Theoretische Grundlagen der Supraleitung

Größe: px
Ab Seite anzeigen:

Download "Theoretische Grundlagen der Supraleitung"

Transkript

1 Theoretische Grundlagen der Supraleitung Elektrische Eigenschaften von Stoffen Bandlückenbreite zur Klassifizierung von elektrischen Leitern Materialien werden hinsichtlich ihrer elektrischen Eigenschaften in Isolatoren, Halbleiter und Metalle eingeteilt. Eine einfache Unterscheidung kann im Rahmen der Bändertheorie über die Energielücke (Bandlücke) zwischen Valenz- und Leitungsband getroffen werden. Die Energie der Bandlücke wird dabei oftmals in Anlehnung an das englische Wort gap mit E g (Energy gap) gekennzeichnet. Große Bandlücken finden sich bei den Isolatoren wie beispielsweise Diamant, weswegen derartige Stoffe in der Regel transparent sind und den elektrischen Strom nicht leiten. Halbleiter wie beispielsweise Silicium sind undurchsichtig und besitzen eine kleine Energielücke zwischen Valenz- und Leitungsband. Damit diese elektrisch leitend werden, muss einem Halbleiter Energie, beispielsweise in Form von Wärme zugeführt werden, damit Elektronen vom Valenz- ins Leitungsband gelangen. Dies ist der Grund dafür, dass die elektrische Leitfähigkeit in Halbleitern mit zunehmender Temperatur größer wird. In Metallen ist das Valenzband nur teilweise gefüllt oder es kommt zu einer Überlappung von Valenz- und Leitungsband. Derartige Stoffe leiten den elektrischen Strom daher schon bei Raumtemperatur. Im Gegensatz zu den Halbleitern nimmt die elektrische Leitfähigkeit beim Abkühlen zu und der Widerstand ab. Dies liegt daran, dass die Beweglichkeit der Elektronen in Metallen durch die, mit tieferer Temperatur, abnehmenden Kollisionen mit den Atomen zunimmt. Die thermische Bewegung der Atome in einem Festkörper, welche für den elektrischen Widerstand verantwortlich ist, wird zunehmend eingefroren. Bandlückenbreite und Metallcharakter - Gruppe 14 als Beispiel Die Bandlücke zwischen Valenz- und Leitungsband bestimmt den metallischen Charakter eines Elementes. Innerhalb der Gruppe 14 des Periodensystems (4. Hauptgruppe) nimmt der Metallcharakter von oben nach unten zu. Dies korreliert mit den aufgefundenen Bandlücken in den Festkörpern: So beträgt die Bandlücke im Diamanten 5.2 ev, im Silicium (Si n ) 1.09

2 ev, im Germanium (Ge n ) 0.60 ev, im α-zinn (α-sn n ) nur noch 0.08 ev und im Blei (Pb n ), einem typischen Metall, ist sie mit 0 ev nicht mehr vorhanden. Widerstands-Temperaturkurven für verschiedene Metalle Wird nun der elektrische Widerstand, beispielsweise von Silber und Zinn in Abhängigkeit der Temperatur gemessen, so nimmt dieser für beide Metalle mit fallender Temperatur zunächst ab. Beim weiteren Abkühlen strebt der Widerstand für Silber einem Grenzwert zu, wohingegen dieser für Zinn beim Übergang von dem normalleitenden in den supraleitenden Zustand praktisch auf Null abfällt. Das Verschwinden des elektrischen Widerstandes hat zur Folge, dass in einem Supraleiter ein Strom ohne Energieverlust beliebig lange fließen kann. Wird die Stromstärke jedoch über einen kritischen Wert (kritische Stromstärke I c ) erhöht, bricht die Supraleitung zusammen. Nach seinem Entdecker wird diese Erscheinung als Silsbee-Effekt bezeichnet. Eine besonders hohe kritische Stromdichte weisen beispielsweise Supraleiter auf der Basis von Oxocupraten auf, weswegen diese für Anwendungen von besonderem Interesse sind. Magnetische Eigenschaften von Stoffen Diamagnetismus und Paramagnetisumus Stoffe können hinsichtlich ihrer magnetischen Eigenschaften zunächst einmal in diamagnetische und paramagnetische Stoffe unterteilt werden. Diese können anhand ihrer Wechselwirkung mit einem magnetischen Feld unterschieden werden. Wird ein diamagnetischer Stoff in ein Magnetfeld gebracht, so werden die magnetischen Feldlinien aus seinem Inneren verdrängt, wohingegen bei einem paramagnetischen Stoff die Anzahl der Feldlinien erhöht wird. Werden diamagnetische Stoffe nun in ein Magnetfeld gebracht, so werden diese vom Magnetfeld abgestossen, wohingegen paramagnetische Stoffe zum Ort mit der größten Feldliniendichte hingezogen werden. Messung magnetischer Eigenschaften Experimentell kann man zwischen paramagnetischen und diamagnetischen Stoffen unterscheiden, indem die Kraft gemessen wird, mit der diese vom Magnetfeld abgestoßen oder angezogen werden. Hierzu wird der zu untersuchende Stoff an einer Waage aufgehängt und in ein Magnetfeld gebracht. Wird der Stoff aus dem Magnetfeld verdrängt, also scheinbar

3 leichter, liegt Diamagnetismus vor. Wird dieser in das Magnetfeld hineingezogen, d. h. scheinbar schwerer, liegt Paramagnetismus vor. Quantitativ beschrieben werden kann dieses Verhalten durch den Wert der magnetischen Suszeptibilität χ. Für diamagnetische Stoffe ist χ > 0 und für paramagnetische Stoffe ist χ < 0. Bei diesem Verfahren kann zwischen zwei verschiedenen Methoden unterschieden werden. Bei der Methode nach Gouy wird ein homogenes Magnetfeld verwendet, wohingegen sich die Probe bei der Methode nach Faraday in einem inhomogenen Magnetfeld befindet. Ein Nachteil der Methode nach Gouy besteht darin, dass große Probenmengen zur Verfügung stehen müssen, da ein Teil der Probe aus dem Magnetfeld herausragen muss. Magnetische Eigenschaften von Supraleitern Beim Übergang eines Stoffes in den supraleitenden Zustand sinkt die magnetische Suszeptibilität unterhalb der Sprungtemperatur (T c ) stark ab und nimmt negative Werte an. Dieses Verhalten entspricht dem eines sehr starken Diamagneten, der die Feldlinien aus seinem Inneren verdrängt. Die Feldlinien werden bis auf einen dünnen Randbereich vollständig aus dem Inneren des Supraleiters verdrängt. Daraus resultiert beispielsweise das Schweben einer Supraleitertablette über einem Magneten (Schwebeversuch) Supraleiter 1. und 2. Art Neben dem Überschreiten der Sprungtemperatur T c, oder der kritischen Stromstärke I c kann der supraleitende Zustand auch durch ein Magnetfeld zerstört werden. Da ein in einem Leiter fließender Strom immer auch ein Magnetfeld erzeugt, ist es unerheblich, ob es sich dabei um ein externes Magnetfeld handelt oder ob das Magnetfeld vom Supraleiter selbst erzeugt wird. Für praktische Anwendungen sind natürlich solche Materialien von Interesse, deren Supraleitfähigkeit auch in Gegenwart sehr starker Magnetfelder und sehr starker Ströme erhalten bleibt. Die Magnetfeldstärke, bei der der supraleitende Zustand aufgehoben wird, wird als kritische Magnetfeldstärke H c bezeichnet. Hinsichtlich des Übergangsverhaltens in Abhängigkeit der Magnetfeldstärke wird zwischen Supraleitern 1. und 2. Art unterschieden. Bei Supraleitern 1. Art erfolgt beim Überschreiten von der kritischen Magnetfeldstärke H c ein scharfer Übergang in den normalleitenden Bereich. Beim Unterschreiten von H c setzt die Supraleitung plötzlich wieder ein. Zu diesem Typ gehören supraleitende Elemente wie beispielsweise Vanadium (V), Zinn (Sn) oder Quecksilber (Hg).

4 Bei Supraleitern 2. Art setzt der Übergang eher schleppend nach dem Überschreiten von H c1 ein. Im Übergangsbereich zwischen H c1 und H c2 (Shubnikov-Phase) dringt magnetischer Fluss mit zunehmender Magnetfeldstärke fortschreitend in das supraleitende Material ein, bis die Supraleitung zusammenbricht. In diesem Zwischenzustand wird der Supraleiter nicht gleichmäßig vom Magnetfeld durchsetzt. In dieser Shubnikov-Phase koexistieren normalleitende und supraleitende Bereiche. Da die supraleitenden Bereiche feldfrei sein müssen, kann sich der magnetische Fluss nur in den normalleitenden Bereichen befinden. Die Feldlinien durchziehen die normalleitenden Bereiche in Richtung des angelegten Feldes und sind von Kreisströmen umgeben, die dafür sorgen, dass der Rest des Supraleiters feldfrei bleibt. Da die magnetischen Feldlinien den Supraleiter in einzelnen nebeneinander verlaufenden Schläuchen durchlaufen, werden diese als Flussschläuche bezeichnet. Diese Flussschläuche können mit Hilfe der magnetischen Dekoration sichtbar gemacht werden. Hierfür wird auf einen Supraleiter in der Shubnikov-Phase ein ferromagnetisches Pulver aufgebracht. Das Pulver wird aus den supraleitenden Bereichen verdrängt und sammelt sich in den Bereichen hoher Magnetfeldstärke an und markiert so die Flussschläuche. Bei Erhöhung der Magnetfeldstärke nimmt die Flusschlauchdichte immer mehr zu, bis bei H c2 keine supraleitenden Bereiche mehr vorhanden sind. Diese kritische Feldstärke ist bei Supraleitern 2. Art um ein Vielfaches höher als H c bei Supraleitern 1. Art. Da die Supraleitung auch bei hohen Feldstärken erhalten bleibt, sind Supraleiter 2. Art, wie beispielsweise die Oxocuprate, die für mögliche Anwendungen interessantesten Verbindungen. Die Flusschläuche in einem Supraleiter 2. Art sind jedoch nicht statisch, sondern können sich durch diesen bewegen. Diese Bewegung wird durch den fließenden Strom verursacht und äußert sich in einer Erwärmung des Supraleiters und damit verbunden, in einem Energieverlust. Die Wanderung der Flussschläuche kann jedoch in intermetallischen Phasen durch absichtlich erzeugte normalleitende Ausscheidungen unterbunden werden (Pinning). Die Flussschläuche sind dann an diese Ausscheidungen verhaftet. Bei Oxocupraten liegt die Kohärenzlänge (s.u.) jedoch im nm-bereich und es müssen Pinning-Zentren von atomarer Größenordnung eingeführt werden. Dies können Kristalldefekte oder Dotierungen mit paramagnetischen Ionen sein. Da durch das Pinning magnetischer Fluss im Supraleiter verbleibt, zeigt sich neben dem abstoßenden Meissner-Ochsenfeld-Effekt auch ein, durch das Pinning entstandener, anziehender Effekt. Theoretische Erklärung der Supraleitung: Die BCS-Theorie

5 Die größten Änderungen beim Übergang vom normalleitenden in den supraleitenden Zustand finden bei den elektrischen und den magnetischen Eigenschaften statt. Es lag daher Nahe, dass für die Supraleitung ein spezifisches Ordnungsphänomen der Leitungselektronen verantwortlich ist. Bereits im Jahre 1950 wurde auch entdeckt, dass die Sprungtemperatur verschiedener Isotope des gleichen Elements von der Masse der Gitterbausteine abhängt (Isotopeneffekt). Daraus wurde gefolgert, dass die Supraleitung mit den Gitterschwingungen (Phononen) zusammenhängt. Es wurde angenommen, dass es bei den Supraleitern zu einer starken Elektronen-Phononen-Wechselwirkung kommt. Stark vereinfacht, kann man sich den Mechanismus folgendermaßen vorstellen. Bewegt sich ein Elektron durch einen Festkörper, so tritt eine Coulombsche Anziehung zu den positiv geladenen Gitterkationen auf, die dazu führt, dass das Gitter verzerrt und polarisiert wird. Dadurch wird auf ein zweites Elektron mit entgegengesetztem Spin eine Anziehungskraft ausgeübt, die dazu führt, dass sich, durch die Gitterschwingungen vermittelt, ein Elektronenpaar bildet. Zur Deutung dieser Vorgänge haben Bardeen, Cooper und Schrieffer im Jahre 1957 ihre BCS-Theorie entwickelt. Sie gingen davon aus, dass unter bestimmten Bedingungen wegen der Wechselwirkung mit den Gitterschwingungen in einem Festkörper die Anziehung zwischen zwei Leitungselektronen im Festkörper größer ist als die Coulombsche Abstoßung zwischen diesen. Diese schwach aneinander gebundenen Elektronen werden Cooper-Paare genannt und sind für die Supraleitung verantwortlich. Wenn ein elektrisches Feld angelegt wird, werden die zweifach negativ geladenen Cooper-Paare zum Pluspol hin beschleunigt. Eine Wechselwirkung mit dem Gitter ist nur dann möglich, wenn genügend Energie zur Verfügung steht um die Copper-Paare aufzubrechen. Da alle Cooper-Paare die gleiche Energie besitzen, brechen alle gleichzeitig auf, wenn ihre kinetische Energie größer als ihre Bindungsenergie ist. Dabei ist es völlig unerheblich, ob die kinetische Energie durch Wärme oder durch Beschleunigung in einem elektrischen oder magnetischen Feld zugeführt wird. Neben einer kritischen Temperatur existiert daher auch ein kritischer Strom oder ein kritisches Magnetfeld, bei dem die Supraleitung zusammenbricht. Die Elektronen eines Cooper-Paares sind sehr weit voneinander entfernt. Deren Ausdehnung, Kohärenzlänge genannt, beträgt zwischen 0.1 und 1 mm. Mit Hilfe der BCS-Theorie kann beispielsweise die Übergangstemperatur zwischen normalleitendem und supraleitendem Zustand berechnet werden. Daraus ergibt sich, das hohe Sprungtemperaturen unter anderem bei den Stoffen erwartet werden können, die eine besonders starke Elektron-Phonon-Wechselwirkung aufweisen. Metalle zeigen aber oftmals

6 eine nur schwache Elektronen-Phonon-Kopplung, so dass die metallischen Element- Supraleiter alle nur Übergangstemperaturen unterhalb von rund 9.3 K aufweisen. Die Legierung Nb 3 Sn zeigt eine starke Elektron-Phonon-Kopplung und ein T c von 18 K. Die höchste Übergangstemperatur für metallische Systeme von 39 K wird von Magnesiumdiborid (MgB 2 ) erreicht. Die BCS-Theorie erlaubt nur die Berechnung der Parameter für schwach gekoppelte Supraleiter. Mit der erweiterten BCS-Eliashberg-Theorie können auch die T C -Werte für die Oxocuprate berechnet werden. Eine Voraussetzung für die Vorhersage der Sprungtemperatur ist, dass man ein geeignetes Modell für die Berechnung hat. Dazu müssen auch die Normalleitereigenschaften des Leiters bekannt sein. Eine früher vorgenommene Abschätzung gab als Obergrenze eine maximale kritische Temperatur von T C 35 K an. Diese Berechnung galt aber nur für "niobartige" Supraleiter. Für noch unbekannte Stoffe, kann eine derartige Vorhersage nicht gelingen. Daher gibt es im Grunde keine Begrenzung für die kritische Temperatur unbekannter Systeme.

Man kann zeigen, dass das Magnetfeld an der Oberfläche des Supraleiters eindringen

Man kann zeigen, dass das Magnetfeld an der Oberfläche des Supraleiters eindringen Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Werkstoffwissenschaften 6 / AlN Martensstr. 7, 91058 Erlangen Vorlesung Grundlagen der WET I Dr.-Ing. Matthias Bickermann, Prof. Dr. A. Winnacker

Mehr

F-Praktikum Physik: Widerstand bei tiefen Temperaturen

F-Praktikum Physik: Widerstand bei tiefen Temperaturen F-Praktikum Physik: Widerstand bei tiefen Temperaturen David Riemenschneider & Felix Spanier 11. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grüneisen-Theorie...............................

Mehr

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren

Mehr

Heute: Magnetismus. Mathematisch-Naturwissenschaftliche Fakultät. Abteilung Anorganische Festkörperchemie. Prof. Dr. Martin Köckerling.

Heute: Magnetismus. Mathematisch-Naturwissenschaftliche Fakultät. Abteilung Anorganische Festkörperchemie. Prof. Dr. Martin Köckerling. Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Festkörperchemie Vorlesung Anorganische Chemie VI Materialdesign Heute: Magnetismus 1 Gliederung Magnetismus Elektromagnetismus

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

316 - Magnetfeldmessungen

316 - Magnetfeldmessungen 316 - Magnetfeldmessungen 1. Aufgaben 1.1 Die magnetische Induktion B eines Elektromagneten auf der Polschuhachse ist mit einer Hall- Sonde in Abhängigkeit vom Magnetisierungsstrom für unterschiedliche

Mehr

Inhalt der Vorlesung B2

Inhalt der Vorlesung B2 Inhalt der Vorlesung B2 3. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik Wechselstromnetzwerke

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

Magnetismus der Materie. Bernd Fercher David Schweiger

Magnetismus der Materie. Bernd Fercher David Schweiger Magnetismus der Materie Bernd Fercher David Schweiger Einleitung Erste Beobachtunge in China und Kleinasien Um 1100 Navigation von Schiffen Magnetismus wird durch Magnetfeld beschrieben dieses wird durch

Mehr

6/2 Halbleiter Ganz wichtige Bauteile

6/2 Halbleiter Ganz wichtige Bauteile Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz

Mehr

Magnetisierung der Materie

Magnetisierung der Materie Magnetisierung der Materie Das magnetische Verhalten unterschiedlicher Materialien kann auf mikroskopische Eigenschaften zurückgeführt werden. Magnetisches Dipolmoment hängt von Symmetrie der Atome und

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl 2.4 Metallische Bindung und Metallkristalle Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Cs Ba Tl Pb Bi Po At Unterteilung in Metalle, Halbmetalle, Nicht metalle Metalle etwa

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

1. Systematik der Werkstoffe 10 Punkte

1. Systematik der Werkstoffe 10 Punkte 1. Systematik der Werkstoffe 10 Punkte 1.1 Werkstoffe werden in verschiedene Klassen und die dazugehörigen Untergruppen eingeteilt. Ordnen Sie folgende Werkstoffe in ihre spezifischen Gruppen: Stahl Holz

Mehr

Leiter, Halbleiter, Isolatoren

Leiter, Halbleiter, Isolatoren eiter, Halbleiter, Isolatoren lektronen in Festkörpern: In einzelnem Atom: diskrete erlaubte nergieniveaus der lektronen. In Kristallgittern: Bänder erlaubter nergie: gap = Bandlücke, pot Positionen der

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

E 2 Temperaturabhängigkeit elektrischer Widerstände

E 2 Temperaturabhängigkeit elektrischer Widerstände E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Was sind eigentlich Supraleiter und wofür braucht man die?

Was sind eigentlich Supraleiter und wofür braucht man die? Was sind eigentlich Supraleiter und wofür braucht man die? von Kevin Inderbitzin Betreuung durch Dr. Christian Helm Mentorierte Fachwissenschaftliche Arbeit für die Ausbildung zum Lehrdiplom in Physik

Mehr

Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab

Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Elektrostatik 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Beschreibe und erkläre die Exp. stichpunkartig. Ergebnis: - Es gibt

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

Functional Materials Saarland University

Functional Materials Saarland University Supraleitung Entdeckung des widerstandslosen Stromtransport Elektrischen Widerstandes bei tiefen Temperaturen. Vorstellungen um 1900 Entdeckung des widerstandslosen Stromtransport Kamerlingh-Onnes: langsam

Mehr

Seebeck-/Peltier-Effekt: thermoelektrische Materialien

Seebeck-/Peltier-Effekt: thermoelektrische Materialien Seebeck-/Peltier-Effekt: thermoelektrische (Seebeck-Effekt) [1] Matthias Neumann, Sebastian Paulik Folie 1 1. Seebeck-Effekt 1.1 Einführung 1.2 Theorie 1.3 Anwendung Thomas Johann Seebeck (1770-1831) 2.

Mehr

Elektrolytische Leitfähigkeit

Elektrolytische Leitfähigkeit Elektrolytische Leitfähigkeit 1 Elektrolytische Leitfähigkeit Gegenstand dieses Versuches ist der Zusammenhang der elektrolytischen Leitfähigkeit starker und schwacher Elektrolyten mit deren Konzentration.

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Frühjahr 2000, Thema 2, Der elektrische Widerstand Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden

Mehr

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

Versuch E11 - Hysterese Aufnahme einer Neukurve. Abgabedatum: 24. April 2007

Versuch E11 - Hysterese Aufnahme einer Neukurve. Abgabedatum: 24. April 2007 Versuch E11 - Hysterese Aufnahme einer Neukurve Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Ziel des Versuchs 3 2 Physikalischer Zusammenhang 3 2.1 Magnetisches Feld..........................

Mehr

-Q 1 Nach Aufladen C 1

-Q 1 Nach Aufladen C 1 Verschaltung von Kondensatoren a) Parallelschaltung C 2 Knotensatz: Q 2 -Q 2 Q 1 -Q 1 Nach Aufladen C 1 U Die Kapazitäten addieren sich b) Reihenschaltung C 1 C 2 Q -Q Q -Q Maschenregel: U Die reziproken

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

Fragen zur Vorlesung Licht und Materie

Fragen zur Vorlesung Licht und Materie Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell

Mehr

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

πάντα ῥεῖ alles fließt

πάντα ῥεῖ alles fließt Regionale Lehrerfortbildung des Regierungspräsidiums Karlsruhe 6. Dezember 2010 KIT-Gastdozentenhaus Heinrich Hertz πάντα ῥεῖ alles fließt Supraströme Friedrich Herrmann Institut für Theoretische Festkörperphysik

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

Physikalisches Fortgeschrittenenpraktikum. Elektrische Leitfähigkeit von Festkörpern bei tiefen Temperaturen

Physikalisches Fortgeschrittenenpraktikum. Elektrische Leitfähigkeit von Festkörpern bei tiefen Temperaturen Physikalisches Fortgeschrittenenpraktikum Elektrische Leitfähigkeit von Festkörpern bei tiefen Temperaturen Gruppe 22 Tobias Großmann Marc Ganzhorn Durchführung: 07.01.2008 1 Inhaltsverzeichnis 1 Versuchsziel

Mehr

Das magnetische Feld. Kapitel Lernziele zum Kapitel 7

Das magnetische Feld. Kapitel Lernziele zum Kapitel 7 Kapitel 7 Das magnetische Feld 7.1 Lernziele zum Kapitel 7 Ich kann das theoretische Konzept des Magnetfeldes an einem einfachen Beispiel erläutern (z.b. Ausrichtung von Kompassnadeln in der Nähe eines

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

E19 Magnetische Suszeptibilität

E19 Magnetische Suszeptibilität Aufgabenstellung: 1. Untersuchen Sie die räumliche Verteilung des Magnetfeldes eines Elektromagneten und dessen Abhängigkeit vom Spulenstrom. 2. Bestimmen Sie die magnetische Suszeptibilität vorgegebener

Mehr

Hall Effekt und Bandstruktur

Hall Effekt und Bandstruktur Hall Effekt und Bandstruktur Themen zur Vorbereitung (relevant im Kolloquium zu Beginn des Versuchstages und für den Theorieteil des Protokolls): Entstehung von Bandstruktur. Halbleiter Bandstruktur. Dotierung

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,

Mehr

Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften

Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften Rätsel in der Welt der Quanten Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften 1. Februar 2012 Die Klassische Physik Bewegung von Objekten Lichtwellen Bewegung von Objekten Newtonsche

Mehr

Naturwissenschaft und Technik (NwT) Festkörperphysik Supraleitung, Cooper-Paare, Meißner-Ochsenfeld Effekt, Sprungtemperatur, flüssiger Stickstoff

Naturwissenschaft und Technik (NwT) Festkörperphysik Supraleitung, Cooper-Paare, Meißner-Ochsenfeld Effekt, Sprungtemperatur, flüssiger Stickstoff Supraleitung Eine Unterrichtsidee von Dr. Matthias Hauck Das im Folgenden dargestellte Unterrichtsmaterial wurde zur Einbindung des Artikels Harte Nuss für Theoretiker aus der Zeitschrift Physik in unserer

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Kühlung: Verdampfer-Kühlschrank: Das Arbeitsgas muss sich bei der gewünschten Temperatur verflüssigen lassen. (Frigen, NH 3, SO 2, Propan)

Kühlung: Verdampfer-Kühlschrank: Das Arbeitsgas muss sich bei der gewünschten Temperatur verflüssigen lassen. (Frigen, NH 3, SO 2, Propan) Kühlung: Verdampfer-Kühlschrank: Das Arbeitsgas muss sich bei der gewünschten Temperatur verflüssigen lassen. (Frigen, NH 3, SO 2, Propan) Ein Kompressor komprimiert das Gas. Bei Abkühlung auf Raumtemperatur

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

Anorganische Chemie VI Materialdesign

Anorganische Chemie VI Materialdesign Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie VI Materialdesign Heute: Supraleitung-II

Mehr

Versuchsvorbereitung P1-80: Magnetfeldmessung

Versuchsvorbereitung P1-80: Magnetfeldmessung Versuchsvorbereitung P1-80: Magnetfeldmessung Kathrin Ender Gruppe 10 5. Januar 2008 Inhaltsverzeichnis 1 Induktivität einer Spule 2 1.1 Entmagnetisieren des Kerns............................ 2 1.2 Induktiver

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Einführung und Erklärung: Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Die aufgebauten Versuche beinhalten diamagnetische Stoffe. Bei den angelegten inhomogenen Feldern kann beobachtet

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

3. Elektrische Felder

3. Elektrische Felder 3. Elektrische Felder Das dem Menschen wohl am längsten bekannte elektrische Phänomen ist der Blitz. Aufgrund der Urgewalt von Blitzen wurden diese in der Antike Gottheiten wie dem Donnergott Thor zugeschrieben.

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

9 Supraleitung. 9.1 Phänomenologie Entdeckung Leitfähigkeit

9 Supraleitung. 9.1 Phänomenologie Entdeckung Leitfähigkeit 9.1 Phänomenologie 9.1.1 Entdeckung Im Kapitel 5) über freie Elektronen hatten wir gefunden, dass der elektrische Widerstand bei tiefen Temperaturen abnimmt, bis er einen Grenzwert erreicht, der durch

Mehr

Einblick in neue Magnettechnologien

Einblick in neue Magnettechnologien Einblick in neue Magnettechnologien Daniel Baumann Bruker Biospin AG Schweiz 08. November 2016 Karlsruhe Innovation with Integrity Innovation with Integrity 1 GHz Aeon im NZN Bayreuth Niob-Titan Drahtherstellung

Mehr

Faszination Supraleitung

Faszination Supraleitung Faszination Supraleitung Florian Gebhard arbeitsgruppe vielteilchentheorie fachbereich physik philipps-universität marburg Von Wasserburg nach Marburg Vorab ein kurzer Lebenslauf... Florian Gebhard : Faszination

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Einführung in die Elektronik Leiter und Nichtleiter. Metallische Leiter und Nichtleiter. Alle Werkstoffe, die in der Elektrotechnik verwendet werden

Mehr

PHYSIK. 2. Klausur - Lösung

PHYSIK. 2. Klausur - Lösung EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #6 am 3.05.007 Vladimir Dyakonov (Klausur-)Frage des Tages n einem Blitz kann die Potentialdifferenz

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Magnetische Monopole

Magnetische Monopole Magnetische Monopole Einführung: Aber in der Schule haben wir doch gelernt... Dirac s Idee symmetrischer Maxwell-Gleichungen Konsequenzen aus der Existenz magnetischer Monopole Quantisierung der elektrischen

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

Die Silizium - Solarzelle

Die Silizium - Solarzelle Die Silizium - Solarzelle 1. Prinzip einer Solarzelle Die einer Solarzelle besteht darin, Lichtenergie in elektrische Energie umzuwandeln. Die entscheidende Rolle bei diesem Vorgang spielen Elektronen

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Elektrische und ^magnetische Felder

Elektrische und ^magnetische Felder Marlene Marinescu Elektrische und ^magnetische Felder Eine praxisorientierte Einführung Zweite, vollständig neu bearbeitete Auflage * j Springer I nhaltsverzeichnis 1 Elektrostatische Felder 1 1.1 Wesen

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

2 Die Atombindung im Wasserstoff-Molekül

2 Die Atombindung im Wasserstoff-Molekül 2.1 Lernziele 1. Sie wissen, wie eine chemische Bindung zwischen zwei Wasserstoff-Atomen zustande kommt. 2. Sie können den bindenden vom antibindenden Zustand unterscheiden. 3. Sie wissen, weshalb das

Mehr

Kristallgitter von Metallen

Kristallgitter von Metallen R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 I. Elektronik 10. Wiederholung wichtiger Grundsachverhalte aus der Elektrik 10.1 Leiter und Nichtleiter. 10.1.1 Metallische Leiter und Nichtleiter.

Mehr

Elektrische Einheiten und ihre Darstellung

Elektrische Einheiten und ihre Darstellung Die Messung einer physikalischer Größe durch ein Experiment bei dem letztlich elektrische Größen gemessen werden, ist weit verbreitet. Die hochpräzise Messung elektrischer Größen ist daher sehr wichtig.

Mehr

Vorbereitung: Eigenschaften elektrischer Bauelemente

Vorbereitung: Eigenschaften elektrischer Bauelemente Vorbereitung: Eigenschaften elektrischer Bauelemente Marcel Köpke & Axel Müller 15.06.2012 Inhaltsverzeichnis 1 Grundlagen 3 2 Aufgaben 7 2.1 Temperaturabhängigkeit............................ 7 2.2 Kennlinien....................................

Mehr

Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente

Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente Friedrich-Alexander-Universität Prof. Dr.-Ing. H. Ryssel vhb-kurs Halbleiterbauelemente Übungsaufgaben Teil 3: Feldeffekttransistoren Übung zum vhb-kurs Halbleiterbauelemente Seite 15 Feldeffekttransistoren

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

3. Magnetostatik 3.1. Grundbegriffe

3. Magnetostatik 3.1. Grundbegriffe 3. Magnetostatik 3.1. Grundbegriffe In der Natur existieren magnetische Felder. Es gibt allerdings keine Quellen des magnetischen Feldes, d. h. es wurden noch nie magnetischen Ladungen (magnetische Monopole)

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Metalloxide: Vom Rost zum High-Tech-Werkstoff

Metalloxide: Vom Rost zum High-Tech-Werkstoff Physik am Samstag, 01-07-2006 Metalloxide: Vom Rost zum High-Tech-Werkstoff ep4 Universität Ralph Claessen Experimentelle Physik IV Physikalisches Institut Universität Warum Metalloxide? Elementhäufigkeit

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Die Lenzsche Regel. Frage : In welche Richtung fließt der Induktionsstrom? Versuch :

Die Lenzsche Regel. Frage : In welche Richtung fließt der Induktionsstrom? Versuch : Die Lenzsche Regel Frage : In welche Richtung fließt der Induktionsstrom? Versuch : Beobachtung : Bewegungsrichtung des Magneten in den Ring hinein aus dem Ring heraus Bewegungsrichtung des Metallringes

Mehr

Aufbau und verschiedene Formen der Materie

Aufbau und verschiedene Formen der Materie Aufbau und verschiedene Formen der Materie 1. Röntgenstrahlung 2. Wilhelm Conrad Röntgen Leben und Persönlichkeit 3. Phasenübergänge 4. Erzeugung tiefer Temperaturen und Supraleitung 5. Halbleiter 6. John

Mehr