G2.3 Produkte von Vektoren

Größe: px
Ab Seite anzeigen:

Download "G2.3 Produkte von Vektoren"

Transkript

1 G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen die Areit erechnen unter der Vorussetzung, dss sich ds Fhrzeug nur längs der Schienen ewegen knn. s Fs F In der Physik ist die Areit W ls Produkt us der Krft F s in Wegrichtung und der Weglänge s erklärt: W F s s Wegen Fs F cos F s F cos folgt drus W F s s F cos s F s cos F s cos F ; s : F s Mit dieser Festlegung ist ein Produkt von zwei Vektoren vereinrt worden, dessen Wert er kein Vektor, sondern ein Sklr ist! Definition: Unter dem Sklrprodukt zweier Vektoren und versteht mn ds Produkt us, und cos ;. Dei soll ; der Winkel sein, um den mn zu erhlten: mthemtisch positiv drehen muss, um die Richtung von cos ;. Eigenschften, Rechengesetze, Sonderfälle. Vorzeichen: Für gilt 0, sonst 0. G-- g- erstellt m

2 G Grundlgen der Vektorrechnung cos Es genügt, Winkel zu etrchten, d cos(80 0 ) cos(80 0 ) 4. cos , weil cos cos(60 0 ) ist (Kommuttivgesetz!) 6. cos c c Ds Assozitivgesetz gilt im Allgemeinen nicht! 8. ohne Beweis: k k 9. c c c (Distriutivgesetz) 0. cos cos (mehr dzu weiter unten! Ds Sklrprodukt im orthonormierten Koordintensystem Skizze: x P(,) Q(,) e e x Der Vektor 0A e und e drstellen: lässt sich mit Hilfe der entsprechenden Einheitsvektoren G-- g- erstellt m

3 G Grundlgen der Vektorrechnung e e Dei gilt e e e e, e e e e 0 und sowie cos und sin Für ds Sklrprodukt zweier Vektoren Anwendung der Rechenregeln für Vektoren und gilt dnn unter e e e e e e e e e e e e e e e e e e e e, lso Beispiel: In einem krtesischen Koordintensystem sind die Vektoren gegeen. Berechnen Sie. und 4 4 ( 4) 0. Anmerkung: Wegen cos edeutet ds negtive Ergenis des Produkts, dss cos 0 ist, dss lso ein stumpfer Winkel ist. Längenerechnungen Im Folgenden eschränken wir uns uf die Koordintendrstellung von Vektoren in orthonormierten Koordintensystemen. Dnn gilt (vgl. letzter Aschnitt): Definition: Unter dem Betrg des Vektors versteht mn die reelle Zhl zw.. Folgerungen: G-- g- erstellt m

4 G Grundlgen der Vektorrechnung Im krtesischen Koordintensystem gilt z. B. 5 ( ) 5 0. Definition: Ein Einheitsvektor ist ein Vektor mit dem Betrg. Ein derrtiger Vektor lässt sich leicht so erzeugen: 0 e e Beispiel: ( ) Winkelerechnungen Die Definition des Sklrprodukts erlut eine einfche Berechnung des Winkels zwischen zwei Vektoren: cos cos Anmerkung: Für 0 oder 0 wird kein Winkel zwischen und erklärt! Beispiel:, 0 4 cos ; ( ) (0) drus folgt (eindeutig!) ; rc cos 5 4, 8 0. G--4 g- erstellt m

5 G Grundlgen der Vektorrechnung Folgerungen, Anmerkungen. 0. Als Anwendungseispiele des Sklrprodukts ieten sich zum Beispiel Nchweise elementrgeometrischer Sätze wie etw des Stzes von Thles n: C c A -r M r B Vorussetzung: 0 Behuptung: C liegt uf dem Thleskreis üer AB, d. h. r c Beweis: r c, r c r c r c c r c r 0 r c Mit Hilfe des Sklrprodukts lässt sich leicht ein Vektor x gegeenen Vektor senkrecht steht (Normlenvektor). erstellen, der uf einem Beispiel: Es soll ein Normlenvektor zu gefunden werden. Lösung: x 0 x x x =0 x x 0 x x x x Diese Gleichung ist nicht eindeutig lösr, d. h. es git unendlich viele Normlenvektoren zu dem vorgegeenen Vektor ; es ist er leicht zu sehen, dss zum Beispiel G--5 g- erstellt m

6 G Grundlgen der Vektorrechnung x, 5 die Gleichung x 0 erfüllt. Ds Vektorprodukt Auf ds Vektorprodukt soll hier nur gnz kurz eingegngen werden. Beispiel: Ds Prolem, zu zwei Vektoren und einen gemeinsmen Normlen- vektor n zu finden, führt uf ds Gleichungssystem I n 0 II n 0 Dieses System führt zu einem Vektor, der ls sog. Vektorprodukt (Kreuzprodukt) geschrieen werden knn: n x mit n sin ; Ds Vektorprodukt ist so definiert: Definiton: Zwei Vektoren und ist genu ein Vektor x zugeordnet, so dss. x senkrecht uf und,.,, x ein Rechtssystem ilden,. x sin ;, woei 0 ist. Skizze: x In krtesischen Koordinten lässt sich (ohne Beweis) ds Vektorprodukt so schreien: G--6 g- erstellt m

7 G Grundlgen der Vektorrechnung x Anwendungen Die Vektoren und spnnen ein Prllelogrmm uf (vgl. Skizzen), ds wegen h sin( ) h sin( ) sin( ) den Flächeninhlt A Prlle log rmm h sin x ht. Ds von und ufgespnnte Dreieck ht den hlen Flächeninhlt des von und ufgespnnten Prllelogrmms. Für seinen Flächeninhlt gilt dmit A Dreieck h sin x. h h Für den Flächeninhlt eines Dreiecks ABC gilt in einem orthogonlen Koordintensystem im R : A ( ) ( c c ) (c c ) im R : A ABxAC Für den Flächeninhlt eines Prllelogrmms, ufgespnnt von den Vektoren im R, gilt und A G--7 g- erstellt m

8 G Grundlgen der Vektorrechnung Ein gerdes Prism, dessen Grundfläche ein Prllelogrmm ist und von den Vektoren, und c h ufgespnnt wird, ht die Grundfläche A x, die Höhe h h und dmit ds Volumen V h x. Steht der Vektor c nicht senkrecht uf der durch und ufgespnnten Grundfläche, dnn entsteht ein schiefes Prism mit der Höhe h c cos( ) h c cos( ) Für ds Sptvolumen gilt dnn V x h x c cos( ) x c. Die Verknüpfung, die den Vektoren Sptprodukt., und c eine reelle Zhl zuordnet, heißt Ds Prism in A. / knn durch einen Schnitt in zwei gleich große dreiseitige Prismen zerlegt werden. D jedes derrtige dreiseitige Prism in drei volumengleiche Pyrmiden zerlegt werden knn, folgt für die von den Vektoren, und c ufgespnnte Pyrmide V Pyrmide 6 x c G--8 g- erstellt m

9 G Grundlgen der Vektorrechnung Skizzen dzu: c c Zusmmenfssende Eigenschften des Vektorprodukts, Anwendungen: v x ist ein Vektor, der sowohl uf ls uch uf senkrecht steht. v Die Vektoren, und x ilden ein Rechtssystem (wie Dumen, Zeigefinger und Mittelfinger der rechten Hnd). v Ds Vektorprodukt ist ntikommuttiv: x x. v Schließen die Vektoren und den Winkel ein, so gilt: x sin( ). v Für den Flächeninhlt A eines von den Vektoren und ufgespnnten Prl- lelogrmms gilt A Prlle log rmm x. v Für den Flächeninhlt A eines von den Vektoren und ufgespnnten Dreiecks gilt A Dreieck x. v Für ds Volumen V eines von den Vektoren flchs gilt V x c., und c ufgespnnten Prllel- v Für ds Volumen einer von den Vektoren gen Pyrmide giltv 6 x c ufgespnnten dreiseiti, und c G--9 g- erstellt m

10 This document ws creted with WinPDF ville t The unregistered version of WinPDF is for evlution or non-commercil use only. This pge will not e dded fter purchsing WinPDF.

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner Abiturvorbereitung Mthemtik Linere Algebr / Anlytische Geometrie Copyright 2013 Rlph Werner 1 Linere Gleichungssysteme Ein lineres Gleichungssystem (LGS) besteht us einer Anzhl linerer Gleichungen. (m,n)-lgs

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Einführung in die Vektor- und Matrizenrechnung. Vektoren

Einführung in die Vektor- und Matrizenrechnung. Vektoren Einführung in die Vektor- und Mtrizenrechnung Vektoren Sklr und Vektor Größen, deren Werte durch reelle Zhlen usgedrückt werden können, heißen Sklre. Beispiele: Msse, Ldung, Tempertur, etc. Größen, die

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik Aufgbensmmlung der höheren Mthemtik von Vsili P. Minorski 5., ktulisierte Auflge Hnser München 2008 Verlg C.H. Beck im Internet: www.beck.de ISBN 978 3 446 466 Zu Inhltsverzeichnis schnell und portofrei

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Vektorrechnung im R 3 mit dem Voyage 200:

Vektorrechnung im R 3 mit dem Voyage 200: Wir legen einen neuen Folder n: VAR-LINK F, 5 (CREATE FOLDER) Nme: vektor3 Wechseln in den Folder: MODE Current Folder vektor3 uswählen Vektorrechnung im R 3 mit dem Voge 00: Punkte und Vektoren werden

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Kapitel 1. Anschauliche Vektorrechnung

Kapitel 1. Anschauliche Vektorrechnung Kpitel 1 nschuliche Vektorrechnung 1 2 Kpitel I: nschuliche Vektorrechnung Montg, 13. Oktoer 03 Einordnung Dieses erste Kpitel ht motivierenden Chrkter. Es führt n die geometrische nschuung nknüpfend die

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Inhaltsübersicht. Vektorrechnung in der Ebene. Ungleichungen in zwei Variablen. Der Vektorraum R n, Vektoroperationen.

Inhaltsübersicht. Vektorrechnung in der Ebene. Ungleichungen in zwei Variablen. Der Vektorraum R n, Vektoroperationen. Inhltsüersicht Kpitel 5: evil forces: Vektorrechnung Vektorrechnung in der Eene Ungleichungen in zwei Vrilen Der Vektorrum R n, Vektoropertionen Eenen im Rum Linere Gleichungssysteme Gußsche Elimintion

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

Zusammenfassung Lineare Algebra und Analytische Geometrie

Zusammenfassung Lineare Algebra und Analytische Geometrie Technik Zsmmenfssng Linere Alger nd Anlytische Geometrie Begriff Ortsvektor Vektor mit Anfngspnkt im Koordintenrsprng: OA æ ö = ç ; ç çè ø OB Berechnng æ ö = ç ç çè ø Addition zweier Vektoren Die Komponentenwerte

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Zusammenfassung: Vektoren

Zusammenfassung: Vektoren LGÖ Ks M Sculjr 06/07 Zusmmenfssung: Vektoren Inltsverzeicnis Punkte im Koordintensystem Vektoren Linere ängigkeit von Vektoren 4 etrg eines Vektors 5 Sklrprodukt und ortogonle Vektoren 6 Vektorprodukt

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

Vortrag im Seminar: Ausgewählte höhere Kurven

Vortrag im Seminar: Ausgewählte höhere Kurven Vortrg im Seminr: Ausgewählte höhere Kurven Julin Rusch 8. Dezember 016 Inhltsverzeichnis 1 Konchoide des Nikomedes 1.1 Nmensherkunft................................ 1. Eine Kissoide?.................................

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Hans Walser. Geometrische Spiele. 1 Vier gleiche rechtwinklige Dreiecke. 1.1 Allgemeiner Fall

Hans Walser. Geometrische Spiele. 1 Vier gleiche rechtwinklige Dreiecke. 1.1 Allgemeiner Fall Hns Wlser Geometrische Spiele 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fll Wir strten mit einem elieigen rechtwinkligen Dreieck in der ülichen Beschriftung. A c B Strtdreieck C Nun versuchen

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Nturwissenschftliche Fkultät I Didktik der Mthemtik Privte Vorlesungsufzeichnungen Kein Anspruch uf Vollständigkeit 5 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenereiche.4 Die Reellen Zhlen.4.. Definition

Mehr

Mathematik für Ingenieure und Naturwissenschaftler Band 1

Mathematik für Ingenieure und Naturwissenschaftler Band 1 Mthemtik für Ingenieure und Nturwissenschftler Bnd Ein Lehr- und Arbeitsbuch für ds Grundstudium Berbeitet von Lothr Ppul. Auflge 4. Tschenbuch. XXIV, 854 S. Softcover ISBN 978 658 569 Formt (B x L): 6,8

Mehr

hat genau eine eindeutig bestimmte Lösung, wenn für die Determinante der Koeffizientenmatrix gilt:

hat genau eine eindeutig bestimmte Lösung, wenn für die Determinante der Koeffizientenmatrix gilt: 1 Determinnten Die Determinnte einer qudrtischen Mtrix ist eine reelle Zhl. Sie ermöglicht insbesondere eine Aussge über die Existenz der inversen Mtrix bzw. über die Lösbrkeit von lineren leichungssystemen.

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Kleine Algebra-Formelsammlung

Kleine Algebra-Formelsammlung Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

1. Rechensteine und der Pythagoräische Lehrsatz.

1. Rechensteine und der Pythagoräische Lehrsatz. 1. Rechensteine und der Pythgoräische Lehrstz. Der Beginn der wissenschftlichen Mthemtik fällt mit dem Beginn der Philosophie zusmmen. Er knn uf die Pythgoräer zurückdtiert werden. Die Pythgoräer wren

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Monte-Carlo-Integration

Monte-Carlo-Integration Monte-Crlo-Integrtion von Dietmr Herrmnn, Anzing Kurzfssung: An Hnd eines einfchen Beispiels wird gezeigt, dß jedes Integrl ls Erwrtungswert einer reellen Zufllsgröße ufgefßt werden knn. een einer symptotischen

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

1 Das dreidimensionale Koordinatensystem

1 Das dreidimensionale Koordinatensystem Schüleruchseite 90 9 Lösungen vorläufig Ds dreidimensionle Koordintensystem S. 90. Möglichkeit: : Linke vordere oere Ecke des gnz linken Würfels : rechte hintere oere Ecke des gnz rechten Würfels : rechte

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Berechnung der inversen Matrix.

Berechnung der inversen Matrix. Inverse Mtrix Berechnung der inversen Mtrix. Es ist ds LGS A X = E zu lösen. X = A 1 ist eine Mtrix. Verwendung des Guss-Algorithmus: Trnsformiere (A E in (E X. Steffen Voigtmnn Beuth Hochschule für Technik

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 Gnze Zhlen 1 35 Ausgngstempertur +6 C... ) Temperturbnhme um 9 C b) Temperturbnhme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 36 Ausgngstempertur 4 C... ) Temperturzunhme um 10 C b) Temperturzunhme um 21 C (

Mehr

Grundwissen Jahrgangsstufe 9

Grundwissen Jahrgangsstufe 9 Grundwissen Jhrgngsstufe 9 GM 9. Qudrtwurzeln und die Menge der reellen Zhlen QUADRATWURZELN Unter der Qudrtwurzel us einer Zhl (kurz: Wurzel us, Schreibweise ) versteht mn diejenige nichtnegtive Zhl,

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Einführung in die Lineare Algebra

Einführung in die Lineare Algebra Einführung in die Linere Alger Linere Gleichungssysteme Dieses Kpitels dient zur Motivtion und Vorereitung der systemtischen Drstellung. Wir hen dfür ds wichtigste Prolem der elementren lineren Alger gewählt,

Mehr