Wahrscheinlichkeitsrechnung

Größe: px
Ab Seite anzeigen:

Download "Wahrscheinlichkeitsrechnung"

Transkript

1 Statistik und Wahrscheinlichkeitsrechnung Übung

2 Aufgabe 4.1 Die monatliche Aufwendung X [CHF] für den Wasserverbrauch einschliesslich h der Abwassergebühren eines 2 Personenhaushalts seien durch eine Zufallsvariable mit der Dichtefunktion gegeben: f X c (15 ) für 0 60 ( ) = 4 0 sonst a) Welcher Wert soll für c gewählt werden? b) Beschreibe die kumulative Wahrscheinlichkeitsverteilungsfunktion F X () der Zufallsvariablen X c) Welche der folgenden Werte überschreiten nicht das 90% Quantil der monatlichen Rechnung? 30 CHF, 40 CHF, 50 CHF und 60 CHF? d) Wie hoch ist die mittlere monatliche Aufwendung für den Wasserverbrauch einschliesslich der Wassergebühren eines 2 Personenhaushalts?

3 Aufgabe 4.1 a) Welcher lh Wert soll für c gewählt werden? Wahrscheinlichkeitsdichtefunktion fx () 0 Nicht negativ f X () d = 1 Fläche = 1 Ω

4 Aufgabe 4.1 a) Welcher lh Wert soll für c gewählt werden? c (15 ) für 0 60 fx ( ) = 4 Wahrscheinlichkeitsdichtefunktion 0 sonst fx () 0 Ω f X () d = 1 Nicht negativ Fläche = 1 f X ( ) d = 1 c (15 ) d = c = c ( ) = 1 c =

5 Aufgabe 4.1 b) Beschreibe die kumulative Verteilungsfunktion F X () der Zufallsvariablen fll X Kumulative Verteilungsfunktion: FX() = fx() d Ω f X c (15 ) für 0 60 ( ) = 4 0 sonst 0 < F < 2 3 X () =

6 Aufgabe 4.1 c) Welche lh der folgenden Werte überschreitet nicht das 90% Quantil der monatlichen Rechnung? 30 CHF, 40 CHF, 50 CHF und 60 CHF Als erstes muss der Wert für das 90% Quantil berechnet werden < FX ( ) = < α

7 Aufgabe 4.1 c) Welche lh der folgenden Werte überschreitet nicht das 90% Quantil der monatlichen Rechnung? 30 CHF, 40 CHF, 50 CHF und 60 CHF Als erstes muss der Wert für das 90% Quantil berechnet werden < F < 2 3 X () = 0 60 PX ( α) = F ( ) =09. X α 1 PX ( α) = (15- ) d α = 4 0 α

8 Aufgabe 4.1 c) Welche lh der folgenden Werte überschreitet nicht das 90% Quantil der monatlichen Rechnung? 30 CHF, 40 CHF, 50 CHF und 60 CHF Als erstes muss der Wert für das 90% Quantil berechnet werden. α α ( α) = (15 ) = = PX d α α 2 3 = = 0.9 α 15 α α 90 α = 0 α = α =

9 Aufgabe 4.1 d) Wie hoch hist die mittlere monatliche Aufwendung für den Wasserverbrauch einschliesslich der Wassergebühren eines 2 Personenhaushalts? Mittelwert = 30 Wir können dies direkt aus der Wahrscheinlichkeitsdichtefunktion herauslesen. Warum? Mittelwert =

10 Aufgabe 4.1 d) Wie hoch hist die mittlere monatliche Aufwendung für den Wasserverbrauch einschliesslich der Wassergebühren eines 2 Personenhaushalts? = = Der Mittelwert entspricht dem ersten Moment μ EX [ ] fx ( d ) Mittelwert = ( ) = X ( ) = (15 ) EX f d d 1 15 = ( ) ( ) ( ) ( ) = ( ) ( ) = =

11 Aufgabe 4.2 Die Wahrscheinlichkeitsdichtefunktion h hk i h k i für eine Zufallsvariable fll ibl ist in Abbildung dargestellt. (Annahme für Teilaufgabe b, c, d und e: a=1, b=2, c=3 und d=6.) a) Bestimme die Wahrscheinlichkeitsdichtefunktion und die Wahrscheinlichkeitsverteilungsfunktion analytisch. b) Bestimme den Modalwert und den Parameter h. c) Berechne den Mittelwert. d) Berechne den Wert des Medians. e) Ermittle grafisch den Median aus der Wahrscheinlichkeitsdichtefunktion. Diskutieren Sie wie der Mittelwert graphisch ermittelt werden kann

12 Aufgabe 4.2 Denken wir zuerst über die Definition nach Was bd bedeutet das grafisch?

13 Aufgabe 4.2 ) d h h l hk d h f k d d a) Bestimme die Wahrscheinlichkeitsdichtefunktion und die Wahrscheinlichkeitsverteilungsfunktion analytisch. Wahrscheinlichkeitsverteilungsfunktion: g < a 0 < b a a b a h ) ( ) ( < = d c b h f X ) ( ) ( < d d c d c d h 0 ) ( ) ( d 0

14 Aufgabe 4.2 a) Bestimme die Wahrscheinlichkeitsdichtefunktion h hk h k und die Wahrscheinlichkeitsverteilungsfunktion analytisch. Wahrscheinlichkeitsdichtefunktion FX( ) = fx( ) d 0 < a 2 ( a) h + C1 a < b 2( b a ) FX ( ) = h + C2 b < c 2 ( d) h + C3 c < d 2 ( c d ) 1 d Die Konstanten können berechnet werden indem die Grenzbedingungen benutzt werden Ω

15 Aufgabe 4.2 Für Für Für a) Bestimme die Wahrscheinlichkeitsdichtefunktion h hk it ht kti und die Wahrscheinlichkeitsverteilungsfunktion analytisch. Wahrscheinlichkeitsdichtefunktion = a = b = c 2 ( a a) 0 = h + C 2( b a ) 2 ( b a) h = h b+ C 2( b a ) ( a+ b) C 2 = h 2 1 C 1 = 0 2 ( d) h + C = h + C 2( c d) ( c d) ( a+ b) 3 h + C = h c h 2( c d) 2 FX( ) = fx( ) d 0 < a 2 ( a) h + C1 a < b 2( b a) FX ( ) = h + C2 b < c 2 ( d) h + C3 c < d 2 ( c d) 1 d ( c+ d) ( a+ b) C 3 = h Ω

16 Aufgabe 4.2 b) Bestimme den Modalwert dl und den Parameter h (a=1, b=2, c=3 und d=6). ) Modalwert Modalwert = Bereich zwischen b und c

17 Aufgabe 4.2 b) Bestimme den Modalwert dl und den Parameter h (a=1, b=2, c=3 und d=6). ) X f ( d ) = 1 Fläche unter der Wahrscheinlichkeits dichtefunktion ( d a) + ( c b) (6 1) (3 2) 1 h= 1 + h= 1 h=

18 Aufgabe 4.2 c) Berechne den Mittelwert (a=1, b=2, c=3 und d=6). ) f X 0 <a ( a) h a < b ( b a) ( ) = h b < c ( d) h c < d ( c d) 0 d 0 < 1 ( 1) 1 < fx ( ) = 2 < 3 3 ( 6) 3 < μ X ( 1) ( 6) = EX [ ] = fx ( ) d = d + d + d =

19 Aufgabe 4.2 d) Berechne den Wert des Medians. grafisch anhand der kumulativen Dichtefunktion analytisch PX ( ) = f ( ) d= X Median

20 Aufgabe 4.2 e) Ermittle grafisch hden Medianwert aus der Wahrscheinlichkeitsdichtefunktion. h hk h k A 1 = ( 2 1) = A 2 = ( 3 2) = A 3 = ( 6 3) = Median: Punkt P auf der X Achse, bei welchem die Fläche der Wahrscheinlichkeitsdichtefunktion im Intervall [0,P] gleich 0.5 ist

21 Aufgabe 4.2 e) Diskutieren Sie wie der Mittelwert grafisch ermittelt werden kann. Der Mittelwert ist der Schwerpunkt der Figur der Wahrscheinlichkeitsdichtefunktion

22 Aufgabe 4.2 e) Diskutieren Sie wie der Mittelwert grafisch ermittelt werden kann. s i Ai ( 1+ 3) i = = = 3.11 Ai 1 i Der Mittelwert ist der Schwerpunkt der Figur der Wahrscheinlichkeitsdichtefunktion. s = i i i A A i i

23 Aufgabe 4.3 (Gruppenaufgabe) Die Wahrscheinlichkeitsdichtefunktion h hk i h k i einer Zufallsvariablen fll ibl X ist in Abbildung dargestellt. In dem Intervall [0, 4] ist die Funktion linear. In dem Intervall [4, 12] nähert sich die Funktion parabelförmig der Achse und tangiert tsie in Punkt ktq. a) Berechne die Koordinaten des Punktes P(,y) (,y) und beschreibe die Wahrscheinlichkeitsdichtefunktion. b)beschreibe und zeichne die kumulative Verteilungsfunktion von X anhand einiger charakteristischer Zahlen in der Grafik. c)berechne den Mittelwert der Zufallsvariablen X. d)berechne die Wahrscheinlichkeit P [X>4]

24 Aufgabe 4.3 (Gruppenaufgabe) a) Berechne die Koordinaten des Punktes P(,y) und beschreibe die Wahrscheinlichkeitsdichtefunktion. Vorgehensweise: Definiere die Wahrscheinlichkeitsdichtefunktion über dem Intervall [0,12]. Ermittle die Koordinaten des Punktes P (Fläche unter der Wahrscheinlichkeitsdichtefunktion ist immer gleich 1)

25 Aufgabe 4.3 (Gruppenaufgabe) b) Beschreibe und zeichne ih die kumulative Verteilungsfunktion i von X anhand einiger charakteristischer Zahlen in der Grafik. Vorgehensweise: 1. fx () d = 1 Ω 2. Zeichne

26 Aufgabe 4.3 (Gruppenaufgabe) c) Berechne den Mittelwert der Zufallsvariablen X. Vorgehensweise: (Vergleiche Aufgabe 4.2) 1. μ = E [ ] μ

27 Aufgabe 4.3 (Gruppenaufgabe) d) Berechne die Wahrscheinlichkeit P [X>4]. Vorgehensweise: (Vergleiche Aufgabe 4.2) Überschreitungswahrscheinlichkeit P[X>α] ist PX [ > 4] = 1 PX [ 4] Wie kann diese Wahrscheinlichkeit ausgedrückt werden?

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Summe von Zufallsvariablen

Summe von Zufallsvariablen Summe von Zufallsvariablen Gegeben sind die unabhängigen, gleichverteilten Zufallsvariablen X und Y mit den Wahrscheinlichkeitsdichten f() und g(). { für f() = g() = sonst Wir interessieren uns für die

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

I. Zahlen, Rechenregeln & Kombinatorik

I. Zahlen, Rechenregeln & Kombinatorik XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Rechne die Lösung im 2. Quadranten ohne Verwendung der speziellen TI 92- Funktionen auf die Polarform um.

Rechne die Lösung im 2. Quadranten ohne Verwendung der speziellen TI 92- Funktionen auf die Polarform um. 1.Schularbeit 7b Klasse 1a) Gegeben ist die Gleichung z 2 + pz + (33 + 47i) = 0 mit der Lösung z 1 = 4-9i. Berechne den Koeffizienten p sowie die 2. Lösung der Gleichung. b) Berechne die Lösungen der Gleichung

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT Wahrscheinlichkeitsverteilungen

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT Wahrscheinlichkeitsverteilungen ARBEITSBLATT 7- Wahrscheinlicheitsverteilungen Lernziele: Wahrscheinlicheitsfuntion und Verteilungsfuntion disreter Verteilungen berechnen und zeichnen önnen. Dichtefuntion und Verteilungsfuntion stetiger

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006 3.. Angabe Übungsrunde 5, Gruppe 2 LVA 07.369, Übungsrunde 5, Gruppe 2, 4.. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, /2006 Betrachten Sie einen Behälter, der Karten mit jeweils einer aufgedruckten

Mehr

Mathematik. 20. September 2016 AHS. Teil-1-Aufgaben. Korrekturheft. Standardisierte kompetenzorientierte schriftliche Reifeprüfung

Mathematik. 20. September 2016 AHS. Teil-1-Aufgaben. Korrekturheft. Standardisierte kompetenzorientierte schriftliche Reifeprüfung Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 20. September 2016 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Eigenschaften von Zahlen Jede natürliche Zahl kann als Bruch in

Mehr

Abschlussprüfung an Fachoberschulen in Bayern Mathematik 2002, Stochastik S I Nichttechnische Ausbildungsrichtung

Abschlussprüfung an Fachoberschulen in Bayern Mathematik 2002, Stochastik S I Nichttechnische Ausbildungsrichtung Alexandra Steiner 7.5.005 A_NT_S_AS_Loes.mcd Abschlussprüfung an Fachoberschulen in Bayern Mathematik 00, Stochastik S I Nichttechnische Ausbildungsrichtung AUFGABENSTELLUNG:.0 Die Post eines kleineren

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 008 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 6. Juni 008 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Korrelation, Regression und Signifikanz

Korrelation, Regression und Signifikanz Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts

Mehr

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr.

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Hochschule Darmstadt Fachbereich MN Prof. Dr. Dietrich Baumgarten Darmstadt, den 9.7.2012 Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Aufgabe 1 2 3 4 5 6 Summe Note Punkte 1 Aufgabe

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 08.04.2008 Der zentrale Grenzwertsatz Normalverteilung Die Wahrscheinlichkeitsdichteverteilung der Summe von Zufalls variablen konvergiert zu

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 2) HRP BOS-

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 2) HRP BOS- HRP 007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag ) Bildung, Wissenschaft und Forschung HRP 007 -BOS- Name: Datum: Vorschlag : Aus 5 Aufgaben können Sie 3 auswählen. Sie müssen

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 3 - NORMALVERTEILUNG 05.12.2014 1 05.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 DIE NORMALVERTEILUNG 02 ZENTRALES GRENZTHEOREM 03 Z-WERTE 04 KONFIDENZINTERVALLE

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Kurze Zusammenfassung der letzten Vorlesung Schätzung und Modellentwicklung Überblick Statistische Signifikanztests

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Probeklausur Statistik Lösungshinweise

Probeklausur Statistik Lösungshinweise Probeklausur Statistik Lösungshinweise Prüfungsdatum: Juni 015 Prüfer: Studiengang: IM und BW Aufgabe 1 18 Punkte 0 Studenten werden gefragt, wie viele Stunden sie durchschnittlich pro Tag ihr Smartphone

Mehr

1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften

1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften 1. Übungsblatt zu Aufgabe 1: In R können die Logarithmen zu verschiedenen Basen mit der Funktion log berechnet werden, wobei im Argument base die Basis festgelegt wird. Plotten Sie die Logarithmusfunktion

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Übungsaufgaben: Wahrscheinlichkeitsrechnung Seite: 1

Übungsaufgaben: Wahrscheinlichkeitsrechnung Seite: 1 Übungsaufgaben: Wahrscheinlichkeitsrechnung Seite: 1 Aufgabe 1 Aus einem Skatspiel mit 32 Karten wird zufällig eine Karte gezogen. Dabei sei D das Ereignis Es wird eine Dame gezogen und H das Ereignis

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Die Steigung m wird als Parameter (Platzhalter, der nicht die Variabel ist) festgelegt:

Die Steigung m wird als Parameter (Platzhalter, der nicht die Variabel ist) festgelegt: Lösungen des Wochenplans "Lineare Funktionen" Schuljahr 014/1 Zuerst definieren wir den Zahlenbereich, in dem wir arbeiten: assume(type::real) R Jetzt zu den Aufgaben: Aufgabe 1: Definieren der Funktion

Mehr

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 1 1. Klausur Wintersemester 2012/2013 Hamburg, 19.03.2013 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal Apl. Prof. Dr.. Herbort, Prof. Dr. M. Heilmann 28.8.212 Bergische Universität Wuppertal Modul: Mathematik 1b für Ingenieure, Bachelor Sicherheitstechnik (PO 211 Aufgabe 1 (2 Punkte a Berechnen Sie das

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Was machen wir in der Vorlesung? Testen und Lineares Modell Was machen wir zu Beginn: Wir wiederholen und vertiefen einige Teile aus der Statistik I: Konvergenzarten

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr