Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Größe: px
Ab Seite anzeigen:

Download "Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)"

Transkript

1 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6 Punkte) Die Übertragungsfunktion der Strecke hat die Form P (s) = α 1 (s + α 2 ) 2 s 2 (s + α 3 )(s + α 4 ) 2. Die Konstanten α 1,..., α 4 sind dabei positiv. Ihr Frequenzgang P (jω) ist graphisch in Form von Bode-Diagrammen gegeben: P (jω) in db arg P (jω) in ω in rad s 1 a) Skizzieren Sie anhand der Bode-Diagramme die zugehörige Ortskurve und ermitteln Sie deren Schnittpunkte mit der reellen Achse. b) Als Regler kommt ein Proportionalregler R(s) = K mit dem reellen Parameter K zum Einsatz. Ermitteln Sie mit Hilfe des Nyquist-Kriteriums nachvollziehbar, d.h. mit Fallunterscheidung und Ermittlung der stetigen Winkeländerung für jeden Fall, den größtmöglichen Wertebereich des Reglerparameters K, für den der Regelkreis die BIBO-Eigenschaft besitzt.

2 1. Teilklausur SS 16 Gruppe A Aufgabe 2 (4 Punkte) Die Übertragungsfunktion der Regelstrecke lautet P (s) = 4s + 8 (s + 6)(2s + 3). Dimensionieren Sie mittels der T-Summen Regel einen PI-Regler und geben Sie dessen Übertragungsfunktion R(s) an. Ermitteln Sie die dazu benötigten Größen T Σ und K S analytisch und benutzen Sie die unten angegebene Tabelle. Formeln und Tabellen Nyquist-Kriterium: arg {1 + L(jω)}! = (n a + 2n r ) π 2 Einstellregeln T-Summen-Regel, für einen idealen PID-Regler der Form ( R(s) = K P ) T N s + T Vs Reglertyp K P T N T V P-Regler PI-Regler PD-Regler PID-Regler 1 K S 1 T Σ 2K S 2 1 T Σ K S 3 1 2T Σ T Σ 3 6 K S Nützliche Funktionen: m arctan m m db 6 9, , Hinweis: arctan 1 m = 9 arctan m

3 1. Teilklausur SS 16 Gruppe B Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6 Punkte) Die Übertragungsfunktion der Strecke hat die Form P (s) = α 1 (s + α 2 ) 2 s 2 (s + α 3 )(s + α 4 ) 2. Die Konstanten α 1,..., α 4 sind dabei positiv. Ihr Frequenzgang P (jω) ist graphisch in Form von Bode-Diagrammen gegeben: P (jω) in db arg P (jω) in ω in rad s 1 a) Skizzieren Sie anhand der Bode-Diagramme die zugehörige Ortskurve und ermitteln Sie deren Schnittpunkte mit der reellen Achse. b) Als Regler kommt ein Proportionalregler R(s) = K mit dem reellen Parameter K zum Einsatz. Ermitteln Sie mit Hilfe des Nyquist-Kriteriums nachvollziehbar, d.h. mit Fallunterscheidung und Ermittlung der stetigen Winkeländerung für jeden Fall, den größtmöglichen Wertebereich des Reglerparameters K, für den der Regelkreis die BIBO-Eigenschaft besitzt.

4 1. Teilklausur SS 16 Gruppe B Aufgabe 2 (4 Punkte) Die Übertragungsfunktion der Regelstrecke lautet P (s) = 2s + 3 (s + 2)(1s + 6). Dimensionieren Sie mittels der T-Summen Regel einen PI-Regler und geben Sie dessen Übertragungsfunktion R(s) an. Ermitteln Sie die dazu benötigten Größen T Σ und K S analytisch und benutzen Sie die unten angegebene Tabelle. Formeln und Tabellen Nyquist-Kriterium: arg {1 + L(jω)}! = (n a + 2n r ) π 2 Einstellregeln T-Summen-Regel, für einen idealen PID-Regler der Form ( R(s) = K P ) T N s + T Vs Reglertyp K P T N T V P-Regler PI-Regler PD-Regler PID-Regler 1 K S 1 T Σ 2K S 2 1 T Σ K S 3 1 2T Σ T Σ 3 6 K S Nützliche Funktionen: m arctan m m db 6 9, , Hinweis: arctan 1 m = 9 arctan m

5 2. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Aufgabe 1 (4 Punkte) Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Die Übertragungsfunktion P (s) ist vom einfachen Typ. Ihr Frequenzgang P (jω) liegt in Form von Bode-Diagrammen vor: P (jω) in db arg P (jω) in ω in rad s 1 Die Sprungantwort des geschlossenen Kreises soll eine Anstiegszeit von t r 3,75 s = 15 4 s und eine Überschwingweite von M p 1,8 aufweisen. a) Dimensionieren Sie eine Reglerübertragungsfunktion der Form R(s) = K 1 + s /ω Z 1 + s /ω N mit den reellen Reglerparametern K, ω Z und ω N mit Hilfe des Frequenzkennlinienverfahrens so, dass obige Anforderungen näherungsweise erfüllt werden. Hinweis: Benutzen Sie dazu gegebenenfalls die umseitig angegebene Tabelle. b) Berechnen Sie die bleibende Regelabweichung e für folgende Führungsgrößen: i) r(t) = 1t, ii) r(t) = 27t 2

6 2. Teilklausur SS 16 Gruppe A Aufgabe 2 (3 Punkte) Es sei folgendes System zweiter Ordnung mit der Eingangsgröße u, dem Zustandsvektor x und der Ausgangsgröße y gegeben: [ ] [ ] dx dt = x + u 2 2 Ermitteln Sie ein Regelgesetz der Form u = k T x so, dass die beiden Eigenwerte des geregelten Systems bei λ 1,2 = 2 liegen. Aufgabe 3 (3 Punkte) Gegeben sei eine Strecke mit der Übertragungsfunktion P (s) = s + 3 s 2 s + 1. Ermitteln Sie für diese Strecke eine implementierbare Übertragungsfunktion T (s) so, dass für r(t) = σ(t) das Integral [r(t) y(t)] 2 + δ [u(t) u ] 2 dt für δ = 1 minimiert wird. Dabei steht die Abkürzung u für Hinweis: j = 1 + j 2. u = lim t u(t). Formeln und Tabellen Optimierung: (s) = ν(s)ν( s) + 1 δ µ(s)µ( s) Frequenzkennlinienverfahren: Φ r + ü 7, ω c t r 1,5 Mitunter nützliche Funktionen: m arcsin m m + 1 arctan m m db 6 9, ,5 18 2

7 Nachklausur SS 16 Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6 Punkte) Die Regelstrecke ist durch gegeben. Als Regler wird ein PI-Regler P (s) = 1 s + 1 R(s) = K ( ) st N verwendet. Für dessen Nachstellzeit wird T N = 1 gewählt, während K ein freier reeller Parameter ist. a) Ermitteln Sie mit Hilfe des Nyquist-Kriteriums nachvollziehbar, d.h. mit Fallunterscheidung und Ermittlung der stetigen Winkeländerung für jeden Fall, den größtmöglichen Wertebereich des Reglerparameters K, für den der Regelkreis die BIBO- Eigenschaft besitzt. b) Als Führungsgröße wird r(t) = cos t gewählt. Ermitteln Sie den Verlauf der Ausgangsgröße y(t) im eingeschwungenen Zustand für folgende Werte des Reglerparameters: i) K = 1, ii) K = 1. c) Ermitteln Sie mit der Methode von Tustin eine zeitdiskrete Approximation R(z) des Reglers für die Abtastzeit T d = 2 und geben Sie das zeitdiskrete Regelgesetz in Form einer Differenzengleichung an. Aufgabe 2 (4 Punkte) Die Übertragungsfunktion der Regelstrecke lautet P (s) = 2 s 2. Bestimmen Sie die Reglerübertragungsfunktion R(s) durch eine Polvorgabe so, dass alle Pole der Führungsübertragungsfunktion T (s) an der Stelle s = 2 liegen. Welche Führungsübertragungsfunktion T (s) ergibt sich auf diese Weise?

8 Nachklausur SS 16 Formeln Nyquist-Kriterium: arg {1 + L(jω)}! = (n a + 2n r ) π 2 Tustin-Formel: s = 2 T d z 1 z + 1 Binomische Formeln: (a + b) 2 = a 2 + 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs : FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Zusammenfassung der 9. Vorlesung

Zusammenfassung der 9. Vorlesung Zusammenfassung der 9. Vorlesung Analyse des Regelkreises Stationäres Verhalten des des Regelkreises Bleibende Regelabweichung für ffür r FFührungs- und und Störverhalten Bleibende Regelabweichung für

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte) Prof. L. Guzzella Prof. R. D Andrea BSc - Sessionsprüfung 5.8.8 Regelungstechnik I (151-591-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 1 Minuten 9 (unterschiedlich

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr

Frequenzgang und Übergangsfunktion

Frequenzgang und Übergangsfunktion Labor Regelungstechnik Frequenzgang und Übergangsfunktion. Einführung In diesem Versuch geht es um: Theoretische und experimentelle Ermittlung der Frequenzgänge verschiedener Übertragungsglieder (Regelstrecke,

Mehr

Ausarbeitung Regelungstechnik

Ausarbeitung Regelungstechnik Ausarbeitung Regelungstechnik by Poth & Fiechtner 2005 by Poth & Fiechtner Seite 1/14 Inhalt Grundsätzliches zur Regelungstechnik Untersuchung des als Regelstrecke verwendeten Heizlüfters Regelkreis als

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung 6.8.8 Regelungstechnik II (5-59-) Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 (unterschiedlich gewichtet, total 6 Punkte) Um die

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler FELJC 4a_Geschlossener_ Regelkreis_Störverhalten.odt 1 4. Der geschlossene Regelkreis mit P-Strecke und P-Regler 4.1. Störverhalten (disturbance behaviour, comportement au perturbations) 4.1.1 Angriffspunkt

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Regelungstechnik 1. Oldenbourg Verlag München Wien

Regelungstechnik 1. Oldenbourg Verlag München Wien Regelungstechnik 1 Lineare und Nichtlineare Regelung, Rechnergestützter Reglerentwurf von Prof. Dr. Gerd Schulz 3., überarbeitete und erweiterte Auflage Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Heinz Mann f Horst Schiffelgen f Rainer Froriep Einführung in die Regelungstechnik Analoge und digitale Regelung, Fuzzy-Regler, Regler-Realisierung, Software 10., neu bearbeitete Auflage mit 379 Bildern

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 202 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

14 Übungen zu Regelung im Zustandsraum Teil 2

14 Übungen zu Regelung im Zustandsraum Teil 2 Zoltán Zomotor Versionsstand: 9. März 25, :32 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3./de/

Mehr

Herbert Bernstein. Regelungstechnik. Theorie und Praxis. mit WinFACT und Multisim. Elektor-Verlag, Aachen

Herbert Bernstein. Regelungstechnik. Theorie und Praxis. mit WinFACT und Multisim. Elektor-Verlag, Aachen Herbert Bernstein Regelungstechnik Theorie und Praxis mit WinFACT und Multisim Elektor-Verlag, Aachen Inhaltsverzeichnis Vorwort 7 1 Einführung in die Regelungstechnik 9 11 Lösung Regelungsaufgaben von

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Praktikum Grundlagen Regelungstechnik

Praktikum Grundlagen Regelungstechnik Praktikum Grundlagen Regelungstechnik Versuch P-GRT 05 Versuchsziel Versuch 5 - Reglerentwurf im Frequenzbereich COM3LAB Veränderung des Streckenfrequenzganges durch einen vorgeschalteten Regler Datum

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte) Prof. Dr. H. P. Geering Prof. Dr. L. Guzzella BSc - Sessionsprüfung 7..8 egelungstechnik II 5-59- Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 unterschiedlich

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit.

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. FELJC Optimierung_Theorie.odt Optimierung. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. Hierzu gibt es unterschiedliche

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 5.2.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Entwurf durch Polvorgabe

Entwurf durch Polvorgabe Grundidee der Zustandsregelung Entwurf durch Polvorgabe Zustandsgröß ößen, innere Informationen aus dem Prozeß,, werden zurückgef ckgeführt. Vorteile: Bei Bei vollständiger Steuerbarkeit ist ist eine eine

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

Zusammenfassung der 3. Vorlesung

Zusammenfassung der 3. Vorlesung Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs

Mehr

8 Blockschaltbilddarstellung für diskrete Systeme

8 Blockschaltbilddarstellung für diskrete Systeme Beispiel 7.5 Sprungantwort Die Sprungantwort beschreibt das komplette Übertragungsverhalten, da der Sprung in seiner Fourierzerlegung alle Frequenzen enthält. 7.6 algebraische Schleife 8 Blockschaltbilddarstellung

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe. Regelung 1

Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe. Regelung 1 Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe Regelung 1 Klassische Kaskade (Strom-, Drehmoment-, Drehzahl-Regelung) Regelung 2 Control Schemes s* Lageregelung position controller speed

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

60 Minuten Seite 1. Einlesezeit

60 Minuten Seite 1. Einlesezeit 60 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Formelsammlung. Regelungstechnik I. Basierend auf Arbeit von Florian Beermann Letzte Änderung am : Frank Bättermann

Formelsammlung. Regelungstechnik I. Basierend auf Arbeit von Florian Beermann Letzte Änderung am : Frank Bättermann Formelsammlung Regelungstechnik I Basierend auf Arbeit von Florian Beermann Letzte Änderung am 29.04.2008: Frank Bättermann 1 Inhaltsverzeichnis 1. Steuerung und Regelung...3 1.3 Vorteile der Regelung...3

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Beispiel 3: Ersatzstabverfahren

Beispiel 3: Ersatzstabverfahren Beispiel: Ersatzstabverfahren Blatt: Seite 1 von 9 Beispiel 3: Ersatzstabverfahren Bestimmung der maßgeblichen Knickfigur und zugehörigen Knicklänge in der Ebene. Nachweis gegen Biegeknicken nach dem Ersatzstabverfahren

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Übungsaufgaben zu Mathematik III (ohne Lösungen)

Übungsaufgaben zu Mathematik III (ohne Lösungen) Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen

Mehr

Versuchsanleitung MV_5_1

Versuchsanleitung MV_5_1 Modellbildung und Simulation Versuchsanleitung MV_5_1 FB 2 Stand August 2011 Prof. Dr.-Ing. Hartenstein Seite 1 von 11 1. Versuchsgegenstand Versuchsziel Ziel des Versuches ist es, die im Lehrfach Mechatronische

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Regelungstechnik "Fragen"

Regelungstechnik Fragen Regelungstechnik "Fragen" 1a) Was ist der Unterschied zwischen Steuern und Regeln? Steuern / Regeln gezielte Beeinflussung einer Maschine / Anlage Beim Steuern findet Beeinflussung über einer offene Wirkkette

Mehr

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12.

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. Einführung in die Robotik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. 2012 The human is perhaps the most intelligent control system

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 +

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 + Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 4 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 2 Punkte Sebastian Zanker, Daniel Mendler

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Praktikum Versuch AS G39

Praktikum Versuch AS G39 Fachgebiet Simulation und Optimale Prozesse Fakultät für Informatik und Automatisierung Institut für Automatisierungsund Systemtechnik Praktikum Versuch AS G39 Analyse und Reglerentwurf an der Luftstrom-

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

Reglerentwurf anhand des PN-Bildes des geschlossenen Kreises

Reglerentwurf anhand des PN-Bildes des geschlossenen Kreises 0 Reglerentwurf anhand des P-Bildes des geschlossenen Kreises Der Reglerentwurf anhand des Pol-ullstellen-Bildes des geschlossenen Kreises beruht auf der Konstruktion der Wurzelortskurve, die die Abhängigkeit

Mehr

2 1.4 Sind folgende Funktionen injektiv? Wenn ja, bestimmen Sie die Umkehrfunktion!

2 1.4 Sind folgende Funktionen injektiv? Wenn ja, bestimmen Sie die Umkehrfunktion! . Übung: Grundlagen. Es gibt ein seltsames Buch, da steht auf jeder Seite genau ein Satz; auf Seite : In diesem Buch steht mindestens ein falscher Satz., auf Seite : In diesem Buch stehen mindestens zwei

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Übungsaufgaben zur Lehrveranstaltung Analoge und digitale Filter Filter. Ordnung. Betrachtet wird ein

Mehr

Kybernetik Intelligent Agents- Action Selection

Kybernetik Intelligent Agents- Action Selection Kybernetik Intelligent Agents- Action Selection Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 26. 06. 2012 Intelligent Agents Intelligent Agents Environment

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III Walter Strampp AUFGABEN ZUR WIEDERHOLUNG Mathematik III Differenzialgleichungen erster Ordnung Aufgabe.: Richtungsfeld und Isoklinen skizzieren: Wie lauten die Isoklinen folgender Differenzialgleichungen:

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

Klausur zum Fach Mathematik 1 Teil 1

Klausur zum Fach Mathematik 1 Teil 1 (Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 06.07.202 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)

Mehr

Regelungstechnik. Steuerungs- und Reglungstechnik. Created with novapdf Printer (www.novapdf.com). Please register to remove this message.

Regelungstechnik. Steuerungs- und Reglungstechnik. Created with novapdf Printer (www.novapdf.com). Please register to remove this message. Regelungstechnik 336 Definition Steuerung Das Steuern, die Steuerung, ist der Vorgang in einem System, bei dem eine oder mehrere Größen als Eingangsgröße andere Größen als Ausgangsgrößen aufgrund der dem

Mehr