,4] liefert Achtung: Das Ergebnis für ein bestimmtes Integral ist immer eine Approximation! Unter- und Obersummen einer Funktion lassen sich zeichnen und berechnen: Beispiel: g(x)=5-x-0.2x 2 a = -6 b = 2 n = 5 u=untersumme[g, a, b, n] berechnet o=obersumme[g, a, b, n] berechnet Flächeninhalt geradlinig begrenzter Flächen: Eine von mehreren Punkten begrenzte Fläche wird z.b. so berechnet: fläche[(-2.83,0),(0,8),(-2.83,0)] liefert die Zahl (Inhalt der Dreiecksfläche). An Stelle der Punkte kann auch ein vorher mittels Vieleck definiertes Objekt verwendet werden.
5 Kurvendiskussion - Nullpunkte, Extrempunkte, Wendepunkte etc.: Auch diese Punkte werden wie Integrale numerisch gebildet. Die Befehle lauten nullstelle[f], extremum[f] und wendepunkt[f]. Achtung: Die Befehle nullstelle[f], extremum[f] und wendepunkt[f] funktionieren nur bei Polynomen! Will man Nullstellen von beliebigen Funktionen bestimmen, so können diese mit nullstelle[f,x0] nach dem Newton-Verfahren bestimmt werden mit Startwert x0. Alternativ kann die regula falsi verwendet werden: nullstelle[f,a,b] mit Startintervall [a;b]. Beispiel Kurvendiskussion: f(x)= 4x 3-6x+2 Die Befehle nullstelle[f], extremum[f] und wendepunkt[f] liefern 5 Punkte (s.grafik). Anm.: Die Bezeichnungen N 1, H, W etc. wurden manuell vorgenommen. Extrempunkte und Wendepunkte von beliebigen Funktionen können derzeit Vers.2.7) nicht direkt bestimmt werden, aber es geht mit einem Trick: Extremum über Nullstelle von f bestimmen (Newtonverfahren)! Ebenso Wendepunkt über Nullstelle von f bestimmen. Streng genommen müssten dann noch die höheren Ableitungen überprüft werden. Beispiel: nullstelle[sin(x),3] liefert A(3.14,0) nullstelle[ableitung[sin(x)],2] liefert B(1.57,0) nullstelle[ableitung[sin(x),2],-3] liefert C(-3.14,0)
6 Taylorpolynom, Polynom, Asymptote: Der Befehl Taylorpolynom[f,a,n] erzeugt das Taylorpolynom der Funktion f um die Stelle x=a der Ordnung n. Beispiel (siehe Grafik): Zusätzliche Befehle: Polynom[f] liefert die ausmultiplizierte Polynomfunktion zu f. Beispiel: Polynom[ (x - 3) 2 ] liefert x 2-6x + 9 Asymptote[Hyperbel c] liefert beide Asymptoten einer Hyperbel
7 Stochastik mit GeoGebra ist derzeit nur eingeschränkt möglich! Zuerst muss man die beiden Variablen n und p definieren, damit man später darauf zurückgreifen kann. n=12 p=0.3 binkoeff(x)= n!/(n-floor(x))!/floor(x)! binvert(x)=binkoeff(x)*p^floor(x)*(1-p)^(n-floor(x)) wobei floor(x) die Gaußklammerfunktion und! die Fakultät sind. Mittels Integral[binvert,0,n] kann man sogar noch die Fläche (=kumulierte Wahrsch.) berechnen. Ungleich schwieriger lässt sich die Hypergeometrische Verteilung darstellen, da man 3 verschiedene Binomialkoeffizienten benötigt: n=12 M=30 N=100 bink1(x) = M! / (M - floor(x))! / floor(x)! bink2(x) = (N - M)! / (N - M - (n - floor(x)))! / (n - floor(x))! bink3=n!/(n-n)!/n! hypergeo(x)=bink1(x)/bink3*bink2(x)
Herzlich Willkommen. GeoGebra für Anfänger
Herzlich Willkommen beim Seminar GeoGebra für Anfänger Ihr Name Viel Erfolg! Inhaltsverzeichnis Viel Erfolg!... 1 Ableitung einer Funktion...2...2...2 Tangenten einer Funktion...3...3...3 Kurvendiskussion...4...4...4
Herzlich Willkommen. GeoGebra für Anfänger
Herzlich Willkommen beim Seminar GeoGebra für Anfänger Ihr Name Viel Erfolg! Umkreis eines Dreiecks Zeichnen Sie mit GeoGebra ein Dreieck mit den Eckpunkten A (- -), B ( -), C ( ) und konstruieren Sie
Umkreis eines Dreiecks
Umkreis eines Dreiecks Zeichne mit GeoGebra ein Dreieck mit den Eckpunkten A (-5-1), B (4-2), C (2 3) und konstruiere dessen Umkreis. Mit Werkzeugleiste 1 Konstruiere mit dem Werkzeug Vieleck das Dreieck
Softwarepraktikum. zu Elemente der Mathematik. Carsten Rezny Institut für angewandte Mathematik Universität Bonn
Softwarepraktikum zu Elemente der Mathematik Carsten Rezny Institut für angewandte Mathematik Universität Bonn 18. 20.05.2016 Anmeldung in Basis: 18. 20.05.2016 Organisatorisches Überblick GeoGebra freie
Höhere Mathematik 1 Übung 9
Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig
Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12
Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3
GeoGebra Quickstart. Eine Kurzanleitung für GeoGebra 3.0
GeoGebra Quickstart Eine Kurzanleitung für GeoGebra 3.0 Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und Algebra als gleichwertige
Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt
Abkürzungen & Begriffe
A Bedeutungen Abkürzungen & Begriffe Abzisse ist ein normaler x-wert [ Ordinate] arcsin, arccos, arctan sind die korrekten Bezeichnungen für: sin -, cos -, tan -. [Die üblichen Bezeichnungen sin -, cos
Arbeiten mit Funktionen
Arbeiten mit Funktionen Wir wählen den Funktioneneditor (Ë W) und geben dort die Funktion f(x) = x³ - x² - 9x + 9 ein. Der TI 92 stellt uns eine Reihe von Funktionsbezeichnern zur Verfügung (y 1 (x), y
( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )
64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den
Quickstart. Mit GeoGebra können SchülerInnen Mathematik durch Ziehen von Objekten und Verändern von Parametern interaktiv erkunden.
Quickstart Was ist GeoGebra? Dynamische Mathematiksoftware in einem einfach zu bedienenden Paket Zum Lernen und Lehren in allen Schulstufen Vereint Geometrie, Algebra, Tabellen, Grafiken, Analysis und
1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13
Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())
CAS / GTR. endlich mal eine verständliche Bedienungsanleitung. Texas Instruments TI Copyright. Havonix Schulmedien-Verlag
CAS / GTR endlich mal eine verständliche Bedienungsanleitung Texas Instruments TI 84 Kostenlose Mathe-Videos auf Mathe-Seite.de - 1 - Copyright Inhaltsübersicht 1. Katalog 2. Nullstellen 3. Gleichungen
Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.
Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden
Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I
Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle
HAK, HUM, HLSF, BAKIP (HTL1) Geogebra
Finale Vorbereitung auf die srdp 2016 HAK, HUM, HLSF, BAKIP (HTL1) Geogebra Lösung der Bewegungsaufgabe a) Ansicht: Algebra und Grafik Eingabefenster : s(t)= Funktion[- x^3/180+x^2/2,0,100] ENTER 0der
Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f
M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x
Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt
Matur-/Abituraufgaben Analysis
Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
3 Differenzialrechnung
Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl
Classpad 300 / Classpad 330 (Casio) Der Taschenrechner CAS:
Der Taschenrechner CAS: Classpad 300 / Classpad 330 (Casio) Übersicht: 1. Katalog (wichtige Funktionen und wie man sie aufruft) 2. Funktionen definieren (einspeichern mit und ohne Parameter) 3. Nullstellen
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,
Softwarepraktikum. zu Elemente der Mathematik. Carsten Rezny 10. 13.06.2014. Institut für angewandte Mathematik Universität Bonn
Softwarepraktikum zu Elemente der Mathematik Carsten Rezny Institut für angewandte Mathematik Universität Bonn 10. 13.06.2014 Anmeldung in Basis: 10. 13.06.2014 Organisatorisches Überblick GeoGebra freie
De Taschäräschnr TI-84
De Taschäräschnr TI-84 (Menü: Classic ) Übersicht: 1. Katalog 2. Nullstellen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. y-werte ausrechnen lassen 8. Steigung einer
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Analysis 5.
Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion
Funktionen mehrerer Variabler
Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen
Geben Sie das notwendige Gleichungssystem für die Berechnung der Koeffizienten von s 2 an und ermitteln Sie diese!
12 1 über Polynomfunktionen dritten Grades 04 a Splines werden allgemeine Polynomfunktionen dritten Grades genannt, die an einem bestimmten Punkt stetig aneinander gefügt werden. Für den Kontaktpunkt gilt
Aufgaben für Analysis in der Oberstufe. Robert Rothhardt
Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................
Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007
Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.
CAS / GTR. endlich mal eine verständliche Bedienungsanleitung. Texas Instruments TI Copyright. Havonix Schulmedien-Verlag
CAS / GTR endlich mal eine verständliche Bedienungsanleitung Texas Instruments TI 83 Kostenlose Mathe-Videos auf Mathe-Seite.de - 1 - Copyright Inhaltsübersicht 1. Nullstellen 2. Gleichungen lösen 3. Schnittpunkte
Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1
Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:
Kurzanleitung zum Einsatz von Geogebra
Kurzanleitung zum Einsatz von Geogebra Günter Seebach Vorbemerkung: Im Folgenden werden nur die wichtigsten Bedienhinweise für Geogebra in Kurzform dargestellt. Weitergehende Informationen finden sich
Abitur 2015 Mathematik Infinitesimalrechnung I
Seite 1 Abiturloesung.de - Abituraufgaben Abitur 215 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion f : x ( x 3 8 ) (2 + ln x) mit maximalem Definitionsbereich D. Teilaufgabe Teil A 1a (1
Lösen von Differentialgleichungen durch Reihenentwicklung
Lösen von Differentialgleichungen durch Reihenentwicklung Thomas Wassong FB17 Mathematik Universität Kassel 30. April 2008 Einführung Reihen in der Mathematik Reihen zum Lösen von Differentialgleichungen
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral
Hilfe für GeoGebra 2.5. Markus Hohenwarter, www.geogebra.at
Hilfe für GeoGebra 2.5 Markus Hohenwarter, www.geogebra.at 4. Mai 2005 Inhaltsverzeichnis Inhaltsverzeichnis 2 1 Was ist GeoGebra? 5 2 Beispiele 6 2.1 Dreieck mit Winkeln................................
b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x
K1 Punkte: / Note: Schnitt:.10.1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden
1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.
Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,
Dierentialrechnung mit einer Veränderlichen
Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben
Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion
Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate
Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +
Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph. f ( x) = 1 8 ( x3 +3 x 2 9 x+5) x f ( x) = 3 8 ( x2 +2 x 3)
Kurvendiskussion Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph f ( x) = 1 8 x3 + 3 8 x2 9 8 x+5 8 Zuerst berechne ich die Ableitungen. Außerdem hebe ich so weit wie möglich
5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation
5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion
Themenvorschläge für Arbeitsblätter mit GeoGebra
Themenvorschläge für Arbeitsblätter mit GeoGebra Einige didaktische Vorbemerkungen Beachten Sie bei der Erstellung von Materialien mit GeoGebra folgende Grundsätze: Welche Konstruktionen können von den
Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester
Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................
Brüche, Polynome, Terme
KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................
Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.
Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der
Übungsaufgaben zur Kurvendiskussion
SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen
Selbständiges Arbeiten. Oberstufe - KSOe (SprachProfil) GeoGebra. Klasse 6bw. Okt. 2011 / R. Balestra
Selbständiges Arbeiten Oberstufe - KSOe (SprachProfil) GeoGebra Klasse 6bw Okt. 2011 / R. Balestra Inhaltsverzeichnis 1 Ziel 2 2 freeware GeoGebra - Der Download 3 3 Die Eingabe von Funktionen 4 3.1 Bearbeitungsmöglichkeiten......................
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung
III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder
Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005
Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................
Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen
Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie
a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =
50 Kapitel 2: Rationale Funktionen und ihre Anwendungen 2.2.5 Orthogonale Geraden Geraden, die senkrecht aufeinander stehen, werden als zueinander orthogonale Geraden bezeichnet. Der Graph von g entsteht
Taylor-Entwicklung der Exponentialfunktion.
Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden
Flächenberechnung mittels Untersummen und Obersummen
Flächenberechnung mittels Untersummen und Obersummen Ac Einstieg: Fläche unter einer Normalparabel mit f(x) = x 2 Wir approximieren durch Rechtecksflächen, wobei zunächst senkrecht zur x-achse 10 Streifen
Kap. 1 Differenzieren, Tangenten Mathe, GZG, FN. 1 Differenzieren, Tangenten. 1.1 Ableitungen von einfachen Funktionen
1 Differenzieren, Tangenten 1.1 Ableitungen von einfachen Funktionen Die einfachsten Funktionen, die wir direkt ableiten können sind: Regel 1) f(x) = x n mit f (x) = (x n ) = n x n 1 Regel 2) f(x) = sin(x)
Zum Schluss berechnen wir die Steigung, indem wir
Einführung Grafisches Differenzieren (auch grafische Ableitung genannt) gibt uns zum einen die Möglichkeit, die Steigung des Graphen einer Funktion in einem bestimmten Punkt zu ermitteln, ohne dass wir
LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung
LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet
Name und des Einsenders
Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec [email protected] Verwenden von Dynamischer
Der Taschenrechner CAS: TI Inspire (Texas Instruments)
Der Taschenrechner (Texas Instruments) Übersicht: 1. Katalog (wichtige Funktionen un wie man sie aufruft) 2. Funktionen efinieren (einspeichern mit un ohne Parameter) 3. Nullstellen 4. Gleichungen lösen
Selbsteinschätzungstest Auswertung und Lösung
Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor
Serie 4: Flächeninhalt und Integration
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt
Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab.
Aufgaben e-funktion 7 6 5 4 3-3 - - 3 u 4 - Gegeben sind die Funktionen f k () = +k e. a) Leite g() = k e ab. b) Die Graphen von f und f 3, die -Achse und die Gerade = u (u > 0) begrenzen die Fläche A(u).
Aufgaben für Klausuren und Abschlussprüfungen
Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden
)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.
Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen
Der Satz von Taylor. Kapitel 7
Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem
Analysis: Klausur Analysis
Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com
Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts
Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)
c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende.
VP b) Das Schaubild von hat für 36 genau zwei Wendepunkte. c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. 3. Gegeben ist die Funktionenschar mit
Technische Universität München. Höhenlinien
Höhenlinien Höhenlinien Die Figur Höhenlinien.ggb zeigt zunächst den Graphen einer rationalen Funktion f(x,y) zweier Veränderlicher mit ebenen Schnitten y=y 0 bzw. x=x 0 parallel zur xz- bzw. yz-ebene.
Mathematik 3 für Informatik
Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
De Taschäräschnr Casio (Reihe: 9860G)
De Taschäräschnr Casio (Reihe: 9860G) Übersicht: 1. Nullstellen 2. Gleichungen 2. oder 3. Grades lösen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. Steigung einer Funktion
Abschlussprûfung Berufskolleg. (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg. Analysis 2 Ganzrationale Funktionen.
Abschlussprûfung Berufskolleg (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg Analysis 2 Ganzrationale Funktionen zusammen mit Exponentialfunktionen Jahrgänge 2009 bis 2016 Text Nr. 74302 Stand
Technologieeinsatz schriftlichen Reifeprüfung
9 Technologieeinsatz bei der schriftlichen Reifeprüfung T 9.01 Maturaaufgabe: Gleichungen 1 Gegeben sind fünf Gleichungen in der Unbekannten x. Aufgabenstellung: Welche dieser Gleichungen besitzt/besitzen
Gleichungen in GeoGebra-CAS Quelle: https://wiki.geogebra.org/de/befehle
Gleichungen in GeoGebra-CAS Quelle: https://wiki.geogebra.org/de/befehle Hinweis Mit spitzen Klammern werden die Objekte gekennzeichnet, die du selber ausfüllen sollst. Sie dürfen bei der Übergabe nach
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die
RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover
RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung
Technische Universität München Zentrum Mathematik Dr. Hermann Vogel. Newton-Verfahren
Newton Newton-Verfahren In der Figur Newton.ggb ist der Graph einer Funktion f gegeben und der ersten Newton- Schritt, d.h. die Konstruktion des Schnittpunktes x 1 der Tangente von f an der Stelle x 0
8 Blockbild und Hohenlinien
Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 18. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing
2 Arbeiten mit dem TI-84 Plus
2 Arbeiten mit dem TI-84 Plus Lernziele Du erfährst in diesem Abschnitt, wie du mit dem TI-84 Plus Funktionen in Bezug auf interessante Punkte untersuchst; numerische Ableitungen durchführst und Wahrscheinlichkeitsverteilungen
Abschlussaufgabe Nichttechnik - Analysis II
Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung
Mathematik Abitur Zusammenfassung Marius Buila
Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)
Aufgabe Rechenweg Lösung 1.Eine Funktion f mit f(x) = ( x² + 10x 24) e 0.5x beschreibt den Querschnitt eines Tunnels.
Lösungen zu den Textaufgaben zur e-funktion Aufgabe Rechenweg Lösung 1.Eine Funktion f mit f(x) = ( x² + 1x 24) e.5x beschreibt den Querschnitt eines Tunnels. a) ( x² + 1x 24) e.5x = ( x² + 1x 24)= v e.5x
Herzlich Willkommen. GeoGebra für Anfänger
Herzlich Willkommen beim Seminar GeoGebra für Anfänger Ihr Name Viel Erfolg! Inhaltsverzeichnis Viel Erfolg!... Umkreis eines Dreiecks......... Mit der Werkzeugleiste... Mit der Eingabezeile... Spiegeln.........
Übungsbeispiele Differential- und Integralrechnung
Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,
Mathematik II: Übungsblatt 01: Lösungen
N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t
Funktionenschar. Der Funktionsterm von f k (x) = 3x 2 3 k x3
Funktionenschar Der Funktionsterm von f k (x) = x k x enthält neben der Variablen x noch eine weitere Variable k, die Formvariable oder der Parameter. Zu jedem möglichen Wert von k gehört eine Funktion.
