Übungen mit dem Applet Wahrscheinlichkeitsnetz

Größe: px
Ab Seite anzeigen:

Download "Übungen mit dem Applet Wahrscheinlichkeitsnetz"

Transkript

1 Wahrscheinlichkeitsnetz 1 Übungen mit dem Applet Wahrscheinlichkeitsnetz 1 Statistischer Hintergrund Verteilungen Darstellung von Daten im Wahrscheinlichkeitsnetz Kurzbeschreibung des Applets Ziel des Applets...6 Visualisierungen mit dem Applet Normalverteilte Daten...7. Abweichungen von der Normalverteilung Logarithmische Normalverteilung Weibullverteilung Auswertung eigener Daten... 9

2 Wahrscheinlichkeitsnetz 1 Statistischer Hintergrund 1.1 Verteilungen Daten wie z.b. Versuchsergebnisse, Messwerte für Länge und Gewicht von Teilen, maximale Leistung eines Motors u.ä. unterliegen immer einer Zufallsstreuung auch wenn versucht wurde, möglichst unter identischen Bedingungen zu arbeiten und nichts zu verändern. Trägt man die Häufigkeit, mit der einzelne Werte auftreten, grafisch auf, so erhält man ein Histogramm. Häufigkeitsdichte Histogramm: relative Häufigkeit, mit der ein bestimmter Messwert oder ein Wert in einem bestimmten Bereich aufgetreten ist Dicke Sammelt man immer mehr Daten (idealisiert unendlich viele), so wird aus der Häufigkeitsdichte die. Häufig liefert die Normalverteilung eine gute Näherung für die Verteilung der Daten (siehe dazu das Applet Zentraler Grenzwertsatz ). Die Dichte der Normalverteilung ist gegeben durch g(x) = 1 e π σ (x ) σ wobei = Mittelwert und σ = Standardabweichung (bzw. σ = Varianz) der Normalverteilung zwei Parameter sind, die Lage bzw. Breite der Verteilung beschreiben. Folgende Bilder zeigen die Dichte der Normalverteilung für verschiedene Mittelwerte bzw. für verschiedene Standardabweichungen σ.

3 Wahrscheinlichkeitsnetz 3,,1 = Dicke [m] Dichte der Normalverteilungen mit Mittelwerten = 7, 3 und 35 C, Standardabweichung σ = C,4,3,,1 σ = Dicke [m] 4 Dichte der Normalverteilungen mit Mittelwert = 3 C und Standardabweichungen σ = 1, und 4 C Zuverlässigkeitsdaten und Festigkeitsdaten werden häufig in guter Näherung von der logarithmischen Normalverteilung oder der Weibullverteilung beschrieben. Bei der logarithmischen Normalverteilung ist der Logarithmus des Messwerts normalverteilt. Die Dichte der logarithmischen Normalverteilung ist gegeben durch g(x) = 1 1 e π σ x (ln x ) σ wobei = Mittelwert und σ = Standardabweichung (bzw. σ = Varianz) der Verteilung von ln x. Die Weibullverteilung ist eine Extremwertverteilung, sie beschreibt die Verteilung des schwächsten Gliedes einer Kette. Die Dichte der Weibullverteilung ist gegeben durch wobei g (t) β t t = T T β 1 e β t t T

4 Wahrscheinlichkeitsnetz 4 T = charakteristische Lebensdauer β = Formparameter und t = ausfallfreie Zeit. 1. Darstellung von Daten im Wahrscheinlichkeitsnetz Bei der Auswertung von Versuchs- oder Messergebnissen ist es schwer, anhand eines Histogramms zu beurteilen, ob die Daten zu einer Normalverteilung oder einer anderen Verteilung passen. Im Wahrscheinlichkeitsnetz für normalverteilte Daten sind die Achsen nun so skaliert, dass eine Normalverteilung auf eine Gerade abgebildet wird. Daten, die aus einer Normalverteilung stammen, streuen daher nur zufällig um eine Gerade. Da eine Gerade leichter zu erkennen ist als die oben dargestellten Verteilungskurven, kann man leichter erkennen, ob die vorliegenden Daten zu einer Normalverteilung passen. Das folgende Bild zeigt ein Beispiel für Daten, die nur zufällig von einer Normalverteilung abweichen. Als Interpretationshilfe ist eine Gerade eingezeichnet. Auch für andere Verteilungen kann man geeignete Achsenskalierungen wählen, sodass die Verteilung auf eine Gerade abgebildet wird. Im Applet können dieselben Daten wahlweise in einem Wahrscheinlichkeitsnetz für normalverteilte Daten, logarithmisch normalverteilte Daten und weibullverteilte Daten eingetragen werden. Für die logarithmische Normalverteilung ist die x-achse logarithmisch skaliert, bei der Weibullverteilung ist zusätzlich die y-achse so skaliert, dass weibullverteilte Daten auf einer Geraden liegen.

5 Wahrscheinlichkeitsnetz Kurzbeschreibung des Applets In das Applet können unter Dateneingabe beliebige Daten (Stichprobenwerte) von Hand eingegeben werden (richtigen Stichprobenumfang angeben und dann neu berechnen ) oder Zufallszahlen mit vorgegebener Verteilung simuliert werden. Die Daten können dann wahlweise im Wahrscheinlichkeitsnetz für NV, Wahrscheinlichkeitsnetz für log-nv oder im Wahrscheinlichkeitsnetz für Weibull dargestellt werden. Folgende Verteilungen können für die Simulation vorgegeben werden: σ Normalverteilung mit Mittelwert und Standardabweichung σ Normalverteilung mit Mittelwert und x u σ x o Standardabweichung σ, bei x u und x o beschnitten (entsteht, wenn Teile außerhalb dieser Grenzen aussortiert wurden) Anteil p σ 1 1 σ Anteil 1-p Überlagerung von zwei Normalverteilungen Mischverteilung, ein Anteil p der Teile stammt aus Normalverteilung mit Mittelwert 1 und Standardabweichung σ 1, der Rest aus Normalverteilung mit Mittelwert und Standardabweichung σ =1, σ=1 logarithmische Normalverteilung in diesem Beispiel hat die Verteilung von ln x den Mittelwert =1 und die Standardabweichung σ=1

6 Wahrscheinlichkeitsnetz 6 t o T β= Weibullverteilung mit ausfallfreier Zeit t, charakteristischer Lebensdauer T und in diesem Beispiel Formparameter β= x u x o Rechteckverteilung (Gleichverteilung) mit Untergrenze x u und Obergrenze x o x u x o Dreieckverteilung mit Untergrenze x u und Obergrenze x o 1.4 Ziel des Applets Das Applet soll dabei helfen, Daten ins Wahrscheinlichkeitsnetz einzutragen. Es soll den Zusammenhang zwischen der Form der Verteilung und der Skalierung des zugehörigen Wahrscheinlichkeitsnetzes verdeutlichen und grafisch zeigen, dass Daten aufgrund der Zufallsstreuung immer von der Geraden abweichen diese Abweichungen aber mit zunehmendem Stichprobenumfang n immer kleiner werden, wenn die Stichprobe aus der jeweiligen Verteilung entnommen wurde abweichende Verteilungen zu einer Abweichung von der Geraden führen diese Abweichung bei kleinem Stichprobenumfang n aber nicht von der Zufallsstreuung unterscheidbar ist.

7 Wahrscheinlichkeitsnetz 7 Visualisierungen mit dem Applet.1 Normalverteilte Daten Nach dem Start des Applets wählen Sie "Eingabe der Verteilungen (Simulation)" und Normalverteilung mit z.b. =1 und σ=, mit einem Stichprobenumfang von 1. Im "Wahrscheinlichkeitsnetz für NV" liegen die Punkte näherungsweise auf einer Geraden. "Neu berechnen" gibt ähnliche Punkte, die ebenfalls geringfügig von der Geraden abweichen. Beachten Sie dabei, dass die Abweichungen bei kleinen und bei großen Prozentwerten nur scheinbar größer sind als bei mittleren Werten die y-skala ist hier gestreckt. Die Einzelwerte unterliegen einer Zufallsstreuung, insgesamt wird die Verteilung aber gut beschrieben. Man kann zwar keine Aussagen über Einzelwerte treffen, wohl aber über viele Werte zusammen. Im "Wahrscheinlichkeitsnetz für log-nv" und "Weibull" erhält man eine deutlich erkennbare systematische Abweichung von einer Geraden diese Verteilungen sind nicht konsistent mit den Daten. Wiederholen Sie die Simulation nun mit einem Stichprobenumfang von. Die Streuung der Werte um die Gerade im "Wahrscheinlichkeitsnetz für NV" ist deutlich größer, im "Wahrscheinlichkeitsnetz für log-nv" und "Weibull" ist die Abweichung von der Geraden nicht mehr eindeutig erkennbar: Bei kleinem Stichprobenumfang ist die Zufallsstreuung größer, die Form der Verteilung ist kaum mehr zu erkennen. Einfacher grafischer Test auf Konsistenz von Daten mit der verwendeten Verteilung: Wenn die größte Abweichung eines Punktes (in %, nicht mm im Bild) kleiner ist als ca. 89/ n, dann sind die Daten mit der angenommenen Verteilung konsistent (vereinfachter Kolmogoroff-Smirnov-Lilliefors-Test). Achtung: Dies ist kein Beweis dafür, dass die Verteilung richtig ist, es liegt nur kein Widerspruch vor ein Beweis ist prinzipiell nicht möglich. Testen Sie diesen Test, indem Sie für verschiedene Stichprobenumfänge n bei mehreren Simulationen jeweils die größte Abweichung bestimmen und mit der Grenze vergleichen.

8 Wahrscheinlichkeitsnetz 8. Abweichungen von der Normalverteilung Eine beschnittene Normalverteilung tritt in der Praxis auf, wenn eine Fertigung so stark streut, dass auch Teile außerhalb der Toleranz auftreten, diese dann aber aussortiert werden. Eine Mischung von zwei Normalverteilungen tritt auf, wenn Teile von zwei Fertigungslinien oder Herstellern vermischt werden, die sich wesentlich unterscheiden. Rechteckverteilung und Dreieckverteilung treten kaum praktisch auf und dienen hier nur als Demonstrationsbeispiele. Für all diese Verteilungen gilt: Bei großem Stichprobenumfang sind die Abweichungen von der Normalverteilung (und den anderen Verteilungen) klar erkennbar insbesondere, wenn die Abweichung groß ist (bei der beschnittenen Verteilung z.b. wenn x o bei +σ liegt, bei der Mischverteilung wenn 1 und sich um mehr als σ unterscheiden). Bei kleinem Stichprobenumfang sind die Abweichungen nur schwer erkennbar. Als Entscheidungshilfe können Sie den Kolmogoroff-Smirnov-Lilliefors-Test aus Abschnitt.1 verwenden. Experimentieren Sie mit unterschiedlichen Abweichungen von der Normalverteilung und versuchen Sie jeweils die charakteristischen Abweichungen von der Geraden im "Wahrscheinlichkeitsnetz für NV" zu verstehen (die beschnittene Verteilung und die Rechteckverteilung sind an den Rändern zu steil, die Mischverteilung hat ein Plateau im x- Bereich zwischen 1 und )..3 Logarithmische Normalverteilung Wählen Sie "log-normalverteilung" z.b. mit =1 und σ=1. Bei der Eintragung in das "Wahrscheinlichkeitsnetz für NV" ist eine deutliche Abweichung von der Gerade erkennbar, bei der Eintragung in das "Wahrscheinlichkeitsnetz für log-nv" liegen die Werte auf einer Geraden: Im "richtigen" Netz liegen die Werte auf einer Geraden so kann man die Form der Verteilung grafisch ermitteln. x ln ist der Mittelwert von ln x und schätzt da die Achse mit den x-werten beschriftet ist, liest man dort Standardabweichung von ln x und schätzt σ. e ab. s ln ist die

9 Wahrscheinlichkeitsnetz 9.4 Weibullverteilung Wählen Sie "Weibull" z.b. mit β= und T=1 und zunächst t =. Bei der Eintragung in das "Wahrscheinlichkeitsnetz für NV" ist eine deutliche Abweichung von der Gerade erkennbar, bei der Eintragung in das "Wahrscheinlichkeitsnetz für log-nv" weniger deutlich und bei "Weibull" liegen die Werte auf einer Geraden. Bei Zuverlässigkeitsuntersuchungen werden sowohl das "Wahrscheinlichkeitsnetz für log-nv" als auch "Weibull" verwendet, da sie in mancher Hinsicht ähnlich sind und bei den geringen Stückzahlen bei Zuverlässigkeitsuntersuchungen manchmal schwer zu unterscheiden sind. "Weibull" ist theoretisch besser geeignet und wesentlich weiter verbreitet. Verwenden Sie nun als ausfallfreie Zeit t =1. Mit keinem der Netze erhält man zunächst eine befriedigende Gerade. Im Weibullnetz befindet sich jedoch unten ein Schieber für t. Verschieben Sie diesen nun und beobachten Sie, wie die zeitverschobene Kurve (orange) sich einer Gerade annähert, wenn t ca. 1 ist: So kann die ausfallfreie Zeit empirisch ermittelt werden. 3 Auswertung eigener Daten Wenn Sie "Eingabe von Stichprobenwerten" wählen, können Sie Ihre eigenen Daten eingeben und in den drei Netzen darstellen. Untersuchen Sie so die Verteilung Ihrer Daten. Dazu müssen Sie vorher den richtigen Stichprobenumfang wählen.

Anleitung zum Applet

Anleitung zum Applet Anleitung zum Applet Wahrscheinlichkeitsnetz bearbeitet von: WS 2006/2007 E/TI-7, betreut von: Prof. Dr. Wilhelm Kleppmann Inhaltsverzeichnis Anleitung zum Applet... 1 1 Vorwort... 3 2 Grafische Benutzeroberfläche

Mehr

Übungen mit dem Applet Vergleich von zwei Mittelwerten

Übungen mit dem Applet Vergleich von zwei Mittelwerten Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Anleitung zum Java - Applet

Anleitung zum Java - Applet Anleitung zum Java - Applet Stetige Verteilungen Visualisierung von Wahrscheinlichkeit und Zufallsstreubereich bearbeitet von: WS 2004 / 2005 E/TI 7 betreut von: Prof. Dr. Wilhelm Kleppmann Inhaltsverzeichnis

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Grenzen für x -s-regelkarten

Grenzen für x -s-regelkarten Normalverteilte Fertigung: Stichproben aus der Fertigung: σ σ Eine normalverteilte Fertigung hat den Mittelwert µ und die Standardabweichung σ. Stichproben aus der Fertigung haben zufällig abweichende

Mehr

10. Die Normalverteilungsannahme

10. Die Normalverteilungsannahme 10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung 1 Einführung in die Fehlerrechnung liederung 1. Motivation. Fehlerarten 1. robe Fehler. Systematische Fehler 3. Zufällige Fehler 3. Rechnerische Erfassung der Messabweichungen 1. Fehlerabschätzung einmaliges

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Der Zentrale Grenzwertsatz

Der Zentrale Grenzwertsatz QUALITY-APPS Applikationen für das Qualitätsmanagement Der Zentrale Grenzwertsatz Autor: Dr. Konrad Reuter Für ein Folge unabhängiger Zufallsvariablen mit derselben Verteilung und endlichem Erwartungswert

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften

1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften 1. Übungsblatt zu Aufgabe 1: In R können die Logarithmen zu verschiedenen Basen mit der Funktion log berechnet werden, wobei im Argument base die Basis festgelegt wird. Plotten Sie die Logarithmusfunktion

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Auszug aus: Dietrich E./Schulze A.

Auszug aus: Dietrich E./Schulze A. Auszug aus: Dietrich E./Schulze A. Statistische Verfahren zur Maschinen- und Prozessqualifikation. 6., vollständig überarbeitete Auflage, Carl Hanser Verlag 2009. 458 13 Firmenrichtlinien 13 Firmenrichtlinien

Mehr

Approximation der Binomialverteilung durch die Normalverteilung

Approximation der Binomialverteilung durch die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 4.0.007 Approimation der Binomialverteilung durch die Normalverteilung Histogramme von Binomialverteilungen sind für nicht zu kleine n glockenförmig. Mit größer

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

9. Übungen. Statistik: Mittelwert und Standardabweichung Statistik: Median Statistik: Kennwerte

9. Übungen. Statistik: Mittelwert und Standardabweichung Statistik: Median Statistik: Kennwerte QM-Übungsaufgaben 9. Übungen F1 Statistik: Mittelwert und Standardabweichung F2 Statistik: Median F3 Statistik: Kennwerte F4 Statistik: Kennwerte F5 Lebensdauer F6 Vertrauensgrenzen und Histogramm F7 Statistik:

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Kapitel 38 Verteilungsdiagramme

Kapitel 38 Verteilungsdiagramme Kapitel 38 Verteilungsdiagramme Mit Verteilungsdiagrammen können Sie grafisch untersuchen, inwieweit die Stichprobenverteilung einer Variablen mit einer theoretischen Verteilung übereinstimmt. So können

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516

Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516 Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15:45 3067 Türcode: 1516 Deskriptive Statistik Maße der Zentraltendenz Deskriptive Statistik Maße der Zentraltendenz arithmetischer Mittewert klassenorientierter

Mehr

Statistische Auswertungsmethoden für Ingenieure

Statistische Auswertungsmethoden für Ingenieure Manfred Kühlmeyer Statistische Auswertungsmethoden für Ingenieure mit Praxisbeispielen Unter Mitarbeit von Claudia Kühlmeyer Mit 55 Abbildungen Springer Inhaltsverzeichnis Seite 1 Einführung 1 1.1 Was

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Grundlagen der Statistik und Fehlerrechnung

Grundlagen der Statistik und Fehlerrechnung Physikalisches Grundpraktikum Teil 1 WS 2010/2011 Grundlagen der Statistik und Fehlerrechnung Stefan Diehl 28.02.2011 12.30 13.30 HS I 01.03.2011 12.30 13.30 CHEG18 Inhalt Grundbegriffe der Statistik Wahrscheinlichkeitsverteilungen

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 131/2006, 19-21

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 131/2006, 19-21 Der T-Test in Excel NORBERT BRUNNER und MANFRED KÜHLEITNER Ein häufiges Problem ist der Vergleich eines beobachteten Stichprobenmittelwerts mit einem Sollwert. Dabei wird der T-Test angewandt. Wir zeigen

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 8: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 LK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung Einführung in die Fehlerrechnung Jede quantitative physikalische Messung ist mit Fehlern behaftet. Die Angabe der Fehler gehört zu einer ordentlichen Auswertung ebenso dazu, wie die Angabe des eigentlichen

Mehr

Computersimulation des Qualitätstests

Computersimulation des Qualitätstests .1 Computersimulation des Qualitätstests In diesem Kapitel erreichen wir ein erstes entscheidendes Ziel: Wir ermitteln näherungsweise die Wahrscheinlichkeiten und für die Fehler 1. und. Art und zwar ohne

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung) Messtechnische Grundlagen und Fehlerbetrachtung (inkl. Fehlerrechnung) Länge Masse Zeit Elektrische Stromstärke Thermodynamische Temperatur Lichtstärke Stoffmenge Basisgrößen des SI-Systems Meter (m) Kilogramm

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0 Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I WS 009/010 Kapitel.0 Schritt 1: Bestimmen der relevanten Kenngrößen Kennwerte Einflussgrößen Typ A/Typ B einzeln im ersten Schritt werden

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung III Wichtige Verteilungen Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Wie viele Produkte müssen zerstörend in der Qualitätskontrolle geprüft werden? DRK-Blutspendedienst West

Wie viele Produkte müssen zerstörend in der Qualitätskontrolle geprüft werden? DRK-Blutspendedienst West Wie viele Produkte müssen zerstörend in der Qualitätskontrolle geprüft werden? Einschlägige Regelungen Es sind regelmäßig Qualitätskontrollen an Stichproben aus der laufenden Herstellung durchzuführen.

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

3 Evaluation als Beschreibung von Zuständen

3 Evaluation als Beschreibung von Zuständen Evaluation als Beschreibung von Zuständen 1 Sind die folgenden Aussagen richtig oder falsch? 1.1 In einer Klumpenstichprobe werden systematisch anfallende Cluster von Personen vollständig untersucht. Die

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Grundlagen der Probabilistik

Grundlagen der Probabilistik Grundlagen der Probabilistik Gliederung Einleitung Theoretische Grundlagen der Stochastik Probabilistische Methoden Mögliche Ergebnisse von probabilistischen Untersuchungen Mögliche Fehlerquellen bei probabilistischen

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten Ch. Wendel Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

Beschreibende Statistik und der Übergang zur beurteilenden Statistik

Beschreibende Statistik und der Übergang zur beurteilenden Statistik Beschreibende Statistik und der Übergang zur beurteilenden Statistik Guido Herweyers KHBO Campus Oostende K.U.Leuven 1. Vorwort Der Einsatz des Voyage 200 erleichert die Verarbeitung von Daten und erlaubt

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6 6. Diagramme mit Mathcad In diesem Kapitel geht es um andere, als X Y Diagramme. 6.. Kreisdiagramme. Schritt: Die darzustellende Funktion muß zunächst als Funktion definiert werden, zum Beispiel f(x):=

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Messunsicherheit und Fehlerrechnung

Messunsicherheit und Fehlerrechnung Messunsicherheit und Fehlerrechnung p. 1/25 Messunsicherheit und Fehlerrechnung Kurzeinführung Peter Riegler p.riegler@fh-wolfenbuettel.de Fachhochschule Braunschweig/Wolfenbüttel Messunsicherheit und

Mehr

313 Statistische Verteilungen (Computer-Simulation)

313 Statistische Verteilungen (Computer-Simulation) 313 Statistische Verteilungen (Computer-Simulation) 1. Aufgaben 1.1 Berechnen Sie in Vorbereitung dieses Versuches einige Beispiele für Binomial-, Poisson- und Normalverteilungen (Übungsaufgaben 1-3, Abschnitt.

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Operations Research (OR) II

Operations Research (OR) II Operations Research (OR) II Fortgeschrittene Methoden der Wirtschaftsinformatik 27. Juni 2007 Michael H. Breitner, Hans-Jörg von Mettenheim und Frank Köller 27.06.2007 # 1 Stochastische Inputgrößen Stochastische

Mehr

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25 Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Törichte Annahmen über den Leser 19 Wie dieses Buch aufgebaut ist 19 Teil I: Kopfüber eintauchen indie Statistik 19 Teil II: Von Wahrscheinlichkeiten,

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr